[电力,网络]电力通信光传输网络优化与应用分析
- 格式:docx
- 大小:19.05 KB
- 文档页数:4
浅谈SDH光纤传输网优化及应用随着电力SDH 光纤传输网不断扩展,产生网络优化问题,本文介绍了基于SDH 的MSTP 技术,对其进行分析,指出其是光缆网完善策略的关键技术。
标签:电力通信SDH 网络优化光纤传输一、引言随着电网结构的日益复杂、厂站数目和业务种类不断增加、视频监控等大容量数据业务的需求,在更高的网络可靠性要求下,现有传输网网络结构和容量将面临巨大压力,亟需对其进行优化和调整。
二、基于SDH的MSTP技术简介同步数字体系(SynchronousDigitalHierarchy,SDH)是将复接、线路传输及交换功能融为一体,并由统一网管系统操作的综合信息传送网络。
具有全球统一的网络节点接口和标准的信息结构等级同步传送模块(STM-N),提供155×NMbit/s的传输速率,可以复接2,34,140Mbit/s等低速支路信号,以其安全、可靠、准时、便于维护的优点在电力通信骨干网中得到广泛应用。
MSTP技术支持话音、视频、数据等多种业务,提供丰富的业务(TDM、ATM或以太网业务等)接口,通过更换接口模块适应业务的发展变化,是成功解决传输网接入层多业务传送的主要方法,不仅满足电网通信业务多样化要求,也满足了电网通信的高可靠性和高QoS的保证。
三、SDH光纤传输网现状分析电力通信网基础薄弱、资源匮乏,在早期建设不足和光传输网复杂的情况下,电力通信网的问题日益凸显,传输A网主要存在以下问题。
(1)网络层次不清晰、拓扑结构欠合理。
由于受到地理环境、资金、技术等条件限制,部分站点之间早期架设的光缆纤芯数量多为12芯,甚至为8芯,加上电力光纤通信采用单向通信方式,纤芯占用率高,使纤芯资源更紧张。
同时,业务汇聚点至地调光缆通道过少,导致业务过于集中在个别站点,一旦两者间光缆出现故障,将出现大范围的生产业务中断。
(2)设备配置不合理、传输容量低。
网内设备具有2.5Gbit/s交叉容量,但传输A网骨干层2条成环链路最大带宽仅为622Mbit/s,其他链路带宽均为155Mbit/s,光纤带宽利用率低。
电力通信中SDH技术应用与网络优化思考摘要:SDH技术不但可以应用于光纤领域,在微波和卫星领域也能够发挥其自身优势,成为一种通用传输技术。
SDH技术的应用能够实现网络的有效管理、运行过程的实时监测、不同厂商设备的有效互通以及后期的维护管理工作等,在极大程度上避免了资源浪费,减少系统运行成本,提高了电力通信网络的工作效率和安全性,对电力通信行业的长远发展有重要意义。
基于此,文章深入研究SDH技术的网络优化策略,希望能够为通信网络建设提供参考。
关键词:电力通信;SDH技术;网络优化1电力通信中SDH技术应用的特点SDH光传输系统又叫做同步数字传输系统。
“SDH”是美国的通信技术研究所提出的同步光网络,规范了数字信号的帧结构、复用方式、传输速率等级以及接口码型等特征。
SDH光传输系统的传输通道为光纤信道,借助光纤传媒介质实现多节点的同步传输,同时,该系统无论是在节点接口,还是在指针定位调整上都发展得相对完善,均能够实现标准化,且该系统在管理模式上也相对完善,能够实现统一的网络管理。
SDH光传输系统工作较为稳定,能够保障网络的稳定传输,能够可靠地运行。
SDH光传输系统主要具有如下特点:第一,SDH系数采用帧结构,具有统一的传输标准,对系统具有较强的兼容性,能够对信号传输进行控制,保障传输过程的稳定性。
第二,具有较强的同步性,能够对净负荷进行控制,使支路信号能够完整传递,实现信号的同步传输,提高网络传输的效率。
第三,采用分叉复用的形式,能够降低信号传输的开销,使网络管理更加数字化,提高网管功能的全面性。
第四,网络拓扑结构齐全,能够灵活对网络进行管理,使网络能够稳定运用,提高网络的安全性。
第五,接口具有较强的开放性,能够实现网络控制的横向兼容,降低数据传输的误码率,保障光传输系统的运行状态。
第六,具有良好的交换性能,可以对功能块进行组合,使系统的功能更加多样化,进而提高系统的网络服务能力。
2电力通信中SDH技术应用存在的问题SDH技术应用过程中具有稳定性相对较高的优势,主要是因为在SDH的信号STM-N帧内进行了相对较多用于OAM功能的开销字节的加入,PDH信号所占用的频带相较于SDH信号所占用的频带较窄,因此在具体的应用过程中其频带的利用率相对较低。
电力通信系统中SDH光传输技术的应用研究1. 引言1.1 研究背景在传统的电力通信系统中,常常采用的是传统的电缆传输方式,但这种传输方式存在着带宽狭窄、时延大、易受干扰等问题,无法满足今天电力通信系统日益增长的数据传输需求。
引入SDH光传输技术成为一种重要的发展方向。
通过对SDH光传输技术在电力通信系统中的应用研究,可以有效地改善电力通信系统的数据传输质量和可靠性,提高系统的运行效率和安全性。
本文旨在对SDH光传输技术在电力通信系统中的应用进行深入研究和分析,为电力通信系统的发展提供理论支撑和技术指导。
1.2 研究意义SDH光传输技术可以提供高速的数据传输能力,可以实现大容量、高速的数据传输,满足电力通信系统对于数据传输速度的需求。
SDH光传输技术具有灵活的网络管理和配置能力,可以实现网络资源的有效利用和动态配置,提高了网络的灵活性和可管理性。
SDH光传输技术也具有很好的容错能力和故障恢复能力,可以保障通信系统的稳定性和可靠性。
深入研究SDH光传输技术在电力通信系统中的应用,可以更好地推动电力行业信息化建设,提升电力通信系统的运行效率和安全性。
通过研究SDH光传输技术在电力通信系统中存在的问题及解决方法,可以进一步完善电力通信系统,为电力行业的发展提供更好的支持和保障。
【字数:249】2. 正文2.1 SDH光传输技术概述SDH光传输技术(Synchronous Digital Hierarchy)是一种用于数字通信的传输技术,它是一种同步的、多路复用的数字传输体系结构。
SDH技术的核心是利用光纤传输数字信号,可支持大容量、高速、长距离的数据传输。
SDH技术采用了分层的结构,可以实现透明的传输,将各种不同速率的数字信号映射到不同的频分复用通道上,从而实现灵活的网络配置和管理。
SDH光传输技术具有很高的信号质量和稳定性,能够保证传输过程中数据的完整性和可靠性。
它支持多种不同速率的信号传输,可以适应不同的网络需求。
电力通信 SDH 光传输网网络优化发布时间:2021-10-08T06:50:55.832Z 来源:《当代电力文化》2021年16期作者:宋莹玮[导读] 通过运用通信网络的方式来发展电力,是目前我国电力发展中应用的方法宋莹玮国网吉林省电力有限公司长春供电公司电力调度控制中心吉林 130051摘要:通过运用通信网络的方式来发展电力,是目前我国电力发展中应用的方法。
因此,作为一种基础设施而言,电力通信网络成为了智能电网、电力物联网的主要组成部分,对于国家电网的各类业务有着安全保障的作用,能够确保电力通信业务得以高效和安全的运行。
目前的电力通信设备往往是采用SDH光传输的方式开展的,其通过网络敷设,将电力业务实现全面覆盖,这样的网络优化体系的特点是可靠性强。
在SDH光传输网的作用下,电力通信可以将目前网络格局不合理、带宽分布不均匀、资源过度浪费,以及网管软硬件老旧等情况加以改善,尤其是改变光缆资源不均衡的情况。
鉴于此,本篇研究如何实现网络模式的优化,改善电力通信网的安全性,得到电信网通信可靠性提升的目标。
关键词:SDH;网络优化;电力通信 0前言当数据网络建成之后,城市中的信息就可以实现共享,这样的网络化生活已经覆盖到县乡镇,许多地区都在通过通信网来实现大宽带、大容量和大数据的共享,便捷了人们的生活状态。
电力通信网本身是我国智能电网的重要组成部分,目前该网络受到了广大民众的信赖,已经覆盖了35KV以上的多种变电站,其他生产场所也实现了普及。
从宏观角度来说,网络对接业务包括了多项内容,例如自动化的调度、信息的稳定性和安全性、保护继电措施等,相关业务的开展需要监控技术的支持,比如通过综合数据网、行政语音、视频监控等信息管理办法来运营,此时,就可以实现网络稳定性和安全性的提高。
1、网络现状电力通信网络在实现运行管理的时候,需要分级处理,比如将通信网络分为一级、二级、三级不等的通信网络。
网络业务大致可分为两大类,详细是主网和配电网。
电力通信光传输网络优化与应用分析摘要:随着网络通信技术的不断发展,网络数据信息故障问题也逐渐明显,需加强对光纤通信网络内部节点故障的预警与定位处理,因此,精准高效的网络节点故障定位方法则为人们提供良好的网络通讯支撑。
智能电网建设比较依赖于电力信息通信网络,与此同时还提高电力网络在各个方面的要求,尤其是实时性和安全性方面。
本文阐述智能电网电力信息通信网络的方式,包括光纤以太网通信、无线移动通信,探讨电力信息通信网络的运营,构建配电通信网和用户接入网的网络架构。
关键词:电力信息网络;光纤以太网;无线移动通信中图分类号:TN925 文献标识码:A引言信息通信是新型电力系统的“神经系统”,先进的信息通信技术为电力系统适应风光间歇性发电规模化开发利用、满足用户多元多样用电需求带来了可能。
在电力系统运行过程中会产生大量数据信息,加速了电力系统信息化、智能化建设的发展。
信息技术与通信技术是保障电力系统数据信息安全、快速、稳定传输的关键,加速信息与通信技术的融合,提升电力系统数据信息传输与处理效率,是信息化背景下电力企业健康发展的必由之路。
因此,本文探讨电力通信光传输网络优化与应用。
1 电力信息通信网络的特点随着信息网络迅速的发展,逐渐的渗透在电力信息通信中,并得到广泛的应用,且网络技术促进电网智能化的发展。
电力信息通信网络建设非常的关键,而且具有重要的意义,其中最主要的意义就是能实现网络建设的控制,不断提高控制能力,由此通过网络技术在进行电网建设期间,一定程度上能实现电网控制,逐步的提升能量管理水平。
与此同时在电网建设这方面还能开创出技术路线,而且还能促进信息网络技术和电网互动。
此外,实现电网管理,强化其管理能力,且在网络技术不断发展下,有利于发电企业和输电企业沟通,让其保持密切联系,从而不断提高电力系统安全运行水平。
2 电力通信光传输网络优化与应用2.1 核心技术的融合发展(1)网络层的深度融合。
对信息技术与通信技术核心网络层进行有效融合,是追求高效网络利用效率、降低成本的技术手段,其核心是将电力系统中的语音、数据、视频等应用技术进行融合,为电力系统的安全稳定运行提供服务。
72随着我国经济迅速发展,科学技术不断提高,电力通信行业得到了较快发展,尤其是光纤通信技术提高,在电力通信行业中占据越来越重要的地位,可这种光传输网络系统还存在一些问题,电力通信的安全可靠性还有待提高。
针对光传输所存在的问题,文章提出了相对应的优化方案,可有效提高电力通信系统运行的安全性。
1 光传输网实施优化的必要性光传输网在电力通信当中,具有传输容量大、可靠稳定及传输指标准确等优点,实施电力通信当中的光传输网优化,可充分发挥电力网络整体效益,增强电力信息水平,并且具有依赖电网建设与服务的特殊性,对光传输网实施优化是很有必要的。
电网建设需要可靠的光缆建设作为支持后盾,而电网发展就更需要光传输网进行通信服务;光传输网技术优化也是经济效益的要求,光传输技术更新较快,设备寿命比较长,在寿命期里,同种型号设备采购比较困难,而运用同一型号设备才可以充分发挥光传输的整体效益,现在光传输网络功能有所降低,并未实现投资效益最大化的特点;实施光传输网优化也是业务发展的要求,为电力企业提供优质服务,不仅要满足电网的生产需要,也要满足企业经营管理与信息建设的要求,为企业提供大容量、多用户与多类型业务。
2 光传输网应用问题电力通信的光传输网最重要构成部分称为站点网元,依据站点网元与电压不同,能分成110kV与220kV站点,并围绕一个中心点进行整体网络面积的覆盖,OPG跟ADSS为物理路由重要的组成。
依据现代技术条件对光缆与设备进行分析,光设备传输过程具有维护简单、组网灵活与扩容性高等优点,并且光端机的各个槽位具有宽度均匀、可扩容到10G的能力,但随着经济不断发展,这些设备也在逐步老化,并且各项性能均不能有效满足电力通信的传输要求,可因光缆与设备结构比较复杂,实施更新较为困难,加强光缆与设备优化是很有必要的。
光传输网里的自愈环正被重视与应用,让光传输网的可靠性与适应性得到提高。
通过研究与试验,光传输网已极大满足电力信息需要两种不同传输方法的需求,可通过实践表明,光传输网的节点较多、结构单一等特点,对网络的可靠性与安全性带来很大影响,有些SDH光传输网只有155M的主干网,在这种模式里,网络链路比较多,其链状拓扑自身又存在可靠性差的特点,这会降低光传输网的可靠性。
电力通信系统中SDH光传输技术的应用研究随着社会的不断发展,电力通信系统在现代化建设中扮演着越来越重要的角色。
在电力通信系统中,SDH光传输技术应用广泛,具有高速、稳定、可靠等优势,可以满足快速、高效的数据传输需求。
本文将就SDH光传输技术在电力通信系统中的应用进行研究和探讨。
一、SDH光传输技术介绍SDH(Synchronous Digital Hierarchy)是指同步数字层次体系,是一种数字同步传输技术。
SDH传输技术在全球范围内得到了广泛应用,是现代通信网络中最为重要的基础设施之一。
其使用OTN(Optical Transport Network)作为底层传输协议,运用光纤作为传输介质,可以实现高速、稳定、可靠的数据传输,具有高效的网络管理和维护能力,广泛应用于电力通信网络、通信运营商网络和大型企事业室内局域网互联等领域。
1. 实时监控与通信电力通信系统需要实时监控和实时通信能力,监控各种与电力运行相关的参数,如电量、电压、电流、温度、电能质量等。
这些数据通过传感器采集后,需要实时传输到监测中心进行处理分析,以保证电力的正常运行。
SDH光传输技术在这一方面发挥了重要的作用,能够保证高速、稳定、可靠的数据传输,既能够提高数据传输的效率,又能够保证数据的准确性和实时性。
2. 电力调度和控制电力通信系统需要对电力系统进行调度和控制,使得系统能够实现最优化的运作。
SDH光传输技术可以实现对电力信号的高速传输,保证电力系统的快速响应能力,降低电力调度和控制过程中的误差率和延迟率。
3. 远程通信和控制SDH光传输技术还可以实现电力通信系统中的远程通信和控制。
在电力系统中,各个子系统需要进行联网,形成一个完整的网络结构。
SDH光传输技术不仅能够实现不同电力子系统之间的通信交互,还能够实现对各个子系统的远程控制,实现网络的自动化管理。
4. 数据备份和安全SDH光传输技术可以实现电力通信系统中的数据备份和安全,保证数据的安全性和完整性。
水电工程电力通信网络建设中,先进技术的应用是提升网络建设品质的一个有效途径。
为了取得更好的技术应用效果,需要技术人员从具体应用的角度出发进行深入分析,找到现阶段应用中的问题,并进一步提出优化措施。
一、光纤通信技术的优势分析光纤通信技术是通过改变通信线路的材料和传输模式优化通信质量的技术类型。
这种技术在电力通信网络建设中的应用,具备以下几方面典型优势。
1.传输效率高。
电网通信系统的传输效率是这一网络系统建设中追求的一个关键目标,当传输效率得到了提升,信息传输的时间成本和经济成本都能够得到缩减。
[1]在通信传输网络规模越来越大的背景下,这种效率的提升对于整个电力通信网络的运行会起到突出的优化作用。
从用户的电力资源实际应用方面来讲,这种技术的应用也能够更好地满足更多用户的实际需求。
2.技术类型丰富。
光纤通信技术在具体发挥作用时,存在不同类型的形式,这主要与光纤线路的多样性有直接的关系,现阶段常见的光纤线路主要有ADSS线路和OPGW 线路两种类型。
这两种类型的光纤线路鞥能够在保证传输效率的基础上提升传输安全的保障力度。
在实际应用中,线路原材料的成本支出相对于普通线缆有所提高,需要减退工作人员结合应用性能需求和经济成本承担能力选择适当的线路进行应用。
[2]3.信息容量增大。
这主要是由于在光纤通信的背景下,线路的带宽得到了本质上的提升,这就意味着单一线路所能够承载的传输信息数据量会同步增大。
尤其是在大批量的信息传输需求和传输精准性的要求下,这种技术的应用更会成为一种典型趋势,同步满足电网系统建设中用户的多方面需求。
二、电力通信网络的运行要求电力通信网络是支持广大用户日常生产生活正常运行的一个庞大网络系统,在系统的日常应用中,需要满足以下几方面基本需求。
1.可靠性需求。
即数据信息的传输要保证准确可靠。
尤其是在信息传输量不断增大的系统运行要求下,同步保障可靠性就显得尤为重要。
[3]关于提高传输可靠性的具体方法,应当从网络系统建设的角度出发,力求提升线路本身对于外部不良影响的抵御能力。
探究SDH技术在电力通信中的应用及网络优化SDH技术是一种重要的数字通信技术,具有高可靠性、高透明度、高速率等特点,在电力通信网络中得到广泛的应用。
它通过采用波分复用技术、时隙交织技术、保护切换技术等多种手段,可以有效提高电力通信网络的传输能力和可靠性,同时提高网络的操作和维护效率。
本文将对SDH技术在电力通信中的应用以及网络优化进行探究。
1. 传输能力提升SDH技术通过光纤传输,可以提供高速、高质量的数据传输能力。
在电力通信网络中,SDH技术可以大幅提升网络的传输能力,支撑多种数据业务。
例如,在电力调度数据传输时,SDH技术可以确保数据实时性、准确性和可靠性,保证电力系统的正常运行。
2. 增强系统可靠性电力通信系统作为电力系统的支撑系统,必须能够保证在任何情况下都能保持正常运行。
因此,提高系统的可靠性是其最为重要的任务。
SDH技术通过采用保护、恢复和切换等多种手段,提高了电力通信系统的可靠性。
例如,在SDH系统中,可以采用SDH环保护方案,即在传输路径上加入环路,当主信道出现故障时,可以通过备用信道恢复数据的传输。
3. 提高网络操作和维护效率SDH技术具有高度集成和自主管理的特点,可以通过网络管理系统实现对网络的实时监控和自动管理,从而提高网络的操作和维护效率。
例如,在SDH网络中,可以采用交叉连接管理技术,实现数据源至目的地的灵活路由,使网络的运行更为灵活和高效。
4. 支撑多样化业务电力通信系统需要支撑多样化的业务,包括语音、数据、视频等业务。
SDH技术可以灵活支持多种业务,提供适合不同业务特点和需求的服务质量保证,从而更好地满足电力通信的需求。
例如,在SDH网络中,可以采用不同的传输速率和链路保护技术,实现多种业务的传输,确保业务的不间断、连续、可靠传输。
二、SDH网络的优化为了更好地发挥SDH技术在电力通信系统中的性能,需要对网络进行优化。
SDH网络优化是指在满足业务需求和网络建设投入的基础上,通过网络规划、资源配置和运行管理等手段,提高SDH网络的性能和可靠性。
电力通信系统中SDH光传输技术的应用电力供应是社会生产及人民生活的基本保证之一。
安全可靠的电力服务是电力系统运行的主要目标。
为了实现这一目标,对电力系统进行有效地监控和统一管理成为必要的手段。
基于SDH光传输技术的电力通信系统作为保障电力系统安全、稳定的重要组成部分,在经过多年的发展之后已经逐渐走向成熟,但目前还存在着诸多的问题:如通信网网络结构薄弱、网络传输容量不足、网络接入和网络管理薄弱等,因此有必要对基于SDH光传输技术的电力通信系统进行研究,文章结合实例对SDH光传输技术在电力通信系统中的应用进行了分析,可为相关工作者提供参考。
0 前言电力系统的正常运行需很多子系统支持,其中电力通信系统用于传输重要的业务信息,在当前电力系统管理中发挥重要作用。
随着网络技术的发展,电力通信系统需进行一定的技术革新,以满足电力系统未来发展需要。
研究发现,SDH光传输技术在电力通信系统中的应用,使得通信质量及效率得以明显提升,为电力系统安全、稳定运行提供坚实的保障。
现有的电力通信系统大多使用的是同步数字传输体系复用技术。
SDH技术在国家电网通信系统中已经大面积部署应用,而且使用SDH技术的传输设备还在不断更新,所以研究SDH技术在智能电力通信网的应用可以最大限度的节约资金。
DH是同步数字系列(Synchronous Digital Hierarchy)的简称,能够将线路的复接与传输、交换功能融为一体。
SDH光传输技术作为一种可靠、先进、经济的通信技术,也得到了愈来愈广泛的应用。
SDH体系不仅适用于点对点的信息传输,而且也适用于多点间的网络传输。
SDH用户接入设备综合应用于电力系统通信的接入网,不仅保证了电力系统通信业务的高可靠性、高可用性,而且具有大幅度降低工程造价等优点。
文章以某SDH传输网的建设为例,来介绍SDH在电力通信系统中的应用。
基于SDH光传输技术的电力通信系统设计所涉及的内容较多,在方案设计中,笔者认为,主要包括以下几个方面的内容。
电力通信系统中SDH光传输技术的应用摘要:电力系统的运行要求多个子系统的共同支持,而电力通信系统的功能是针对关键信息的传输与管理,对整体性运行产生了重要的影响。
由于互联网技术的稳步发展与广泛应用,电力通信系统应当实现技术性创新,从而适应于电力系统的运行的要求。
结合电力通信系统的相关研究成果显示,SDH馆传输技术在电力通信系统中的应用能够在一定程度上优化信息的传输质量,并提升通信效率,保障电力系统运行的稳定性与安全性,本文则针对SDH馆传输技术在电力通信系统中的应用展开分析。
关键词:电力通信系统;SDH光传输技术;应用分析SDH光线传输技术是一种集传输、交换功能为一体的通信技术,因为具备可靠性、先进性得到了广泛使用。
下面对SDH环网建设方案、SDH环网管理系统、单板类型等具体分析,以体现该技术应用优势。
1SDH光传输技术概述1.1技术原理SDH光传输技术的模块是STM-N,是标准化的信息等级技术结构,其中的N 值有1、4、16、64。
采用SDH光传输技术来完成传输信息的基本单位是字节,而其承载则是采用了块状帧。
在保持信号帧的传输过程中,其SDH信号帧是根据从左到右、从上到下的顺序进行排列,并完成传输,同时在这一过程中,每帧的传输频率为8000kpbs/s,周期在125μs。
帧的构成结构分成三个区域,分别是单位指针区、段开销区以及净负荷区,每个区域都有着不同的功能,SDH光传输技术的复用单元是由多个单元组成的。
1.2SDH光传输网络拓扑结构首先,良好的自愈性是SHD网络的性能之一,如果光纤网络运行中发生短时中断,会使系统网络连接难度增大,致使光纤能够自动倒换从而排除故障,网络的正常运行得以持续。
通过单向或者双向通道进行网络故障的自恢复,并同时应用到单双复合段保护、子网连接保护、1:N等保护模式。
SDH网络拓扑分为5种结构,最常用的是环形及链形结构,采用该结构可以将供电可靠性提高,并且系统自愈功能较好。
电力通信光传输网络优化与应用分析随着社会经济的快速发展和科技的不断进步,科学技术在电力系统中的应用越来越广泛,为推动电力系统的发展做出了巨大的贡献。
目前,国内电力通行系统正在经历着一个重大的转型:将传统的电力通信网络转化升级为目前的光通信网路,此举在电力系统中的作用十分重要,也是保障电力安全运行,提高电力通信质量的重大举措。
但是,在目前的电力光通信网络应用过程中,仍然存在一些问题需要优化好解决,才能促进电信行业的健康快读发展。
因此,找出问题的关键,实施电力通信光传输网络的优化措施和应用方案,对于电力通信网络的发展至关重要。
一、电力通信光传输网络的现状和相关特点1.1 电力通信光传输网络的现状在目前的电力传输网络中,其构成电路主要包括环状电力和SDH环网电路。
对于SDH环网电路而言,输电线的走向决定着其管传输网络的构架。
对难以进行保养维护的依托层光缆路,其维护的难点在于构成光传输网络的光传输网架,穿透业务为跨环产生,这些问题直接造成了宽带瓶颈和节点瓶颈问题。
SDH制式为了将其安全性提升到最大值,采用环形拓扑结构,主要在光传输网络中进行应用。
但是,环形拓扑结构本身存在一定的缺陷,这些曲线又直接影响了光传输网络的维护性能和中心接入点的安全性,为光传输网络的发展设置了一定的障碍,SDH环网数与承载业务之间也存在一定的矛盾性,制约了光传输网络的普及。
在光传输网络中存在的上述问题,构成了目前电力通信光传输网络应用的现状,为光传输网络的发展形成了阻碍,只有通过不断进行光传输网络的优化,促进其技术的不断成熟和应用,才能确保电力通信的快速发展[1]。
1.2 电力通信光传输网络中底层光缆网架的特点在电力通信光传输网络中,底层光缆是其构成的基本元素。
通常情况下,底层光缆分为普通光缆和电力线特种光缆两种。
对于电力线特种光缆又包含了ADSS光缆和OPGW光缆两种,不管是ADSS光缆还是OPGW光缆,这种不同类型的特种光缆与运营商网络特有的底层光缆都存在一定的差异。
在目前现阶段,电力通信系统中使用的底层光缆主要是OPGW光缆,OPGW光缆在电力通信系统中的应用,促使了以OPGW光缆为主的网状底层光缆网架在电厂中的形成。
OPGW路由根据电网生产的需要由输电线的走向决定。
在电力通信光传输网络中,电源点到负荷点按照原则进行规划,新电源的增加促使了电网接线数量的增加,这些问题会导致输电线路的改变,影响光传输网架的结构。
普通光缆的分类相对简单,主要有地理管道光缆和架空光缆两种,这两种普通光缆与运营商网络的底层光缆存在相似之处。
因为底层光缆网架一直处于不断的变化之中,要实现通信正常,需要花费大量的时间和精力对其进行改造和优化,只有不断的进行网络的修补,才能确保网络传输的可靠性。
目前状态下,只有提前设计,合理安排光传输网络的架构,提高其安全可靠性,才能确保OPGW光缆使用过程及时、准确传输中信号。
二、电力通信光传输网络进行优化的必要性使用光传输技术的电力通信网络,具有传输容量大、性能稳定可靠、传输指标明确等优点,因此被电力企业广泛采用,确保企业通信正常。
对电力通信系统进行光传输网络的优化,可以在依托电网特殊性的服务下,有效提高电力企业的信息水平,充分发挥电力通信网络的效益。
通信均是通过光缆完成,所以,建立现代化的光缆系统,才能充分发挥光传输在通信服务系统方面的优势,同时,在采购相关设备时,尽量要选择同一型号的设备,因为只有同一型号的设备,才能确保光缆的兼容性,发挥电力通信光传输的整体效益,确保通信的顺畅。
目前阶段,电力企业通信网络中的光传输网络功能相对较低,没有促使企业实现效益的最大化,为了满足电力企业的信息化发展和建设,需要不断的对光传输网络进行优化升级,以满足电网生产的需要,促进电力企业的健康发展。
由此可以看出,只有不断强化电力通信光传输网络的建设,对其进行不断优化,才能满足电力企业的发展。
三、电力通信光传输网络中存在的主要问题在目前的电力通信系统的使用期间,人们主要是将站点网元作为光传输网络结构的主要组成部分。
通过不同电网建设的要求,电力通信主网光传输系统中的站点大概可以分为750kV、500kV、220kV和110kV两种,通过多种站点的合理分布,可以有效实现整个光传输网络结构的覆盖,确保不留死角。
在传统的电力通信网络中,由于技术原因的限制,对于光缆的老化的问题,只能通过更换解决,不仅耗费大量人力,还造成了严重的损失。
伴随着科学技术的不断发展,依托科技的进度,实现对光缆和相关设备的维护保养已经成为可能,处于维护电力通信的需要,人们开始对光缆和相关设备进行认真仔细的研究分析,根据相关的行业规范和标准,通过新科技的应用,对光缆及相关设备进行维护和保养,以更好的提高光缆设备的性能,确保为电力企业的正常生产奠定基础,维护人们基本生活正常运行。
但是,任何光缆设备,在经过长时间的使用之后,仍然会出现老化现象,尤其是在经过周围环境的影响,质量老化速度进一步加快,此问题目前已经变得十分突出,亟待解决。
光缆及相关设备的老化问题对电流通信行业的发展形成了一定的阻碍,所以,只有通过对电力通信光传输系统进行不断优化,以提高光缆设备的使用寿命,为维护电力企业的正常生产与运转提供保障。
在多次的研究分析过程中发现,必须采用两种不同形式的光传输方式,才能确保光传输满足电力信息发展的需求,维持电力通信的顺畅。
经过研究证实,在电力通信光传输网络系统中,光传输网络结构相对单一,节点相对较多,对于网络的安全性和可靠性会造成很大影响,例如在部分SDH光传输网络的主干网只有155M,网络链路相对较多,而且链状拓扑的自身可靠性较低,造成了电力通信光传输网络的安全可靠性能下降。
现阶段,我国电力企业所采用的光传输通信网络,一般均是由STM-1通道保护跟踪链组成,在现有状态下,所有站点资源基本为2M,而在STM的环网站上,2M资源空余大量存在,造成了资源的浪费,不利于电力企业的网络通信的发展。
四、电力通信光传输网络的优化与应用4.1 电力通信光传输网络进行优化的基本原则在电力企业中,整个电力企业的通信都是依靠光传输完成。
光传输不仅承担着信息交换和传输的基本功能,如果电力企业对于网络容量的要求相对较高的情况下,作为电力企业通信的光传输网络的安全可靠也至关重要,因为确保通信安全是企业发展的根本,失去网络通信安全容易给企业造成致命性损失,由此可见,光传输对于确保企业的发展至关重要,是企业生存和发展的基本保障。
当然,作为通信技术,要具有信息传递的可靠性和灵活性,以保障企业内部信息沟通顺畅,确保相关信息能够及时准确传达,维持和维护生产需求,以满足社会要求。
维持光传输网络的灵活性,则要在电力通信系统中采用最好的环形网络结构或是网格形网络结构,配合智能光网技术,以降低光传输过程中对环形网的依赖程度。
智能光网技术可以促进光传输的速度和效率,避免占用过多的网络资源,实现光传输在环形网中有效高速的运行。
与此同时,电力通信光传输网络的优化,应该建立在电路安全稳定运行的基础之上,因为光传输技术需要靠电维持其基本运作,没有相对稳定可靠的电路供应,光传输的稳定则无法实现。
另外,电力通信光传输技术的优化,还需建立在对业务流量和业务流向科学化分析的总结之上,才可实现有效的改善措施,进而实现通道组织与网络结构的优化。
同时,为了满足电力企业发展的需要,在光传输网的容量的选择上,需要依据目前现有的信息基础为参考,结合未来的发展需要、市场需求状况以及电力企业本身自动化状况的改进等等相关方面可能产生的影响,制定详细而周密的计划,以满足电力企业现在和将来的发展需要,避免只顾眼前,造成后期不断改造、浪费大量人力物力状况的发生。
除此之外,在光传输网络的容量的选择上,除了上述因素的影响之外,还需考虑余量的问题,其涉及光传输网络的及时性和准确性,只有统筹考量,考虑周全,全盘计划,做到防患于未然,才能确保企业电力通信光传输网络的优化顺利进行,确保企业发展的顺畅[2]。
4.2 光传输网络的优化与应用策略随着经济的发展和科技的进度,电力企业的发展已经进入快车道,只有不断提高电力通信技术的广泛应用,才能从根本上保证企业的发展,为企业发展奠定坚实的基础。
但是,作为新型的通信技术,光传输网络在信息传输过程中也存在着传统通信网络所面临的网络结构,安全可靠性和传输量等相关方面的问题,不断对光传输网络进行优化,以确保企业的通信安全和顺畅,对其电力企业的发展至关重要。
在对光传输网络进行优化过程中,如果完全抛弃原本的网络系统,重新铺设光缆和线路,更换相关设备,不仅对造成严重的浪费,造成成本的损失,也给施工造成了较大难度,耗时长久,效益低下。
在电力通信光传输网络优化过程中,优化网络的业务类型相对集中,为了提高组网的工作科学有效,同时确保后期工作简单方便,易于实施,工作人员必须在保证原本网络的基本上,重新组建光传输网络,单项通道的保护环照常使用,通过环并网逐渐形成新的光传输网络,不仅大大节省了企业成本,减少了不必要的浪费,还可以极大的提供工作效率,实现在短时间内光传输技术的顺利应用,为企业的光传输通信系统打好基础。
在电力通信光传输网络不断进行优化的同时,变电站也要进行集控方向进行发展优化,为了确保光传输网络的通信顺畅,在光传输网不断完善的基础上,变电站也要分散监控向统一集控方向优化改善。
因为变电站经过不断的集控优化之后,可以降低光传输网络组网的难度和升级时的困扰,从而节省大量的资料重新组网和对系统升级的成本,减少了设备不断维护保养得费用,在保证通信安全顺畅的同时,有效的提高了企业的经济效益。
变电站进行集控优化之后,还可以从根本上优化光传输网络的网络结构,提高光传输网络的传输量,保证电力企业的通信需求。
除此之外,要保证电力通信光传输网络的有效优化,对光传输网的电路层和通道层的优化也必不可少。
对电路曾的优化的具体措施是通过网元设备端口的优化来进行的,然后在串联优化后的网元,实现电路层的优化改善。
而对于通道层的优化措施则是运用子网连接保护,优化所要保护的通道。
在电力通信光传输网络中,要实现低阶通道向高阶通道的优化,必须通过增加单个网元业务与网络宽带来实现,将网络调整为两层网络,在实现优化的同时,确保网络的安全保护[3]。
随着人们生活水平的提高,对于电力的保障要求也随之提高。
作为电力企业,要依靠科技的进步,实施对通信光传输网络的不断优化改进,已经成为大势所趋。
电力通信是电网安全运行的保障,只有采取必要的措施,实施优化改进与应用,才能确保电力通信的安全可靠,促进电力行业的稳步发展。
五、结束语综上所述可知,国内电力行业的发展过程中,电力通信光传输技术对于企业的发展起着举足轻重的作用,意义重大。
光传输技术的应用,在确保电力通信系统各方面性能得到大幅提升的同时,还可以确保电力通信的质量,具有极强的安全性和灵活性。