人教七年级下数学试题北安二中下数学期末测试卷1
- 格式:doc
- 大小:177.50 KB
- 文档页数:4
精品文档七年级第二学期综合测试题(一)一、选择题: ( 本大题共 10 个小题,每小题 3 分,共 30 分) 1.若 m >- 1,则下列各式中错误的 是( )...A .6m >- 6B .- 5m <- 5C .m+1>0D .1-m <22. 下列各式中 , 正确的是 ( )A. 16 =±4B. ± 16 =4C.327 =-3D.( 4)2 =-43.已知 a >b >0,那么下列不等式组中无解 的是()..A .xa B .xa C .x aD .x bxbxbx ax b4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转 50°,后右转 40°(B)先右转 50°,后左转 40°(C) 先右转 50°,后左转 130° (D)先右转 50°,后左转 50°5.解为x1的方程组是()y 2A. x y 1B.x y 1 C.x y 3 D.x 2 y 3 3xy 53x y53x y 13x y 56.如图,在△ ABC 中,∠ ABC=50,∠ ACB=80,BP 平分∠ ABC ,CP 平分∠ACB ,则∠ BPC 的大小是( ) A .1000 B .1100 C .1150 D.1200AAA 1小刚PDBCC 1小军BCB 1小华(1)(2)(3).精品文档角形的个数是()A.4B.3C.2D.1 8.在各个内角都相等的多边形中,一个外角等于一个内角的1,则这个多2边形的边数是()A.5B.6C.7D.8 9.如图,△ A1B1C1是由△ ABC沿 BC方向平移了 BC长度的一半得到的,若△ABC的面积为 20 cm2,则四边形 A1DCC1的面积为()2B.12 cm2C2D2 A.10 cm.15 cm.17 cm 10.课间操时 , 小华、小军、小刚的位置如图 1, 小华对小刚说 , 如果我的位置用 (?0,0) 表示 , 小军的位置用 (2,1) 表示 , 那么你的位置可以表示成 ( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)A二、填空题:11.49 的平方根是 ________, 算术平方根是 ______,-8的立方根B是_____.李庄12. 不等式 5x-9 ≤3(x+1) 的解集是 ________.火车站13.如果点 P(a,2) 在第二象限 , 那么点 Q(-3,a) 在_______.14.如图 3 所示 , 在铁路旁边有一李庄 , 现要建一火车站 ,? 为了使李庄人乘火车最方便 ( 即距离最近 ), 请你在铁路旁选一点来建火车站 ( 位置已选好 ),说明理由 :____________.15.从 A沿北偏东 60°的方向行驶到 B, 再从 B沿南偏西 20°的方向行驶到C,?则∠ ABC=度.16. 如图 ,AD∥BC,∠D=100°,CA 平分∠ BCD,则∠ DAC=_______.17.给出下列正多边形:①正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是 _____________.( 将所有答案的序号都填上 ).DC精品文档x 3(x 2) 4,三、解答题 :19.解不等式组: 2x1 x 1 , 并把解集在数轴上表示出来.5 2 .2 x3 y1 20.解方程组: 342 4(x y)3(2x y) 1721. 如图 , AD ∥BC , AD 平分∠ EAC,你能确定∠ B 与∠ C 的数量关系吗 ?请说明理由。
人教版七年级数学下册期末测试题及答案共五套七下期期末(共六套) 姓名: 学号班级一、选择题:(本大题共10个小题,每小题3分,共30分)1(若m,,1,则下列各式中错误的是( ) (((A(6m,,6 B(,5m,,5 C(m+1,0 D(1,m,22.下列各式中,正确的是( )23 A.=?4 B.?=4 C.=-3 D.=-4 1616,27(4),3(已知a,b,0,那么下列不等式组中无解的是( ) ((x,,ax,,ax,ax,a,,,,A( B( C( D( ,,,,x,,bx,,bx,,bx,b,,,,4(一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50?,后右转40? (B) 先右转50?,后左转40?(C) 先右转50?,后左转130? (D) 先右转50?,后左转50?x,1,5(解为的方程组是( ) ,y,2,xy,,1xy,,,1xy,,3xy,,,23,,,,A. B. C.D. ,,,,31xy,,35xy,,35xy,,,35xy,,,,,,006(如图,在?ABC中,?ABC=50,?ACB=80,BP平分?ABC,CP平分?ACB,则?BPC的大小是( )0000A(100 B(110 C(115 D(120AA A1小刚D PB 小军C1 BC 1 CB小华(1) (2) (3)7(四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A(4 B(3 C(2 D(118(在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是( ) 2A(5 B(6 C(7 D(89(如图,?ABC是由?ABC沿BC方向平移了BC长度的一半得到的,若?ABC的面积为111220 cm,则四边形ADCC的面积为( ) 11 2222 A(10 cmB(12 cm C(15 cmD(17 cm10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) - 1 -A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上( 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9?3(x+1)的解集是________.李庄13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选火车站一点来建火车站(位置已选好),说明理由:____________. 15.从A沿北偏东60?的方向行驶到B,再从B沿南偏西20?的方向行驶到C,•则?ABC=_______度.16.如图,AD?BC,?D=100?,CA平分?BCD,则?DAC=_______.DA17(给出下列正多边形:? 正三角形;? 正方形;? 正六边形;?正八边形(用上述正多边形中的一种能够辅满地面的是_____________((将所有答案的序号都填上)2BCy,318.若?x-25?+=0,则x=_______,y=_______. 三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤(x,3(x,2),4,,,19(解不等式组:,并把解集在数轴上表示出来( 2x,1x,1,,.,52, 231,xy,,,20(解方程组: 342,,4()3(2)17xyxy,,,,,- 2 -21.如图, AD?BC , AD平分?EAC,你能确定?B与?C的数量关系吗?请说明理由。
人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 下面调查中,适合抽样调查的是()A.对全班同学的身高情况的调查B.登机前对旅客的安全检查C.对我县食品合格情况的调查D.学校组织学生进行体格检查2. 若分式xx−4有意义,则x应满足的条件是()A.x≠4B.x≠0C.x>4D.x=43. 下列数组中,是二元一次方程x+y=7的解的是()A.{x=−2y=5 B.{x=3y=4 C.{x=−1y=7 D.{x=−2y=−54. 已知空气的单位体积质量为1.24×10−3克/厘米3,1.24×10−3用小数表示为()A.0.000124B.0.0124C.−0.00124D.0.001245. 下列运算正确的是()A.a5−a2=a3B.a10÷a2=a5C.(a+3)2=a2+9D.(a2)3=a66. 已知:如图,直线a,b被直线c所截,且a // b,若∠1=70∘,则∠2的度数是()A.130∘B.110∘C.80∘D.70∘7. 已知x2=y3,那么下列式子中一定成立的是()A.x+y=5B.2x=3yC.xy =32D.xy=238. 我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2−(a−b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2−b2=(a+b)(a−b)B.(a−b)(a+2b)=a2+ab−b2C.(a−b)2=a2−2ab+b2D.(a+b)2=a2+2ab+b29. 校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()A.甲B.乙C.丙D.丁10. 如图1,现有8枚棋子呈一直线摆放,依次编号为①∼①.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到①上面B.①叠到①上面C.①叠到①上面D.①叠到①上面二、填空题11.因式分解:x2−4x=________.12.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形统计图.如果该校有1000名学生,则喜爱跳绳的学生约有________人.13.若{x=1y=1是方程组{ax+by=0bx+2y=−1的解,则a−b=________.14.如图,l // m,矩形ABCD的顶点B在直线m上,则∠α=________度.15.如图,∠C=90∘,将直角三角形ABC沿着射线BC方向平移6cm,得三角形A′B′C′,已知BC =3cm,AC=4cm,则阴影部分的面积为18cm2.16.已知a+b=8,ab=15,则a2+b2=________.17.若关于x的分式方程x+1x−4=2−a4−x有增根,则常数a的值是________.18.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是________岁.19.下列算式①(22×32)3;①(2×62)×(3×63);①63+63;①(22)3×(33)2中,结果等于66的有________.20.若实数a,b满足方程组{ab+a−b=85a−5b+ab=20,则a2b−ab2=________.三、解答题21.(1)计算:|−3|−(√3−2)0+(12)−2.(2)化简:(x+6)2+(3+x)(3−x).22.(1)解方程组{2x+y=7 x+2y=2(2)解分式方程:2x−1=x1−x−123.分解因式(1)2x2−8(2)3x2y−6xy2+3y3.24.如图,在四边形ABCD中,AC⊥CD于点C,BD平分∠ADC交AC于点E,∠1=∠2.(1)请完成下面的说理过程.① BD平分∠ADC(已知)①________(角平分线的定义).① ∠1=∠2(已知),①① AD // ________. BC(________).(2)若∠BCE=20∘,求∠1的度数.25.先化简,再求值:(x+2y)2−2(x−y)(x+y)+2y(x−3y),其中x=−2,y=12.26.为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2∼4小时(含2小时),4∼6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了________名中学生,其中课外阅读时长“2∼4小时”的有________人;(2)扇形统计图中,课外阅读时长“4∼6小时”对应的圆心角度数为________;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.27.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为________.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.28.新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?参考答案:一、1-5 CABDD 6-10 BDCBC 二、11.x(x−4)12.30013.614.2515.1816.3417.518.2519.①①①20.15三、21.原式=3−1+4=6;原式=x2 +12x+36+9−x2=12x+45.22.{2x+y=7x+2y=2,①×2−①得:3x=12,解得:x=4,把x=4代入①得:y=−1,则方程组的解为{x=4y=−1;去分母得:2=−x−x+1,解得:x=−12,经检验x=−12是分式方程的解.23.2x2−8=2(x2−4)=2(x+2)(x−2);3x2y−6xy2+3y3=3y(x2−2xy+y2)=3y(x−y)2.24.∠2=∠3,∠1=∠3,内错角相等,两直线平行① AC⊥CD,① ∠ACD=90∘,① ∠BCE=20∘,① ∠BCD=20∘+90∘=110∘,① AD // BC,① ∠ADC+∠BCD=180∘,① ∠ADC=180∘−110∘=70∘,① ∠1=∠2=∠3=12∠ADC=35.25.原式=x2+4xy+4y2−2(x2−y2)+2xy−6y2=x2+4xy+4y2−2x2+2y2+2xy−6y2=−x2+6xy,当x=−2,y=12时,原式=−(−2)2+6×(−2)×12=−4−6=−10.26.(1)200,40(2)144∘(3)20000×(1−30200−20%)=13000(人).答:该地区中学生一周课外阅读时长不少于4小时的有13000人.27.(a+2b)(2a+b)由已知得:{2(a2+b2)=2426a+6b=78,化简得{a2+b2=121 a+b=13① (a+b)2−2ab=121,① ab=24,5ab=120.① 空白部分的面积为120平分厘米.28.设乙厂每天生产x万个口罩,则甲厂每天生产(x+2)万个,由题意可得:50x+2=40x,解得:x=8,经检验得:x=8是原方程的根,故x+2=10(万个),答:乙厂每天生产8万个口罩,甲厂每天生产10万个;设两厂一起生产了a天,甲一共生产b天,由题意可得:,{8a+10b=4003a+4b≤156由①得:b=40−0.8a,代入①得:a≥20,答:两厂至少一起生产了20天.七年级数学下册期末试卷(含答案)第Ⅱ套1. 下列运算结果正确的是()A.a2+a4=a6B.a2⋅a3=a6C.(−a2)3=a6D.a8÷a2=a62. 若a>b,则下列结论正确的是()A.a+2<b+2B.5−a<5−bC.D.−3a>−3b3. 不等式2−x≥0的解集在数轴上表示正确的是()A. B.C. D.4. 已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.−5C.−3D.55. “对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角6. 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为()A.10B.9C.8D.77. 小明去商店购买两种玩具,共用了元钱,种玩具每件元,种玩具每件元.若每种玩具至少买一件,且种玩具的数量多于种玩具的数量.则小明的购买方案有()A.种B.种C.种D.种8. 如图,D、E、F是△ABC内的三个点,且D在AF上,F在CE上,E在BD上,若CF=EF,AD=FD,BE=DE,△DEF的面积是12,则△ABC的面积是()A.24.5B.26C.29.5D.30二、填空题9.冠状病毒最先是1937年从鸡身上分离出来,病毒颗粒的平均直径为0.00000011m,用科学记数法表示这个数是________.10.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是________边形.11.若实数x,y满足,则代数式2x+3y−2的值为________.12.已知:5x m+7 −2y2n−1 =4是二元一次方程,则mn=________.13.命题“两个锐角的和是钝角”是________命题(填“真”或“假”).14.如图,l1 // l2,AB⊥l1,垂足为O,BC交l2于点E,若∠ABC=125∘,则∠1=________∘.15.如图,在△ABC中,∠C=50∘,按图中虚线将∠C剪去后,∠1+∠2等于________.16.如图,AB // CD,AD // BC,∠B=115∘,延长AD到F,延长CD到E,连接EF,则∠E与∠F的和为________∘.18.已知三角形的三边分别为2,a−1,4,那么a的取值范围是________.19.如图,把一副三角板如图摆放,点E在边AC上,将图中的绕点A按每秒3∘速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边BC恰好与边DE平行.三、解答题20.将下列各式因式分解:(1)x3−x;(2)x4−8x2y2+16y4.21.计算下列各题:(1)()−3−20200+|−5|;(2)先化简,再求值:(x+y)2−2x(x+3y)+(x+2y)(x−2y),其中x=−1,y=2.22.解下列方程:(1);(2).23.解下列不等式(组):(1)+1>x−3;(2).24.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十二两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了12两(袋子重量忽略不计),问黄金、白银每枚各重多少两?(请用方程组解答)25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=63∘,∠2=63∘,且∠C=∠D.求证:∠A=∠F.26.若x满足(7−x)(x−4)=2,求(x−7)2+(4−x)2的值:解:设7−x=a,x−4=b,则(7−x)(x−4)=ab=2,a+b=(7−x)+(x−4)=3所以(x−7)2+(4−x)2=(7−x)2+(x−4)2=a2+b2=(a+b)2−2ab=32−2×2=5请仿照上面的方法求解下面的问题(1)若x满足(8−x)(x−3)=3,求(8−x)2+(x−3)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=5,长方形EMFD的面积是28,分别以MF、DF为边作正方形,求阴影部分的面积.27.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少个?(2)①若该工厂仓库里现有A型板材30张、B型板材100张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少个,恰好将库存的板材用完?①若该工厂新购得78张规格为(3×3)m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求横式箱子不少于30个,且材料恰好用完,则能制作两种箱子共________ 个.(不写过程,直接写出答案)28.已知如图,∠COD=90∘,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36∘,则∠OGA=________ ∘.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36∘,则∠OGA=________ ∘.(3)将(2)中的“∠OBA=36∘”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:4两部分,∠GAD=∠BAD,∠ABO=α(18∘<α<90∘),求∠OGA 的度数.(用含α的代数式表示)一、1-4 DBBC 5-8 BACC 二、9.1.1×10−710.六11.712.−613.假14.35.15.230∘16.6517.3<a<718.35或95三、19.(1)x(x+1)(x−1);(2)(x+2y)2(x−2y)220.(1)12;(2)−4xy−3y2,−421.(1){x=1, y=−1;(2){x=5 y=022.(1)x<3;(2)x<−123.解:设每枚黄金重x两,每枚白银重y两,由题意得:{9x=11y(10y+x)−(8x+y)=12解得{x=33 y=27答:每枚黄金重33两,每枚白银重27两.24.∵2=∠ANC=63∘∠1=∠ANC=63∘∴ABD =∠C2C =20∴ABD =∠D.AClIDF ,∠A =∠F25.(1)设:8−x =a,x −3=b ,则(8−x )(x −3)=ab =3,a +b =(8−x )+(x −3)=5(8−x )2+(x −3)2=(a +b )2−2ab =52−2×3=19(2)正方形ABCD 的边长为x,AE =2,CF =5MF =DE =x −2,DF =x −5(x −2)⋅(x −5)=28(x −2)⋅(x −5)=3…阴影部分的面积|=FM 2−DF 2=(x −2)2−(x −5)2证bx ⋅2=a,x −5=b ,则(x −2)(x −5)=ab =28,a −b =(x −2)⋅(x −5)=3a =4,b =7,a +b =1(x −2)2−(x −5)2=a 2−b 2=(a +b )(a −b )=11×3=33即阴影部分的面积是33.26.(1)设最多可制作竖式箱子x 只,则A 型板材x 张,B 型板材4x 张,根据题意得30x +90×4x ≤10000解得x ≤252539答:最多可以做25只竖式箱子.(2)①设制作竖式箱子a 只,横式箱子b 只,根据题意,得:{a +2b =304a +3b =100, 解得:{a =22b =4答:能制作竖式、横式两种无盖箱子分别为22只和4只.①设裁剪出B 型板材m 长,则可裁A 型板材(65×9−3m )张,由题意得:{a +2b =9(78−m )4a +3b =3m 整理得,13a +11b =78×9∴a=78×9−11b13=54−1113a、b都为整数,且b≥30….b是13的整数倍,当b=39时,a=54−11×3=2,符合题意,此时,a+b=60当b=52时,a=54−11×4=10,符合题意,此时,a+b=62兰b=65时,a=54−11×5=−1<0,不符合题意.故答案为:60或62.27.(1)18;(2)12;(3)13α;(4)23α+42′’或23α−12∘七年级数学下册期末试卷(含答案)第Ⅲ套1. 在方程3x−y=2,x+1=0,x=,x2−2x−3=0中一元一次方程的个数为()A.1个B.2个C.3个D.4个2. 在下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C.D.3. 若a>b,则下列不等式正确的是()A.a−2<b−2B.>C.am<bmD.am2>bm24. 下列各组线段能组成三角形的是()A.1、2、3B.4、5、10C.3、5、1D.5、5、15. 在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形6. 如果关于x的方程3x+2k−5=0的解为x=−3,则k的值是()A.2B.−2C.7D.−77. 如图,,A和D,B和E是对应点,B、C、D在同一直线上,且CE=5,AC=7,则BD的长为()A.12B.7C.2D.148. 若(m−3)x+4y|2m−5|=25是关于x,y的二元一次方程,则m的值是()A.3或2B.2C.3D.任何数9. 按照如图所示的运算程序,若输入的x的值为4,则输出的结果是()A.21B.89C.261D.36110. 在下列说法中,角的对称轴是它的角平分线所在直线;图形的平移、旋转、轴对称变换不改变图形的形状和大小;三角形的三条高线一定在三角形内;多边形的外角和是360∘.则正确的有()A.4个B.3个C.2个D.1个11. 为响应习总书记“绿水青山,就是金山银山”的号召,重庆某国营企业2020年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各车间领取:第一车间领取200棵和余下的,第二车间领取300棵和余下的,第三车间领取400棵和余下的,……,最后树苗全部被领完,且各车间领取的树苗数相等,则领到树苗的车间数和树苗总棵树分别为()A.7、6300B.8、7200C.9、8100D.6、540012. 已知关于x、y的方程组的解为整数,且关于x的不等式组有且仅有5个整数解,则所有满足条件的整数a的和为()A.−1B.−2C.−8D.−6二、填空题13.列方程:“a的2倍与5的差等于a的3倍”为:________.14.一个多边形的内角和为2700∘,则这个多边形的边数是________边.15.方程x+2y=5的正整数解有________个.16.将图中的三角形纸片沿AB折叠所得的AB右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为________.17.如图,一副直角三角板ABC和DEF,∠F=30∘,将ABC和DEF放置如图2的位置,点B、D、C、F在同一直线上,点A在DE上,ABC固定不动,当EDF绕点D逆时针旋转至180∘的过程中(不含180∘),当旋转角为________时,EF与ABC的边垂直.18.若定义f(x)=3x−2,如f(−2)=3×(−2)−2=−8.下列说法中:①当f(x)=1时,x=1;①对于正数x,f(x)>f(−x)均成立;①f(x−1)+f(1−x)=0;①当且仅当a=2时,f(a−x)= a−f(x).其中正确的是________.(填序号)三、解答题19.解方程或不等式组并把不等式组的解集表示在数轴上.(1)3(x+1)+2(x−1)=6;(2).20.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知ABC的顶点均为网格线的交点.(1)将ABC先向下平移7个单位长度,再向左平移6个单位长度得到A1B1C1,画出A1B1C1;(2)画出A1B1C1关于直线l成轴对称的A2B2C2.21.已知方程组的解满足x−2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2−m+1)−3(m2+2m−5)的值.22. 5月的第二个周日是母亲节,小东为了精心设计一份手工礼物送给妈妈,为尽快完成手工礼物,小东骑自行车到位于家正西方向的商店购买材料.小东离家15分钟时自行车出现故障,小东立即打电话通知在家看报纸的父亲贺明带上工具箱来帮忙维修,同时小东以原来一半的速度推着自行车继续走向商店.父亲贺明接到电话后(接电话时间忽略不计),立即骑车出发追赶小东,15分钟时追上小东,并修好了自行车,父亲贺明以原速返家,小东以原骑行速度骑车前往商店,10分钟时到达商店,此时两人相距5000米.(1)求父亲贺明和小东骑车的速度;(2)求小东家到商店的路程.23.阅读下列材料解答问题:新定义:对非负数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−≤x<n+,则<x>=n;反之,当n为非负整数时,如果<x>=n,则n−≤x<n+.例如:<0.1>=<0.49>=0,<1.51>=<2.48>=2,<3>=3,<4.5>=<5.25>=5,…试解决下列问题:(1)①<π+2.4>=(π为圆周率);①如果<x−1>=2,则数x的取值范围为;(2)求出满足<x>=x−1的x的取值范围.24.如图,四边形ABCD中,∠BAD=106∘,∠BCD=64∘,点M,N分别在AB,BC上,得FMN,若MF // AD,FN // DC.求:(1)∠F的度数;(2)∠D的度数.25.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进于A种手机数的35货方案.26.(1)如图1,△ABC中,∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P 与∠A的关系,并说明理由.(2)如图2、3,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC的平分线与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图2,若α+β>180∘,直接写出∠P的度数.(用α,β的代数式表示)①如图3,若α+β<180∘,直接写出∠P的度数.(用α,β的代数式表示)参考答案:一、1-5 BCBDD 6-10 CABDB 11-12 BC 二、13.2a−5=3a14.1715.216.517.120∘18.①①①三、19.(1)3(x+1)+2(x−1)=6去括号,得3x+3+2x−2=6移项及合并同类项,得5x=5系数化为1,得x=(2){3(x+1)<2x+5x−14,x3① ①由不等式①,得x<2由不等式①,得x≥−3故该不等式组的解集是−3≤x<2,在数轴上表示如下所示:43−21012320.(1)如图,ΔA1B1C1为所作;(2)如图,ΔA2B2C2为所作.21.(1)解方程组{x−y=4n①2x+y=2m+3①解得:{x=2m+1y=1−2mx−2y<82m+1−2(1−2m)<8解得,m<32(2)∵m<32,m为正整数,…m=1…原式=2m2−2m+2m2−6m+15=−m2−8m=−12−8×1=−922.解:设小东骑车速度为x米/分钟,则父亲贺明骑车速度=15x+12x×1515=32x(米/分钟),由题意可得:10x+10×32x=5000,① x=200① 32x=300米/分钟,答:父亲贺明骑车的速度为300米/分钟,小东骑车的速度200米/分钟;解:小东家到商店的路程=15×200+15×100+10×200=6500(米),答:小东家到商店的路程为6500米.23.(1)由题意可得:<n+2.4>=6故答案为:6,a∵4×1>221.5≤x−1<2.52.5≤x<3.5故答案为:2.5≤x<3.5(2)x≥0,54x−1为整数,设54x=k,k为整数,则x=45k① <45k>k−1∵k−122≤45k<k−1+12k≥05 2<k≤152k=3,4,5,6,7则x=125,165,4,24528524.(1)MFIIAD,FNIIDC,∠BAD=106∘∠BCD=64∘∠BMF=106∘∠FNB=6A∘将△BMN沿MN翻折,得△FMN△FMN=∠MN=53∘∠FMM=∠MNB=32∘① ΔF=∠B=180∘−53∘−32∘=95∘(2)加F=25∘∠D=360∘−106∘−64∘−95∘=95∘25.解:设该店三月份售出A种手机x部,B种手机y部,由题意可得:{x+y=34(3800−3300)x=2×(4300−3700)y,解得:{x=24 y=10,答:该店三月份售出A种手机24部,B种手机10部;解:设A种手机a部,B种手机(40−a)部,由题意可得{40−a≥35a3300a+3700(40−a)<140000,解得:20<a≤25,① a为整数,① a=21,22,23,24,25,① 共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部.26.(1)如图1中,结论:2ΔP=AAB∼图①理由:∠PCD=∠P+∠PBC∠ACD=∠A+∠ABCP点是2ABC和外角LACD的角平分线的交点,.24PCD=∠ACD2|PBC=∠ABC2(2p+2PBC)=∠A+∠ABC2∠P+2∠PBC=∠A+∠ABC2∠P+∠ABC=∠A+∠ABC2∠P=∠A(2)①延长BA交CD的延长线于F.图①∠F=180∘−∠FAD−∠FDA=180∘−(180∘−α)−(180∘−β)=α+β−180∘由(1)可知:ΔP=12∠F…4P=12(α+β)−90∘○如图3,延长AB交DC的延长线于F.∠F=180∘−α−β2P=12∠F∵P=12(180∘−α−β)=90∘−12α−12β七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列运算正确的是()A.3a+2a=a5B.a2⋅a3=a6C.(a+b)(a−b)=a2−b2D.(a+b)2=a2+b22. 已知∠A=45∘,则∠A的补角等于()A.45∘B.90∘C.135∘D.180∘3. 如图所示,已知AB // CD,∠B=140∘,∠D=150∘,求∠E的度数.()A.40∘B.30∘C.70∘D.290∘4. 某人的头发的直径约为85微米,已知1微米=0.000001米;则该人头发的直径用科学记数法表示正确的是()米.A.8.5×105B.8.5×10−5C.85×10−8D.8.5×10−85. 下列标志中,可以看作是轴对称图形的是()A. B. C. D.6. 已知x a=3,x b=5,则x a−2b=()A.325B.35C.910D.−217. 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8. 下面的说法正确的个数为()①若∠α=∠β,则∠α和∠β是一对对顶角;①若∠α与∠β互为补角,则∠α+∠β=180∘;①一个角的补角比这个角的余角大90∘;①同旁内角相等,两直线平行.A.1B.2C.3D.49. 下列事件属于不确定的是()A.太阳从东方升起B.等边三角形的三个内角都是60∘C.|a|<−1D.买一张彩票中一等奖10. 如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50∘,则∠BGE=()A.100∘B.90∘C.80∘D.70∘二、填空题11.计算:(m−1)(m+1)−m2=________.12.已知:关于x的二次三项式x2−8x+k是完全平方式,则常数k等于________.13.在一不透明的口袋中有4个为红球,3个蓝球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为________.14.将一副三角板如图放置,若AE // BC,则∠AFD=________度.三、解答题15.化简下列式子:(1)(−ab2)3(8a2b4)÷(−4a4b5)|+(−1)2020.(2)2−2+(π−2020)0−13÷|−1216.先化简,再求值:[(x−5y)(x+5y)−(x−2y)2+y2]÷2y,其中x=−1,y=1217.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED =∠GHD.试判断∠AED与∠D之间的数量关系,并说明理由.18.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=________.19.为了测试某种汽车在高速路上匀速行驶的耗油量,专业测试员将汽车加满油,对汽车行驶中的情况做了记录,并把试验的数据制成如下表所示:(1)根据上表的数据,请用x表示y,y=________.(2)若油箱中的剩余油量为20升,汽车行驶了多少小时?(3)若该汽车贮满汽油准备从高速路出发,要匀速前往需要7小时车程的某目的地,当余油量不足5升时,油箱将会报警,请问汽车能在油箱报警之前到达目的地吗?请说明理由.20.如图1,∠MON=80∘,点A、B在∠MON的两条边上运动,∠OAB与∠OBA的平分线交于点C.(1)点A、B在运动过程中,∠ACB的大小会变吗?如果不会,求出∠ACB的度数;如果会,请说明理由.(2)如图2,AD是∠MAB的平分线,AD的反向延长线交BC的延长线于点E,点A、B在运动过程中,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.(3)在(2)的条件下,若∠MON=n,请直接写出∠ACB=________;∠E=________.21.已知关于x、y的多项式mx3−3nxy2+2x3+mxy2+xy2−2中不含x3项和xy2项.(1)求代数式(2m−3n)2+(2m+3n)2的值;,求关于x的方程m⊕x=n (2)对任意非零有理数a、b定义新运算“⊕”为a⊕b=b−a−ba的解.22.你能求(x−1)(x2019+x2018+x2017+...+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x−1)(x+1)=x2−1①(x−1)(x2+x+1)=x3−1①(x−1)(x3+x2+x+1)=x4−1…由此我们可以得到:(x−1)(x2019+x2018+x2017+...+x+1)=x2020-1.请你利用上面的结论,再完成下面两题的计算:(1)(−2)99+(−2)98+(−2)97+...+(−2)+1;(2)若x3+x2+x+1=0,求x2020的值.23.如图,在△ABC中,∠ACB=90∘,∠ABC=30∘,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE // AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.参考答案:一、1-5 CCCBC 6-10 ABBDA 二、11.−112.1613.4714.75三、15.(−ab2)3(8a2b4)÷(−4a4b5)=−a3b6⋅8a2b4÷(−4a4b5)=−8a5b10÷(−4a4b5)=2ab5;2−2+(π−2020)0−13÷|−12|+(−1)2020=14+1−1÷12+1=14+1−2+1=14.16.[(x−5y)(x+5y)−(x−2y)2+y2]÷2y =[x2−25y2−x2+4xy−4y2+y2]÷2y=[4xy−28y2]÷2y=2x−14y,当x=−1,y=12时,原式=−2−7=−9.17.∠AED+∠D=180∘,理由是:① ∠CED=∠GHD,① CE // FG,① ∠C=∠FGD,① ∠C=∠EFG,① ∠FGD=∠EFG,① AB // CD,① ∠AED+∠D=180∘.18.四边形AB′CD′如图所示;S四边形ABCD =12×6×3=9.作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.19.由表格数据可知,行驶时间延长1小时,剩余油量减少8L,即耗油量为8L/ℎ,① y=60−8x;根据题意,当y=20时,得:60−8x=20,解得:x=5,故若油箱中的剩余油量为20升,汽车行驶了5小时;不能在油箱报警之前到达目的地,根据题意,当x=7时,y=60−8×7=4<5,故汽车不能在油箱报警之前到达目的地.20.如图1中,① AC平分∠OABMCB平分∠OBA,① ∠CAB=12∠OAB,∠CBA=12∠OBA,① ∠ACB=180∘−(∠CAB+∠CBA)=180∘−12(∠OAB+∠OBA)=180∘−12(180∘−∠O)=90∘+12∠O,① ∠O=80∘,① ∠ACB=90∘+40∘=130∘.如图2中,由题意可以假设∠MAD=∠DAB=y,∠ABE=∠EBO=x.则有{y=x+∠E2y=∠O+2x,可得∠E=12∠O,① ∠O=80∘,① ∠E=40∘.90∘+12⋅n,12⋅n21.原式=(m+2)x3+(−3n+m+1)xy2−2,由题意得m+2=0,−3n+m+1=0,解得m=−2,n=−13,① (2m−3n)2+(2m+3n)2=8m2+18n2=8×4+18×19=32+2=34;由题意,得x−−2−x−2=−13,解得:x=43.故关于x 的方程m ⊕x =n 的解是x =43.22.(−2)99+(−2)98+(−2)97+...+(−2)+1 =(−2−1)⋅(−2)99+(−2)98+⋯+(−2)+1−3=(−2)100−1−3=1−21003;① (x −1)(x 3+x 2+x +1)=x 4−1,x 3+x 2+x +1=0, ① x 4=1,则x =±1,① x 3+x 2+x +1=0,① x <0,① x =−1,① x 2020=123.证明:① △CDE 是等边三角形, ① ∠CED =60∘,① ∠EDB =60∘−∠B =30∘,① ∠EDB =∠B ,① DE =EB ;ED =EB ,理由如下:取AB 的中点O ,连接CO 、EO , ① ∠ACB =90∘,∠ABC =30∘, ① ∠A =60∘,OC =OA ,① △ACO 为等边三角形,① CA =CO ,① △CDE 是等边三角形,① ∠ACD =∠OCE ,在△ACD 和△OCE 中,{CA =CO ∠ACD =∠OCE CD =CE,① △ACD≅△OCE,① ∠COE=∠A=60∘,① ∠BOE=60∘,在△COE和△BOE中,{OC=OB∠COE=∠BOEOE=OE,① △COE≅△BOE,① EC=EB,① ED=EB;取AB的中点O,连接CO、EO、EB,由(2)得△ACD≅△OCE,① ∠COE=∠A=60∘,① ∠BOE=60∘,△COE≅△BOE,① EC=EB,① ED=EB,① EH⊥AB,① DH=BH=3,① GE // AB,① ∠G=180∘−∠A=120∘,在△CEG和△DCO中,{∠G=∠COD∠ECG=∠ODCCE=CD,① △CEG≅△DCO,① CG=OD,设CG=a,则AG=5a,OD=a,① AC=OC=4a,① OC=OB,① 4a=a+3+3,解得,a=2,即CG=2.。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
(完整版)人教版七年级数学下册期末试卷及答案一、选择题1.对于算式20203﹣2020,下列说法错误的是()A.能被2019整除B.能被2020整除C.能被2021整除D.能被2022整除2.如图所示图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.3.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10114.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.145.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A.90°B.120°C.135°D.150°6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x元,馒头每个y元,则下列能表示题目中的数量关系的二元一次方程组是()A.53502115900.9x yx y+=+⎧⎨+=⨯⎩B.53502115900.9x yx y+=+⎧⎨+=÷⎩C.53502115900.9x yx y+=-⎧⎨+=⨯⎩D.53502115900.9x yx y+=+⎧⎨+=⨯⎩7.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4 C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2 8.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2 9.一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7 B.8 C.9 D.1010.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b >的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.15.已知m a =2,n a =3,则2m n a -=_______________.16.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.17.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.18.因式分解:224x x -=_________.19.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.24.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 25.已知a +a 1-=3, 求(1)a 2+21a(2)a 4+41a 26.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。
人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
七年级数学第二学期期末教学质量检测考试试题第Ⅰ卷(共30分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是( )A . 3B .3C .3-D .3±2.下列各数中是无理式的是( )A 38-B .0.5C 32D 363.下列各点中,位于平面直角坐标系第三象限的点是( )A . (2,1)B .(2,1)--C .(2,1)-D .(2,1)-4.下列调查中,适宜采用全面调查方式的是( )A .调查某河的水质情况B .了解一批手机电池的使用寿命C .调查某品牌食品的色素含量是否达标D .了解全班学生参加社会实践活动的情况5.如图,将一块三角板的直角顶点放在直尺的一边上,当237∠=时,1∠的度数为( )A .37B .43C . 53D .546.若a b >,则下列各式中,不正确的是( )A . 22a b +>+;B .33a b ->-C .33a b ->-D .22a b > 7.如图,下列条件中不能判断//a b 的是( )A .26∠=∠B .14∠=∠C .46180∠+∠=D .35180∠+∠=8.如果2|22|(210)0x y x y --+++=,那么( )A .26x y =-⎧⎨=-⎩B .26x y =-⎧⎨=⎩C .26x y =⎧⎨=-⎩D .26x y =⎧⎨=⎩ 9.如图是小明在44⨯的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成( )A .(2,1)B .(1,1)C .(1,2)-D .(1,2)10.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x 折销售,则下列不等式中能正确表示该商店的促销方式的是( )A .12080805%10x ⨯-≥⨯B .12080805%x -≥⨯C .120805%10x ⨯≥⨯ D .120805%x ≥⨯ 第Ⅱ卷(共70分)二、填空题(本大题共6个小题,每小题3分,共18分)11.3,5,18表示在数轴上,则被图中表示的解集包含的数是 .12.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为 .13.在平面直角坐标系xOy 中,,,C A B 三点的坐标如图所示,那么点A 到BC 边的距离等于 ,ABC ∆的面积等于 .14.能说明命题“若a b>,则ac bc>”是假命题的一个c值是.(写出一个符合条件的答案即可)15.如图,点C在点B的北偏西60的方向上,点C在点A的北偏西30的方向上,则C∠等于度.12题图 13题图 15题图16.三个同学对问题“若方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是34xy=⎧⎨=⎩,求方程组111222325325a xb y ca xb y c+=⎧⎨+=⎩的解”,提出各自的想法,甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是.三、解答题:本大题共9个小题,共52分.17. 解不等式:2131x x+≥-,并把它的解集在数轴上表示出来.18. 31136|1348-19. 解方程组:135x yx y+=⎧⎨+=⎩20. 解不等式组:2(3)423x xxx-≤-⎧⎪-⎨<⎪⎩并求出整数解.21. 线段AB 在平面直角坐标系中的位置如图所示.(1)写出点,A B 的坐标;(2)将线段AB 向右平移5个单位,得到线段CD ,点A 与点C 是对应点,请画出线段CD ,并写出点C ,D 的坐标.22. 某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行)本次调查采用的方式是 (填“全面调查”或“抽样调查”(2)若将月均用水量的频数绘成扇形统计图,月均用水量“1520x <≤”组对的圆心角度数是72,则本次调查的样本容量是 ,表格中m 的值是 ,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t 的家庭大约有多少户?23. 如图,12∠=∠,A F ∠=∠,求证:C D ∠=∠.24.某职业高中机电班共有42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?25.已知关于,x y 的二元一次方程组2123x y x y m+=⎧⎨-=⎩. (1)用含有m 的代数式表示方程组的解;(2)如果方程组的解,x y 满足0x y +>,求m 的取值范围.试卷答案一、选择题1-5:DCBDC 6-10: CBADA二、填空题(答案不唯一) 15. 30 16. 510x y =⎧⎨=⎩三、解答题17.移项,得:2311x x -≥--合并同类项,得:2x -≥-系数化为1,得:2x ≤解集在数轴上表示如下:19. 135x y x y +=⎧⎨+=⎩①②由②-①,得24x =解这个方程,得2x =把2x =代入①,得:21y +=解得:1y =-所以这个方程组的解为21x y =⎧⎨=-⎩.20.由①得:2x ≤由②得:23x x -<1x >-∴不等式组的解集是12x -<≤∴不等式组的整数解是0,1,221.(1)由图像可知:(2,3)A -,(3,3)B --,(2)作图如图所示,,C D 两点的坐标为:(3,3)C ,(2,3)D -22.(1)抽样调查; (2)本次调查的样容量是721050360÷=,50(6121042)16m =-++++=补全频数分布直方图如下:故答案为:50,16(3)该小区月均用水量超过15t 的家庭大约有104250016050++⨯=(户)23.∵12∠=∠,13∠=∠∴23∠=∠∴//BD CE∴4C ∠=∠又∵A F ∠=∠,∴//AC DF∴4D ∠=∠∴C D ∠=∠24.(1)设该班男生有x 人,女生有y 人根据题意得:4223x y x y +=⎧⎨=-⎩解得:2715x y =⎧⎨=⎩∴该班男生有27人,女生有15人.(2)设招录的男生为m 名,则招录的女生为(30)m -名 根据题意得:5045(30)1460x x +-≥解之得:22x ≥答:工厂在该班至少要招录22名男生.25.(1)2123x y x y m +=⎧⎨-=⎩①②①-②得:3123y m =-解得:4y m =-将4y m =-代入②,得(4)3x m m --=解得:24x m =+故方程组的解可表示为244x m y m =+⎧⎨=-⎩(2)∵0x y +>∴2440m m ++->解得:8m >-故m 的取值范围是8m >-.。
人教版七年级下册数学期末考试试卷一、单选题1.下列4个选项中,最小的实数是()A .0B .C .23-D .2-2.要直观反映近5年全国居民人均可支配收入变化情况,不宜采用()A .条形图B .直方图C .折线图D .扇形图3.下列语句,不是命题的是()A .非负数大于0B .同位角不一定相等C .画两条平行线D .若1∠与2∠互补,则12180︒∠+∠=4.已知点A (a ,b )在第四象限,那么点B (b ,a )在()A .第一象限B .第二象限C .第三象限D .第四象限5.由m n >,可得()A .22mc nc >B .22m n >C .1122m n >D .20192019m n -<-6.如图所示,点E 在AB 的延长线上,下列条件中不能判断AB//CD 的是()A .∠1=∠2B .∠3=∠4C .∠C =∠CBED .∠C+∠ABC =180°7.班主任老师在七年级(1)班新生分组时发现,若每组7人则多2人,若每组8人则少4人,那么这个班的学生人数是()人.A .56B .51C .44D .408.在平面直角坐标系中,已知点A(−4,0),B(2,0),若点C 在一次函数y=12-x+2的图象上,且△ABC 为直角三角形,则满足条件的点C 有( )A .4个B .2个C .3个D .1个9.甲、乙两超市今年上半年盈利情况统计图如图,下面结论不正确的是()A .甲超市利润逐月减少B .乙超市利润在1月至3月间逐月增加C .6月份两家超市利润相同D .乙超市在7月份的利润必超过甲超市10.某运行程序如图,从“输入一个值m 到结果是否107>”为一次程序操作,若操作进行两次停止,则m 的取值范围是()A .11m >B .35m ≤C .135m ≤≤D .1135m <≤二、填空题11.若()224x -=,则x =__________.12.端午节期间,食品药品监督管理局对市场上的粽子质量进行了调查,你认为适合采用的调查方式是__________调查.13.不等式4562x x +>-的解集是__________.14.如图,可以由三角形ABC 平移得到的三角形有__________个.(不包括ABC △)15.在平面直角坐标系中,长方形ABCD 的三个顶点坐标为A(−1,2),B(3,2),C(3,−1),则点D 的坐标为______.16.如图,由4个形状大小相同的长方形,拼成1个面积为81的大正方形,若中间小正方形的面积为4,则1个长方形的长、宽分别是__________.三、解答题172-+18.解不等式组:()4251213x x x x ⎧--≥⎪⎨+>-⎪⎩19.如图,AB 与CD 交于点O ,190,EF AB ︒∠=⊥于点E ,与AD 交于点,2F C ∠=∠,求证://AD BC20.《人民日报》2019年3月1日刊载了“2018年国民经济和社会发展统计公报”,有关脱贫攻坚的数据如下表。
人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 下列艺术字中,可以看作是轴对称图形的是()A. B. C. D.2. 下列各式运算正确的是()A.a2+a2=2a4B.a2⋅a3=a5C.(−3x)3÷(−3x)=−9x2D.(−ab2)2=−a2b43. 下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4. 计算(x+3)(x−3)的结果为()A.x2+6x+9B.x2−6x+9C.x2+9D.x2−95. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30∘,则∠1的度数为()A.30∘B.45∘C.60∘D.75∘6. 下列各组数据,能构成三角形的是()A.1cm,2cm,3cmB.2cm,2cm,5cmC.3cm,4cm,5cmD.7cm,5cm,1cm7. 如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S38. 李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点EDE的长为半径画弧,两弧在∠AOB的内部相交于点C.①分别以点D、E为圆心,大于12①画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSSB.SASC.ASAD.AAS9. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A. B. C. D.10. 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30∘B.40∘C.45∘D.36∘二、填空题11.化简(a+b)(a−b)=________.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为________.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为________.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为________.三、解答题)2−(3.14−π)0;15.(1)(−1)2020+(−13(2)(a−1)(a+1)−(a−2)2;(3)(20x2y−10xy2)÷(−5xy);(4)(2x3y)2⋅(−2xy)+(−2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2−2x(x+2y)+(x−3y)(x+3y),其中x=−1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90∘,EC⊥AF.求证:AB // CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD // CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.21.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD =BE(2)△APC≅△BQC(3)△PCQ是等边三角形.22.如图1,∠FBD=90∘,EB=EF,CB=CD.(1)求证:EF // CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG // BC,∠FBD=90∘,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.23.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100∘,∠B=∠ADC=90∘.E,F分别是BC,CD上的点.且∠EAF=50∘.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≅△ADG,再证明△AEF≅△AGF,可得出结论,他的结论是________(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180∘,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45∘,直接写出△DEF的周长.参考答案:一、1-5 BBADC 6-10 CCACD二、11.a2−b212.y=−2x2+20x13.12cm14.12三、15.原式=1+19−1=19.原式=a2−1−(a2−4a+4)=a2−1−a2+4a−4=4a−5.原式=−4x+2y.原式=4x6y2⋅(−2xy)+(−8x9y3)÷(2x2)=−8x7y3−4x7y3=−12x7y3.16.原式=x2+6xy+9y2−2x2−4xy+x2−9y2=2xy,当x=−1,y=2时,原式=2×(−1)×2=−4.17.A′点即为所求;点P即为所求.18.证明:① EC⊥AF(已知),① ∠CHF=90∘(垂直的定义),① ∠1+∠C=90∘(三角形内角和定理),① ∠2+∠C=90∘(已知),① ∠1=∠2(同角的余角相等),又① ∠1=∠D(已知),① ∠2=∠D(等量代换),① AB // CD(内错角相等,两直线平行).19.证明:① AD // CB(已知),① ∠ADB=∠CBD(两直线平行,内错角相等),① ∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,{∠ADE=∠CBFDE=BF∠E=∠F,① △ADE≅△CBF(ASA),① AE=CF(全等三角形的对应边相等).20.证明:在△AFC与△AGB中{AF=AG∠FAC=∠GABAB=AC,① △AFC≅△AGB(SAS),① ∠AFC=∠AGB,① ∠AFD=∠AGE,① AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.① ∠ADF=∠AEG=90∘,在△ADF与△AEG中{∠ADF=∠AEG ∠AFD=∠AGEAF=AG,① △ADF≅△AEG(AAS),① AD=AE.21.① △ABC和△CDE是正三角形,① AC=BC,CD=CE,∠ACB=∠DCE=60∘,① ∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,① ∠ACD=∠BCE,① △ADC≅△BEC(SAS),① AD=BE;① ADC≅△BEC,① ∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,① △APC≅△BQC(ASA);① CD=CE,∠DCP=∠ECQ=60∘,∠ADC=∠BEC,① △CDP≅△CEQ(ASA).① CP=CQ,① ∠CPQ=∠CQP=60∘,① △CPQ是等边三角形.22.证明:如图1,连接FD,① EB=EF,CB=CD,① ∠EBF=∠EFB,∠CBD=∠CDB,① ∠FBD=90∘,① ∠EBF+∠CBD=90∘,∠BFD+∠BDF=90∘,① ∠EFB+∠CDB=90∘,① ∠EFD+∠CDF=180∘,① EF // CD;成立,证明:如图2,连接FD,延长CB到H,① EG // BC,① ∠EGF=∠HBF,① ∠FBD=90∘,① ∠HBF+∠CBD=90∘,∠BFD+∠BDF=90∘,① ∠EGF+∠CBD=90∘,① EG=EF,CB=CD,① ∠EGF=∠EFB,∠CBD=∠CDB,① ∠EFB+∠CDB=90∘,① ∠EFD+∠CDF=180∘,① EF // CD.23.EF=BE+DF结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.① ∠ABC+∠D=180∘,∠ABG+∠ABC=180∘,① ∠ABG=∠D,① 在△ABG与△ADF中,{AB=AD∠ABG=∠D BG=DF,① △ABG≅△ADF(SAS),① AG=AF,∠BAG=∠DAF,① 2∠EAF=∠BAD,① ∠DAF+∠BAE=∠BAG+∠BAE=12∠BAD=∠EAF,① ∠GAE=∠EAF,又AE=AE,① △AEG≅△AEF(SAS),① EG=EF.① EG=BE+BG.① EF=BE+FD;如图,延长EA到H,使AH=CF,连接BH,① 四边形ABCD是正方形,① AB=BC=7=AD=CD,∠BAD=∠BCD=90∘,① ∠BAH=∠BCF=90∘,又① AH=CF,AB=BC,① △ABH≅△CBF(SAS),① BH=BF,∠ABH=∠CBF,① ∠EBF=45∘,① ∠CBF+∠ABE=45∘=∠HBA+∠ABE=∠EBF,① ∠EBH=∠EBF,又① BH=BF,BE=BE,① △EBH≅△EBF(SAS),① EF=EH,① EF=EH=AE+CF,① △DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.人教版七年级数学下册期末试卷(含答案)第Ⅱ套一、选择题1. 如图,直线a,b相交于点O,∠1=60∘,则∠2=()A.120∘B.60∘C.30∘D.15∘2. 下列实数中是无理数的是()A. B.0.212121C. D.-3. 下列调查方式中,你认为最合适的是()A.肺炎疫情期间,对学生体温测量采用抽样调查B.驰援武汉医疗队胜利归来时,为了确定医疗队成员的健康情况,可采用抽样调查C.检查一批口罩的防护效果时,采用全面调查D.肺炎疫情期间到校上课,了解学生健康码情况时,采用全面调查4. 下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行5. 如图,数轴上点A表示的数可能是()A. B.C. D.6. 下列图形中,周长最长的是()A. B. C. D.7. 一副三角尺按如图方式叠放,含30∘角三角形尺的直角边AD在含45∘角三角形尺的直角边AC上,则∠BFE的度数是()A.60∘B.70∘C.75∘D.80∘8. 某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x≥4809. 如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(−2, 6),则点B的坐标为()A.(−6, 4)B.(,)C.(−6, 5)D.(,4)10. 在平面直角坐标系中,点M(1+m, 2m−3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题11.小红在画一组数据的直方图时,统计了这组数据中的最大值是75,最小值是4,她准备把这组数据分成8组,则组距可设为________.(填一整数)12. 如图,∠1=∠2,∠D=75∘,则∠BCD=________.13.若≈1.732,则300的平方根约为________.14.若,则x+y的值为________.15.已知a+b=4,若−2≤b≤−1,则a的取值范围是________.16.在平面直角坐标系xOy中,对于点P(x, y),我们把点P′(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3, 1),则点A2019的坐标为________.三、解答题17.计算:.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在三角形ABC中,AB // DE,∠BDE=2∠A,求证∠A=∠C.证明:作∠BDE的角平分线交AB于点F.① DF平分∠BDE,①∠1=∠2.①∠BDE=2∠A,①∠1=∠2=①AB // DE,①∠A=∠3(),①∠3=∠A=,① AC // DF( ),① ∠2=,① ∠A=∠C=∠2.20.某校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为x分(60≤x≤100),校方在参赛作品中随机抽取了50件作品进行质量评估,分数情况统计表和统计图如图所示:手工制作比赛作品分数情况频数分布表手工制作比赛作品分数情况频数分布直方图根据以上信息解答下列问题:手工制作比赛作品分数情况频数分布表(1)频数分布表中c的值为;(2)补全频数分布直方图;(3)本次比赛校方共收到参赛作品800件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.21.如图,AB // CD,AB // GE,∠B=110∘,∠C=100∘.∠BFC等于多少度?为什么?22.肺炎疫情期间,口罩成了家家户户必备的防疫物品.在某超市购买2只普通医用口罩和3只N95口罩的费用是22元;购买5只普通医用口罩和2只N95口罩的费用也是22元.(1)求该超市普通医用口罩和N95口罩的单价;(2)若准备在该超市购买两种口罩共50只,且N95口罩不少于总数的40%,试通过计算说明,在预算不超过190元的情况下有哪些购买方案.23.规定min(m, n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3, −1}=−1,、min据此解决下列问题:(1)min=;(2)若min=2,求x的取值范围;(3)若min{2x−5, x+3}=−2,求x的值.24.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ(△表示三角形)面积等于1(即S△MPQ=1),则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2, 0).(1)在点A(−1, 1),B(−1, 2),C(2, −4)中,线段OP的“单位面积点”是;(2)已知点D(0, 3),E(0, 4),将线段OP沿y轴方向向上平移t(t>0)个单位长度,使得线段DE上存在线段OP的“单位面积点”,求t的取值范围;(3)已知点F(2, 2),点M在第一象限且M的纵坐标是3,点M,N是线段PF的两个“单位面积点”,若S△OMN=3S△PFN,且MN // PF,直接写出点N的坐标.参考答案:一、1-5 BCDAB 6-10 BCABB二、11.912.105∘13.±17.3214.215.5≤a≤616.(−3,1)三、17.解:原式=10−2=8①18.解:{2x+1≥−3①x+1>2x−2由①得:x≥−2由①得:x<3不等式组的解集为:−2≤x<3在数轴上表示:19.∠A,两直线平行,同位角相等,∠1,内错角相等,两直线平行,∠C20.(1)c=22+50=0.44故答案为:0.44;(2)a=50×0.2=10,b=50×0.06=3补全的频数分布直方图如图所示;手工制作比赛作品分数情况频数分布直方图(3)800×(0.2+0.6)=208(件),即全校将展出的作品有208件.21.解:∠BFC等于30度,理由如下:ABIIGE,∠B+∠BFG=180∘∵B=110∘∠BFG=180∘−110∘=70∘ABICD,ABIGE,..CDIIGE,2C+CFE=180∘∠C=100∘2CE=180∘−100∘=80∘∠BF=180∘∠∠BFG∠∠CFE=180∘−70∘−80∘=30∘22.(1)设普通医用口罩的单价为x元,N95口罩单价为y元,依题意有{2x+3y=22 5x+2y=22解得:{x=2 y=6故普通医用口罩的单价为2元,N95口罩单价为6元;(2)设购买普通医用口罩z个,则购买N95口罩(50−z)个,依题意有{50−≥50×40%2z+6(50−z)≤190解得:27.5≤2030购买方案:①购买普通医用口罩28个,购买N95口罩22个;①购买普通医用口罩29个,购买N95口罩21个;①购买普通医用口罩30个,购买N95口罩20个.23.(1)根据题中的新定义得:sin{−12,−13}=−12故答案为:−12(2)由题意2x−13≥2解得:x≥3.5(3)若2x−5=−2,解得:x=1.5,此时x+3=4.5>−2,满足题意;若x+3=−2,解得:x=−5,此时2x−5=−15<−2,不符合题意,综上,x=1.524.(1)如图1中,A(一1,1),B(一1,2),C(2,一4),P(2, 0),S△AOP=12×2×1=1,S△ODB=12×2×2=2,S△OPC′12×2××2×…点A是线段OP的“单位面积点”.故答案为:A.(2)如图2中.当点D为线段O′P′的“单位面积点”时,/3−t|=1,解得:t=2或t=4,当点E为线段O′P”’的“单位面积点”时,/4−t{=1,解得:t=3或t=5,…线段EF上存在线段O“P”的“单位面积点”,..t的取值范围为2st≤3或4sts5.(3)如图3中,图3P(2, 0),F(2, 2),..PF=2,PFlly轴.点M是线段PF的“单位面积点”,且点M的纵坐标为3,….M(1, 3)或(3, 3),当M(1, 3)时,设N(1, t),×1×/3−t=3由题意,12解得:t=∼3或9,…N(1, 3)或(1, 9),当M(3, 3)时,设N(3, n),×3×|3−n|=3由题意,12解得:n=1和5,.N(3, 1)或(3, 5),综上所述:满足条件的点N的坐标为(1, ∼3)或(1, 9)或(3, 1)或(3, 5).人教版七年级数学下册期末试卷(含答案)第Ⅲ套一、选择题1. 如图,∠B的同位角是()A.∠1B.∠2C.∠3D.∠42. 下列方程中,是二元一次方程的是()A.2x−y=3B.x+1=2C.+3y=5D.x+y+z=63. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10−9B.7.6×10−8C.7.6×109D.7.6×1084. 如图是某班学生一周参加体育锻炼情况的折线统计图.由图可知,一周参加体育锻炼7小时的人数比锻炼9小时的人数少()A.3人B.5人C.8人D.11人5. 若代数式有意义,则实数x的取值范围是()A.x=5B.x=2C.x≠5D.x≠26. 下列计算中正确的是()A.a6÷a2=a3B.(a4)2=a6C.3a2−a2=2D.a2⋅a3=a57. 下列等式从左到右变形中,属于因式分解的是()A.a(x+y)=ax+ayB.x2−2x+1=x(x−2)+1C.x2−1=(x+1)(x−1)D.a2+2a+3=(a+1)2+28. 如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cmB.22cmC.20cmD.24cm9. 现代科技的发展已经进入到了5G时代,温州地区将在2021年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程()A.-=360B.-=360C.-=360D.-=36010. 如图,正方形ABCD和长方形DEFG的面积相等,且四边形AEFH也为正方形.欧几里得在《几何原本》中利用该图得到了:AH2=AB×BH.设AB=a,BH=b.若ab=45,则图中阴影部分的周长为()A.25B.26C.28D.30二、填空题11.因式分解:a2−4a=________.12.某部门要了解当代中学生的主要娱乐方式,常用的调查方式是________调查.(填“全面”或“抽样”)13.计算:4a2b÷2ab=________.14.已知3a−b=0,则分式的值为________.15.已知关于x,y的方程组的解也是方程y+2m=1+x的一组解,则m=________.16.图1是一盏可折叠台灯.图2为其平面示意图,底座AO⊥OE于点O,支架AB,BC为固定支撑杆,∠A是∠B的两倍,灯体CD可绕点C旋转调节.现把灯体CD从水平位置旋转到CD′位置(如图2中虚线所示),此时,灯体CD′所在的直线恰好垂直支架AB,且∠BCD−∠DCD′=126∘,则∠DCD′=________.三、解答题17.计算(1)(π−2)0−3−2;(2)(a−1)2+a(3−a).18.解下列方程(组):(1);(2)+=1.19.先化简,再求值:÷-,其中a=5.20.某校开展“停课不停学”活动期间,为了更好地了解学生的学习情况,对七年级部分学生每天学习时长情况进行抽样调查,并绘制了如图频数表和频数直方图(不完整),如图所示(每组含前一个边界值,不含后一个边界值).七年级部分学生学习时间情况频数表根据以上信息,解决下列问题:(1)表中a=________,b=________;(2)补全频数直方图;(3)若该校七年级共有600名学生,估计该年级学生每天的学习时间不少于6小时的人数.21.如图,已知AB // CD,∠AED+∠C=180∘.(1)请说明DE // BC的理由.(2)若DE平分∠ADC,∠B=65∘,求∠A的度数.22.某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a 米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简.(2)记长方形空地的面积为S1,花圃的面积为S2,若2S2−S1=7b2,求的值.23.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:(1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?参考答案:一、1-5 AABDC 6-10 DCBBD二、11.a(a−4)12.抽样13.2a14.15.16.36∘三、17.(π−2)0−3−2=1−=;(a−1)2+a(3−a)=a2−2a+1+3a−a2=a+1.18.,①+①得:4x=12,解得:x=3,把x=3代入①得:y=1,则方程组的解为;分式方程整理得:-=1,去分母得:4−3=x−2,解得:x=3,经检验x=3是分式方程的解.19.÷-====,当a=5时,原式==.20.10,0.35由(1)知,a=10,补全的频数直方图如右图所示;600×(0.35+0.2+0.075)=375(名),答:该年级学生每天的学习时间不少于6小时的大约有375名学生.【考点】频数(率)分布表用样本估计总体频数(率)分布直方图21.DE // BC,理由如下:① AB // CD(已知),① ∠B+∠C=180∘(两直线平行,同旁内角互补),又① ∠AED+∠C=180∘(已知),① ∠AED=∠B(同角的补角相等),① DE // BC(同位角相等,两直线平行).由(1)得∠AED=∠B,① ∠B=65∘(已知),① ∠AED=65∘(等量代换),① AB // CD(已知),① ∠CDE=∠AED=65∘(两直线平行,内错角相等),① DE平分∠ADC(已知),① ∠ADC=2∠CDE=130∘(角平分线的定义),① AB // CD(已知),① ∠A+∠ADC=180∘(两直线平行,同旁内角互补),① ∠A=180∘−∠ADC=180∘−130∘=50∘.22.平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b−2a)(2a+4b−a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;① 2S2−S1=7b2,① 2(2a2+10ab+8b2)−(8a2+20ab+8b2)=7b2,① b2=4a2,① b=2a,① S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,① ==.23.设每天生产医用口罩x万个,生产N95口罩y万个,依题意,得:,解得:.答:每天生产医用口罩50万个,生产N95口罩30万个.设从医用口罩中抽取m包,N95口罩中抽取n包,依题意,得:1.2(50−m)+3(30−n)−0.8×50−2.5×30=2,① n=11−m.① m,n均为正整数,① ,,,,.又① 捐赠的N95口罩不超过医用口罩的三分之一,① ,,.答:从医用口罩中抽取15包、从N95口罩中抽取5包或从医用口罩中抽取20包、从N95口罩中抽取3包或从医用口罩中抽取25包、从N95口罩中抽取1包.人教版七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列图形中,是轴对称图形的是()A.B. C. D.2. 新型冠状病毒的直径平均为100纳米,也就是0.0000001米,是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为()A.30×10−7B.3×10−6C.3×10−5D.0.3×10−63. 如图,若∠1=35∘,且AB // CD,则∠2的度数是()A.125∘B.135∘C.145∘D.155∘4. 下列运算正确的是()A.(a5)2=a7B.a2⋅a3=a6C.(4a)2=4a2D.a6÷a2=a45. 在一个不透明的口袋中,装有5个白球、4个红球和1个黄球,它们除颜色外其余都相同,搅匀后任意摸出一球,则摸到红球的概率为()A.15B.25C.35D.456. 若x2−mx+4是完全平方式,则m的值为()A.2B.4C.±2D.±47. 如图,点E在CB的延长线上,下列条件中,能判定AB // CD的是()A.∠1=∠4B.∠2=∠3C.∠A=∠ABED.∠A+∠ABC=180∘8. 如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.由作法可得:△ABC≅△CDA的根据是()A.SASB.ASAC.AASD.SSS9. 今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.便利店离小丽家的距离为1000米10. 如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,①∠D=∠B,①AD=CB,①DF // BE,选出三个条件可以证明△AFD≅△CEB的有()组.A.4B.3C.2D.1二、填空题11.已知x m=20,x n=5,则x m−n=________.12.如图,在△ABC中,BC的垂直平分线MN交AB于点D,若BD=3,AD=2,则AC的长度x 取值范围为________.13.为了解某地区学生的身高情况,随机抽取了该地区100名学生,他们的身高x(cm)统计如下:根据以上结果,抽取其中1名学生,估计该学生的身高不低于170cm的概率是________.14.如图,已知AB // CD,∠B=60∘,∠FCG=70∘,CF平分∠BCE,则∠BCG的度数为________.三、解答题15.计算下列各题:)−3−(−1)2021+|−3|;(1)(2020−π)0+(−12(2)(−3xy2)2⋅(−6x3y)÷(9x4y5).y),其中x=2,y=−3.16.先化简,再求值:[(2x+y)2−4(x−y)(x+y)]÷(1217.如图,已知∠A=∠ADE.(1)若∠EDC=4∠C,求∠C的度数;(2)若∠C=∠E,求证:BE // CD.18.科学家为了研究地表以下岩层的温度y(∘C)与所处的深度x(km)的变化情况,选择了一个地点来进行测试,测试结果记录下来,制成下表:①根据上表的数据,请你写出y与x的关系式;①当地下岩层13km时,岩层的温度是多少;①岩石的熔点各不相同,某种岩石在温度达到1070∘C时,就会融化成液体,请问这种岩石处在地表下多少千米时就会变成液态?19.如图,方格纸中每个小方格都是边长为1的正方形,我们把顶点均在格点上的三角形称为“格点三角形”,如图1,△ABC就是一个格点三角形.(提示:作图时,先用2B铅笔作图,确定不再修改后用中性笔描黑)(1)作出△ABC关于直线m成轴对称的图形;(2)求△ABC的面积;(3)在图2的直线m上求作点D,使得以A、C、D为顶点的格点三角形是等腰三角形.20.已知:△ABC中,∠ACB=90∘,AC=BC,过点A作AD⊥AE,且AE=AD.(1)如图1,当点D在线段BC上时,过点E作EH⊥AC于H,连接DE.求证:EH=AC;(2)如图2,当点D在CB延长线上时,连接BE交AC的延长线于点M.求证:BM=EM;(3)在(2)的条件下,若AC=7CM,请直接写出S△ADB的值(不需要计算过程).S△AEM21.如图所示,纸片甲、乙分别是长方形ABCD和正方形EFGH,将甲、乙纸片沿对角线AC,EG剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR,与甲、乙纸片一起组成纸片丙的四边形NALM,设AD=a,AB=b.(1)求纸片乙的边长(用含字母a、b的代数式表示);(2)探究纸片乙、丙面积之间的数量关系.22.甲骑车从A地到B地,乙骑车从B地到A地,甲的速度小于乙的速度,两人同时出发,沿同一条绿道骑行,图中的折线表示两人之间的距离y(km)与甲的行驶时间x(ℎ)之间的关系,根据图象回答下列问题:(1)甲骑完全程用时________小时;甲的速度是10km/ℎ;(2)求甲、乙相遇的时间;(3)求甲出发多长时间两人相距10千米.23.如图,在正方形ABCD中,点F是直线BC上一动点,连结AF,将线段AF绕点F顺时针旋转90∘,得到线段FH,连结AH交直线DC于点E,连结EF和CH,设正方形ABCD的边长为x.(1)如图1,当点F在线段BC上移动时,求△CEF的周长(用含x的代数式表示);(2)如图1,当点F在线段BC上移动时,猜想∠EFC和∠EHC的关系,并证明你的结论;(3)如图2,当点F在边BC的延长线上移动时,请直接写出∠EFC和∠EHC的关系(不需要证明).参考答案:一、1-5 CBCDB 6-10 DBDAC二、11.412.1<x<513.5710014.10∘三、15.原式=1−8+1+3=−3;原式=9x2y4⋅(−6x3y)÷(9x4y5)=−54x5y5÷(9x4y5)=−6x.16.原式=(4x2+4xy+y2−4x2+4y2)÷(12y)=(4xy+5y2)÷(12y)=4xy÷12y+5y2÷12y=8x+10y,当x=2,y=−3时,原式=8×2+10×(−3)=16−30=−14.17.① ∠A=∠ADE,① DE // AC,① ∠EDC+∠C=180∘,① ∠EDC=4∠C,① 4∠C+∠C=180∘,解得,∠C=36∘;证明:① DE // AC,① ∠E=∠ABE,① ∠C=∠E,① ∠C=∠ABE,① BE // CD.18.①y与x的关系式:y=35x+20;①当地下岩层13km时,y=35×13+20=475.故岩层的温度是475∘C;①温度达到1070∘C时,1070=35x+20,解得x=30.故这种岩石处在地表下30千米时就会变成液态.19.如图,△A′B′C′即为所求.S△ABC=4×3−12×3×2−12×1×4−12×1×3=5.5.如图,点D1,D2即为所求.20.(2)如图2,过点E作EN⊥AM,交AM的延长线于N,① AD⊥AE,EN⊥AM,① ∠ANE=∠EAD=∠ACB=90∘,① ∠DAC+∠ADC=90∘,∠DAC+∠EAN=90∘,① ∠EAN=∠ADC,又① AD=AE,∠ACD=∠ANE=90∘,① △ANE≅△DCA(AAS),① EN=AC,① BC=AC,① BC=NE,又① ∠BMC=∠EMN,∠BCM=∠ENM=90∘,① △BCM≅△ENM(AAS),① BM=EM(3)① AC=7CM,① 设CM=a,AC=7a,① △BCM≅△ENM,① CM =MN =a ,BC =NE =AC =7a ,① AN =AC +CM +MN =9a ,① △ANE ≅△DCA ,① AN =CD =9a ,① BD =2a ,① S △ADBS △AEM =12BD⋅AC 12AM⋅EN =12×2a×7a 12×8a×7a =14 21.设纸片乙的边长为x ,则OR =x −b ,RQ =a −x ,① OR =RQ ,① x −b =a −x ,解得x =a+b 2;由(1)知中间正方形纸片OPQR 的边长为a−b 2, ① (a−b 2)2+ab =(a+b 2)2, ① 中间正方形纸片OPQR 的面积+纸片甲的面积=纸片乙的面积, ① 纸片丙的面积是纸片乙面积的2倍.22.由图象可知,甲骑完全程用时3小时,甲的速度是303=10(km/ℎ).故答案为:3;10.由题意可知,乙到A 地时,甲距离A 地18千米处,① 相同时间甲、乙的速度之比等于路程之比,① V 乙=S S ×V =3018×10=503(km/ℎ), ① 相遇时间为30÷(503+10)=98(ℎ);①甲、乙相遇前,30−(10+503x)=10, 解得,x =34;①甲、乙相遇后,且未到A 地时,(10+503)(x −98)=10, 解得,x =32;综合以上可得,当x =34或32(ℎ)时,两人相距10千米.23.如图1中,延长CB到G,使得BG=DE,连接AG.① 四边形ABCD是正方形,① AD=AB,∠D=∠ABC=∠ABG=90∘,① DE=BG,① △ADE≅△ABG(SAS),① ∠BAG=∠DAE,AG=AE,① 将线段AF绕点F顺时针旋转90∘,得到线段FH,① FA=FH,∠AFH=90∘,① ∠FAH=∠AHF=45∘,① ∠BAF+∠DAE=∠BAF+∠BAG=45∘,① ∠FAG=∠FAE,① AF=AF,① △AFG≅△AFE(SAS),① EF=FG,① FG=BG+BF=DE+BF,① EF=BF+DE,① △ECF的周长=EF+CF+CE=BF+CF+DE+CE=BC+CD=2x.如图1中,过点H作HM⊥BC交BC的延长线于M.① ∠ABF=∠AEH=∠M=90∘,① ∠AFB+∠HFM=90∘,∠FHM+∠FHM=90∘,① ∠AFB=∠FHM,① AF=FH,① △ABF≅△FMH(AAS),① HM=BF,AB=FM=BC,① BF=CM=HM,① ∠HCM=∠HCE=45∘,① ∠HCF=135∘,由(1)可知,∠AFB=∠AFE,① ∠AFB+∠MFH=90∘,∠AFE+∠EFH=90∘,① ∠MFH=∠EFH,设∠MFH=∠EFH=α,则∠CHF=45∘−α,① ∠AHF=45∘,① ∠EHC=45∘+45∘−α=90∘−α,① ∠EFC=2α,∠EFC.① ∠EHC=90∘−12∠EFC.结论:∠EHC=12理由:如图2中,延长BC到M,设∠HFM=α.① FA=FH,∠AFH=90∘,① ∠AHF=45∘,① ∠HCM=45∘(已证),① ∠HCM=∠AHF=45∘,① ∠HFM=∠HCM+∠CHF,① ∠CHF=α−45∘,① ∠EHC=45∘−(α−45∘)=90∘−α,① ∠EFC=2∠AFB=2(90∘−α)=180∘−2α,∠EFC.① ∠EHC=12。
人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 实数−2,0.3,17,√2,−π中,无理数的个数是( )A.2B.3C.4D.52. 如图,按各组角的位置判断错误的是( ) A.∠1与∠A 是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠2与∠5是同位角3. 若a 2=9,√b 3=−2,则a +b =( ) A.−5 B.−11 C.−5或−11 D.±5或±114. 已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A.(3, 0)B.(0, 3)C.(0, 3)或(0, −3)D.(3, 0)或(−3, 0)5. 下列各式中,正确的个数是( )①±65是11125的平方根;①√93=3;①√179=±43;①√(−3)2的算术平方根是3;①√0.4=0.2.A.1个B.2个C.3个D.4个6. 今年我县有1200名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这1200名考生的数学中考成绩的全体是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本的容量是200.其中说法正确的有( )A.1个B.2个C.3个D.4个7. 如图,把一块含有45∘角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20∘,那么∠2的度数是( )A.30∘B.25∘C.20∘D.15∘8. 已知{x =2y =1 是二元一次方程组{ax +by =7ax −by =1的解,则a −b 的值为( ) A.1B.−1C.2D.39. 导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cmB.23cmC.24cmD.25cm10. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1, 0),(2, 0),(2, 1),(3, 1),(3, 0),(3, −1)…根据这个规律探索可得,第100个点的坐标为()A.(14, 0)B.(14, −1)C.(14, 1)D.(14, 2)二、填空题11.如图,AB // CD,EF⊥AB于E,EF交CD于F,已知∠1=60∘,则∠2=________.12.把“对顶角相等”改写成“如果…那么…”的形式为________.13.若y=√x−2+√2−x−3,则x−y=________.14.A,B两点的坐标分别为(1, 0),(0, 2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2, a),(b, 3),则a+b=________.15.已知关于x的不等式组{x+2>m+nx−1<m−1,的解集为−1<x<2,则(m+n)2020的值是________.16.对于任意实数a,b,定义关于“⊕”的一种运算如下:a⊕b=2a+b.例如:3⊕4=2×3+4=10.若x⊕(−y)=2,且2y⊕x=−1,则x+y=________.三、解答题17.计算:√(−5)2−|2−√2|−√−273.18.(1)解方程组:{4x−3y=11 2x+y=13(2)解不等式组:{3x−5≤113−x3<4x,并把它的解集在数轴上表示出来.19.市消费者协会对销量较大的A,B,C三种奶粉进行了问卷调查,发放问卷540份(问卷由单选和多选题组成),对收回的476份问卷进行了整理,部分数据如下:最近一次购买各品牌奶粉用户的比例如图;用户对各品牌奶粉满意情况如下表:根据上述信息回答下列问题:(1)A品牌奶粉的主要竞争优势是什么?你是怎样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.20.如图,已知AB // CD,∠B=40∘,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.21.在平面直角坐标系中,已知点A(−4, 3)、B(−2, −3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)△AOB的面积是________.(3)把△AOB向右平移4个单位,再向上平移2个单位,画出平移后的△A′O′B′,并写出各点的坐标.22.如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:CD与AB垂直吗?试说明理由.23.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.24.如图1,在平面直角坐标系中,A(a, 0),C(b, 2)且满足(a+2)2+√b−2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD // AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)若AC交y轴于Q,而Q的坐标为(0, 1),在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案:一、1-5 ACCDA 6-10 BBBDD二、11.30∘12.如果两个角是对顶角,那么这两个角相等13.514.215.116.13三、17.原式=5−2+√2+3=6+√2.18.{4x−3y=112x+y=13,①+①×3,得:10x=50,解得x=5,将x=5代入①,得:10+y=13,解得y=3,① 方程组的解为{x=5y=3;解不等式3x−5≤1,得:x≤2,解不等式13−x3<4x,得:x>1,则不等式组的解集为1<x≤2,将不等式的解集表示在数轴上如下:19.A品牌奶粉主要竞争优势是质量,可以从以下看出:①对A品牌的质量满意的用户最多;①对A品牌的广告、价格满意的用户不是最多.广告对用户选择品牌有影响,可以从以下看出:①对B、C品牌质量、价格满意的用户相差不大;①对B品牌的广告满意的用户多于C品牌,且相差较大;①购买B品牌的用户比例高于C品牌.20.解:① AB // CD,∠B=40∘,① ∠BCE=180∘−∠B=180∘−40∘=140∘,① CN是∠BCE的平分线,① ∠BCN=12∠BCE=12×140∘=70∘,① CM⊥CN,① ∠BCM=20∘.21.△AOB的面积=4×6−12×2×6−12×2×3−12×3×4=24−6−3−6=24−15=9;B′(2, −(1),O′(4,(2).22.CD与AB垂直,理由为:① ∠ADE=∠B,① DE // BC,① ∠1=∠BCD,① ∠1=∠2,① ∠2=∠BCD,① CD // FG,① ∠CDB=∠FGB=90∘,① CD⊥AB.23.解:(1)设A种产品x件,B种为(10−x)件,x+2(10−x)=14,解得x=6,答:A生产6件,B生产4件.(2)设A种产品x件,B种为(10−x)件,{3x+5(10−x)≤44,x+2(10−x)>14,解得3≤x<6.方案一:A生产3件,B生产7件;方案二:A生产4件,B生产6件;方案三:A生产5件,B生产5件.(3)当x=3时,利润为3×1+7×2=17;当x=4时,利润为4×1+6×2=16;当x=5时,利润为5×1+5×2=15.15<16<17,所以第一种方案获利最大,最大利润是17万元.24.略人教版七年级数学下册期末试卷(含答案)第Ⅱ套一、选择题1. 下列实数中,无理数是()A.0B.−1C.√3D.132. 如图,∠1与∠2的关系是()A.对顶角B.同位角C.内错角D.同旁内角3. 下列计算正确的是()A.√−4=−2B.√4=±2C.√(−4)2=4D.±√4=24. 下列各组数中,是方程3x−y=1的解的为()A.{x=0y=−1B.{x=1y=−2 C.{x=−1y=−2 D.{x=13y=15. 下列图形中,不能由“基本图案”(小四边形)经过平移得到的图形为()A. B. C. D.6. 若a>b,则下列不等式成立的是()A.a−2<b−2B.2−a>2−bC.12a>12b D.−2a>−2b7. 某校为了解疫情期间3000名学生网上学习的效果,随机抽取了300名学生网上学习效果的检测情况进行统计分析.其中样本容量为()A.3000名学生网上学习的效果B.3000C.抽取的300名学生网上学习的效果D.3008. 估计√10+1的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间9. 如图,有四个条件:①∠1=∠2;①∠1=∠3;①∠2=∠3;①∠2=∠4.其中能判定AB // CD 的条件有()A.1个B.2个C.3个D.4个10. 无论x取何值,点P(x+2, x−1)都不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11. 我国古代数学名著《九章算术》中记载有这样一道题:“今有二马、一牛价过一万,如半马之价;一马二牛价不满一万,如半牛之价.问牛、马价各几何?”其大意是:今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于12匹马的价格;1匹马、2头牛的总价不足10000钱,所差的钱数相当于12头牛的价格.问每头牛、每匹马的价格各是多少?若设每头牛的价格为x钱,每匹马的价格为y钱,则根据题意列方程组正确的为()A.{x+2y=10000−12x2x+y=10000+12yB.{x+2y=10000+12x2x+y=10000−12yC.{2x+y=10000−12xx+2y=10000+12yD.{2x+y=10000+12xx+2y=10000−12y12. 在平面直角坐标系中,对任意两点A(x1, y1)、B(x2, y2),规定运算如下:①A⊕B=(x1+x2, y1+y2);①A⊗B=x1x2+y1y2;①当x1=x2.且y1=y2时,称A=B.则下面命题是假命题的为()A.若A(−1, 2),B(2, 1),则A⊕B=(1, 3),A⊗B=0B.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊕B=B⊕C,则A=CC.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊗B=B⊗C,则A=CD.任意三点A(x1, y1)、B(x2, y2)、C(x3, y3),恒有(A⊕B)⊕C=A⊕(B⊕C)成立二、填空题13.−8的立方根是________.14.“a的一半与1的差不大于5”用不等式表示为________.15.如图,已知∠1+∠2=180∘,∠3=75∘,则∠4=________.16.在平面直角坐标系中,已知线段MN // x轴,且MN=3,若点M的坐标为(−2, 1),则点N的坐标为________.17.已知a−2b的平方根是±3,a+3b的立方根是−1,则a+b=________.18.在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有________个.三、解答题19.计算:(1)3√5−(5√5−2√5);(2)√16+√−273−|1−√3|.20.解下列方程组:(1){x−2y=5,2x+y=−5,;(2){x2+y3=2,0.3x+0.5y=4.8,.21.园林部门为了对市内某旅游景区内的古树名木进行系统养护,建立了相关的地理信息系统,其中重要的一项工作就是要确定这些古树的位置.已知该旅游景区有树龄百年以上的古松树4棵(S1, S2, S3, S4),古槐树6棵(H1, H2, H3, H4, H5, H6).为了加强对这些古树的保护,园林部门根据该旅游景区地图,将4棵古松树的位置用坐标表示为S1(2, 8),S2(4, 9),S3(10, 5),S4(11, 10).(1)根据S1的坐标为(2, 8),请在图中画出平面直角坐标系;(2)在所建立的平面直角坐标系中,写出6棵古槐树的坐标;(3)已知H5在S1的南偏东41∘,且相距5.4米处,试用方位角和距离描述S1相对于H5的位置?22.如图,已知AB // CD,直线EF与AB、CD相交于H、F两点,FG平分∠EFD.(1)若∠AHE=112∘,求∠EFG和∠FGB的度数;(2)若∠AHE=n∘,请直接写出∠EFG和∠FGB的度数.23.在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1∼2小时之间的人数m=________.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.24.已知不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,求实数a的取值范围,并用数轴把它表示出来.25.如图①,已知AB // CD,AC // EF.(1)若∠A=75∘,∠E=45∘,求∠C和∠CDE的度数;(2)探究:∠A、∠CDE与∠E之间有怎样的等量关系?并说明理由.(3)若将图①变为图①,题设的条件不变,此时∠A、∠CDE与∠E之间又有怎样的等量关系,请直接写出你探究的结论.26.武汉新冠肺炎疫情发生后,全国人民众志成诚抗疫救灾.某公司筹集了抗疫物资120吨打算运往武汉疫区,现有甲、乙、丙三种车型供运输选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车________辆;(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,且一次性运完所有物资,你能分别求出三种车型的辆数吗?此时的总运费为多少元?参考答案:一、1-5 CBCAD 6-10 CDCAB 11-12 CC二、13.−214.12a−1≤515.105∘16.(1, 1)或(−5, 1)17.318.mnp三、19.原式=3√5−5√5+2√5=0;原式=4−3−(√3−1)=4−3−√3+1=2−√3.20.{x−2y=52x+y=−5,①×2+①得:5x=−5,解得:x=−1,把x=−1代入①得:−1−2y=5,解得:y=−3,所以方程组的解是:{x=−1y=−3;将原方程组化简得:{3x+2y=123x+5y=48,①-①得:3y=36,解得:y=12,把y=12代入①得:3x+24=12,解得:x=−4,所以方程组的解是:{x=−4y=12.22.略23.① ∠1+∠AHE=180∘,∠AHE=112∘,① ∠1=68∘,又① AB // CD,① ∠1=∠EFD,∠FGB+∠DFG=180∘① ∠EFD=68∘,又① FG平分∠EFD,① ∠EFG=∠DFG=12∠EFD=34∘,① ∠FGB=146∘;若∠AHE=n∘时,同理可得:∠EFG=90∘−12n;∠FGB=90∘+12n24.由题意可得,从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;m=200−92−36−18=54,故答案为:54;100×200−92200=54(万),答:全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有54万人;这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.25.解不等式x2+x+13>0得:x>−25,解不等式x+5a+43>43(x+1)+a得:x<2a,则不等式组的解集为:−25<x<2a,① 不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,① 两个整数解为:0,1,① 1<2a≤2,<a≤1.解得:12用数轴表示如下:26.在图①中,① AB // CD① ∠A+∠C=180∘,① ∠A=75∘,① ∠C=180∘−∠A=180∘−75∘=105∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠E=∠GDE,① ∠C=105∘,∠E=45∘,① ∠CDG=180∘−105∘=75∘,∠GDE=45∘,① ∠CDE=∠CDG+∠GDE,① ∠CDE=75∘+45∘=120∘;如图①,通过探究发现,∠CDE=∠A+∠E.理由如下:① AB // CD,① ∠A+∠C=180∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠GDE=∠E,① ∠CDG=∠A,① ∠CDE=∠CDG+∠GDE,① ∠CDE=∠A+∠E;如图①,通过探究发现,∠CDE=∠A−∠E.① AB // CD,① ∠A +∠C =180∘, ① AC // EF , ① ∠E =∠CHD ,① ∠CHD +∠C +∠CDE =180∘, ① ∠E +∠C +∠CDE =180∘, ① ∠E +∠CDE =∠A , 即∠CDE =∠A −∠E .27.(1)4(2)设甲种车型需x 辆,乙种车型需y 辆,根据题意得:{5x +8y =120,450x +600y =9600,解得{x =8,y =10,答:甲种车型需8辆,乙种车型需10辆.(3)设甲车有a 辆,乙车有b 辆,则丙车有(14−a −b)辆,由题意得, 5a +8b +10(14−a −b)=120, 即a =4 − 25b ,① a 、b 、14−a −b 均为正整数, ① b 只能等于5, ① a =2, 14−a −b =7,① 甲车2辆,乙车5辆,丙车7辆,则需运费450×2+600×5+700×7=8800(元),答:甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.人教版七年级数学下册期末试卷(含答案)第Ⅲ套一、选择题1. 在,,,,这五个数中,无理数的个数是()A.1B.2C.3D.42. 下列计算中正确的是()A. B. C. D.3. 如图,已知直线被直线c所截,,,则的度数为()A. B. C. D.4. 如图,如果,下面结论正确的是()A. B. C. D.5. 在平面直角坐标系中,在第一象限的点是()A. B. C. D.6. 在平面直角坐标系xoy中,若A点坐标为(−3, 3),B点坐标为(2, 0),则△ABO的面积为()A.15B.7.5C.6D.37. 以下调查中,适宜抽样调查的是()A.调查某班学生的身高B.某学校招聘教师,对应聘人员面试C.对乘坐某班客机的乘客进行安检D.调查某批次汽车的抗撞击能力8. 方程组的解是()A. B. C. D.9. 不等式组的解集是()A. B. C. D.10. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A. B. C. D.二、填空题11.计算:=________.12.若点在轴上,则=________.13.有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有________个.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题加10分,答错(或不答)一道题扣5分,如果小明参加本次竞赛得分要不低于140分,那么他至少答对________道题.15.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?根据题意,求得大马有________匹.16.下列命题:①相等的角是对顶角;①互补的角就是平角;①互补的两个角一定是一个锐角,另一个钝角;①在同一平面内,平行于同一条直线的两条直线平行;①邻补角的平分线互相垂直.其中真命题的序号是________.三、解答题17.计算:18.如图,平分,,,求的度数.19.解不等式组:20.解方程组21.为了解某品牌电动汽车的性能,对该批电动汽车进行了抽检,将一次充电后行驶的里程数分为,,,四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,并将抽查结果整理后,绘制成如下的两个不完整的统计图,根据所给信息解答以下问题:(1)补全条形统计图;(2)扇形统计图中等级对应的扇形的圆心角是多少度?(3)如果该厂每年生产5000辆该品牌电动汽车,估计能达到等级的有多少辆?22.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.将向上平移5个单位长度,再向右平移8个单位长度,得到.(1)在平面直角坐标系中画出;(2)直接写出点,,的坐标;(3)求的面积.23.某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0, 1)24.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b, 0)满足.(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4, 3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180∘可以直接使用).参考答案一、1-5 BCBCA 6-10 DDBAA二、11.112.313.12014.1615.2516.①①三、17.解:√(−2)2−4−√5(1−√5)+|2−√5=2−4−√5+5+√5−2 =118.解:AD平分∠CAB∠CAB=2∠1=60∘DE(AC2=2=CAB=60∘19.解:{2x+3≤x+5①5−6x−2≤3(2−x)①解不等式①得:x≤2解不等式①得:x>−1① 所以不等式组的解集是−1<x≤220.解:由①得x=3+y①把①代入①得33+y)−8y=1ℎy=−1把y=−1代人①得x=2|x=2…原方程组的解为了y=−121.(1)抽检的电动汽车的总数为30−30%=100(辆),A等级电动汽车的数量为100−30−40−20=10(辆),条形统计图为:(2)20+100×360∘=72∘答:扇形统计图中D等级对应的扇形的圆心角是:72(3)20+100×5000=1000答:估计能达到D等级的车辆有1000辆.22.(1)如图所示,ΔA1B1C1即为所求.(2)由图知,A1(5,5)B1(2,3)C1(6,0)(3)ΔA1B1C1的面积为4×5−12×2×3−12×1×5−12×3×4=17223.(1)设小樱桃的进价为每千克》元,大樱桃的进价为每千克)元,根据题意可得:{200x+200y=8000 y−x=20解得:{x=10 y=30…小樱桃的进价为每千克10元,大樱桃的进价为每千克30元;(2)200×[(40−30)+(16−10)]=3200(元),…第一次销售完后,该水果商共赚了320元;设第二次大樱桃的售价为①元/千克,(1−15%)×200×16+(1−5%)×2000a−800003200×90%解得:a≥83219=43.8答:大樱桃的售价最少应为43.8元/千克.24.(1)√a−b+2+|b−8|=0a−b+2=0 b−8=0a=6,b=8.A(0,6),C(8,0)故答案为:(0,6)(8,0)(2)由(1)知,A(0,6)C(8,0)..0A=6,OB=8由运动知,OQ=tPC=2tOP=8−2t:D(4,3)① S△OBQ=12OQ×|x|=12t×4=2tS△ODP=12OP×|y B|=12(8−2i)×3=12−3t20DP与ΔODQ的面积相等,.2t=12−3it=2.4…存在t=2.4时,使得ΔODP与ΔODQ的面积相等;(3)2△GOA+∠ACE=∠OHC,理由如下:x轴⊥y轴,△AOC=∠DOC+∠AOD=90∘.20AC+∠ACO=90∘又∠DOC=∠DCO① 20AC=∠AOD.x轴平分2GOD,① 2GOA=∠AOD.① 2GOA=∠OAC..OGIAC,如图,过点H作HFIIOG交x轴于F,.HFIIAC,…_FℎAC=2AC:OGlIFH,…:GOD=∠FHC).① △GOD+∠ACE=∠FHO+∠EHC即∠GOD+∠ACE=∠OHC,.24GOA+∠ACE=∠OH人教版七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列图形是中国一些航空公司的标志,其中是轴对称图形的是()A.B. C. D.2. 下列计算正确的是()A.a+3a=4a2B.(−3a2)3=−27a6C.a4⋅a3=a12D.(a+b)2=a2+b23. 下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出系列专题片“中国战‘疫’”C.经过红绿灯路口,遇到绿灯D.对于任意有理数m,n,都有(m−n)2≥04. 清代•袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10−5B.8.4×10−6C.84×10−7D.8.4×1065. 如图,将直角三角板与直尺贴在一起,使三角板的直角顶点在直尺的一边上,若∠1=35∘,则∠2的度数是()A.35∘B.45∘C.55∘D.65∘6. 如图,AB平分∠DAC,增加下列一个条件,不能判定△ABC≅△ABD的是()A.AC=ADB.BC=BDC.∠CBA=∠DBAD.∠C=∠D7. 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A.a2−b2=(a+b)(a−b)B.a(a−b)=a2−abC.(a−b)2=a2−2ab+b2D.a(a+b)=a2+ab8. 成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B. C. D.9. 已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是()A. B. C.D.10. 如图,在四边形ABCD中,连结AC,点E在BA的延长线上,有下列四个选项:①∠BAC =∠ACD;①∠EAC+∠ACD=180∘;①∠EAD=∠B;①∠EAD=∠ACD.现从中任选一个作为条件,能判定BE // CD的概率是()A.14B.12C.34D.1二、填空题11.已知a m=2,a n=5,则a m+n=________.12.若a=3−b,则代数式a2+2ab+b2的值为________.13.武侯祠博物馆享有“三国圣地”的美誉,它的大门的栏杆示意图如图所示,BA⊥AE于点A,CD // AE,若∠BCD=120∘,那么∠ABC=________度.14.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是________.15.如图1,在长方形ABCD中,动点P从点B出发,沿BC−CD−DA运动,至点A处停止.设点P运动的路程为x,△ABP的面积为y,y与x的关系如图2所示,则当y=2时,对应的x的值是________.三、解答題16.)−1−(2020−π)0+(0.25)4×44.(1)计算:(12(2)计算图中阴影部分的面积.17.(1)先化简,再求值:[(x−y)2−y(y+2x)]÷x,其中|x−3|+(y+1)2=0.(2)如图,在单位长度为1的正方形网格中,点A,B,C都在格点上.①填空:△ABC的面积为________;①画出△ABC关于直线l对称的△A′B′C′,其中点A,B,C的对应点分别为A′,B′,C′;①在直线l上画出一个点P,使PA+PC的值最小.18.已知:如图,AB // CD,AC与BD相交于点E,且EA=EC.(1)求证:EB=ED;(2)过点E作EF⊥BD,交DC的延长线于点F,连结FB,求证:S△BEF=S△AEB+S△CEF.19.在新冠疫情期间,成都市某医疗器械厂接到生产口罩的任务,要求在11天内生产2000万个口罩.该医疗器械厂安排甲、乙两车间共同完成本次生产任务.已知甲车间每天生产60万个口罩,乙车间每天生产90万个口罩.甲,乙两车间同时开工,甲车间生产a 天后停工1天改造工艺,然后按照新工艺继续生产,其每天生产口罩的数量变为m 万个.甲、乙两车间各自生产口罩的数量y (万个)与乙车间的生产时间x (天)之间的关系如图所示,请结合图象回答下列问题:(1)填空:a =________,m =________;(2)试问:当x 取何值时,甲、乙两车间生产口罩的数量相同;(3)甲、乙两车间能否在11天内完成本次生产任务?若能,求甲车间比乙车间多生产多少万个口罩?若不能,请说明理由.20.对于任意有理数a ,b ,c ,d ,我们规定|a b c d|=a 2+d 2−bc . (1)填空:对于有理数x ,y ,k ,若|2xkx −2yy|是一个完全平方式,则k =________; (2)对于有理数x ,y ,若2x +y =18,|3x +y2x 2+3y 23x −3y|=204. (i)求xy 的值;(ii)将长方形ABCD 和长方形CEFG 按照如图方式进行放置,其中点E 在边CD 上,连接BD ,BF .若a =2x ,b =y ,图中阴影部分的面积为174,求n 的值.21.如图,AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D.(1)如图1,求证:CB=CD;(2)如图2,点E,F分别是线段AD,AB上的动点,连结EF,交AC于点G,且满足DE+BF=EF.(①)试探究∠AFE与∠ACE之间满足的数量关系,并说明理由;(①)若DE=1,BF=n,且S△AEF=S△CED,请直接写出AG的值(用含n的代数式表示),不必GC写出求解过程.参考答案:一、1-5 DBDBC 6-10 BADCB二、11.1012.913.15014.1315.1或7三、16.原式=2−1+(0.25×4)4=2−1+14=2−1+1=2;阴影部分的面积为(3a+2b)(2a+b)−(a+2b)(a+b)=6a2+3ab+4ab+2b2−(a2+ab+2ab+2b2)=6a2+3ab+4ab+2b2−a2−ab−2ab−2b2=5a2+4ab.17.原式=(x2−2xy+y2−y2−2xy)÷x=(x2−4xy)÷x=x−4y,由|x−3|+(y+1)2=0,得到x−3=0,y+1=0,解得:x=3,y=−1,则原式=3+4=7;×2×2=2;①根据题意得:S△ABC=12故答案为:2;①如图所示,即为所求;①如图所示,即为所求.18.证明:① AB // CD,① ∠ABE=∠D,在△ABE和△CDE中{∠ABE=∠D,∠AEB=∠CEDEA=EC① △ABE≅△CDE(AAS),① EB=ED;证明:① △ABE≅△CDE,① S△AEB=S△DEC,① EB=ED,① S△BEF=S△DEF,① S△DEF=S△DEC+S△CEF,① S△BEF=S△AEB+S△CEF.19.2,120由题意90x=120+120(x−3),解得x=8,① 当x=8时,甲、乙两车间生产口罩的数量相同.乙11天完成11×90=990(万个),甲10天完成120+8×120=1080(万个),① 990+1080=2070>2000,1080−990=90(万个)① 在11天内能完成本次生产任务,甲车间比乙车间多生产90万个口罩.20.|2xkx−2yy|=(2x)2+y2−kx×(−2y)=4x2+y2+2kxy,① |2xkx−2yy|是一个完全平方式,① 2k=±2×√4×1=±4,解得k=±2;(i)方法1:(3x+y)2+(x−3y)2−3(2x2+3y)2=9x2+6xy+y2+x2−6xy+9y2−6x2−9y2=4x2+y2=204,4xy=(2x+y)2−(4x2+y2)=120,解得xy=30;方法2:依题意有{2x+y=18(3x+y)2+(x−3y)2−3(2x2+3y2)=204,解得{x1=9−√212y1=9+√21,{x2=9+√212y2=9−√21,则xy=30;(ii)na2+nb2−12na2−12b(a+nb)=174,na2+nb2−ab=348,4nx2+ny2−2xy=348,n(2x+y)2−4nxy−2xy=348,324n−120n−60=348,解得n=2.故n的值为2.故答案为:±2.21.证明:如图1,① AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D,① CD=CB;(i)如图2,∠AFE=2∠ACE,理由是:延长AB到H,使BH=ED,连接CH,设∠H=α,∠CFH=β,① CD=CB,∠D=∠CBH=90∘,① Rt△CDE≅Rt△CBH(SAS),① ∠DEC=∠H,CE=CH,① EF=DE+BF,DE=BH,① EF=BF+BH=FH,① CF=CF,① △CEF≅△CHF(SSS),① ∠CFE=∠CFH,∠H=∠CEF,① ∠AFE=180∘−2β,△AEF中,∠EAF=180∘−∠AEF−∠AFE=2α−(180∘−2β)=2α+2β−180∘,① AC平分∠DAB,∠DAB=α+β−90∘,① ∠DAC=12△AEC中,∠ACE=∠DEC−∠DAC=α−(α+β−90∘)=90∘−β,① ∠AFE=2∠ACE;(ii)如图3,延长AB到H,使BH=ED=1,连接CH,过A作AP⊥EF于P,过C作CM⊥EF于M,① FH=EF=n+1,由(i)知:∠EFC=∠HFC,① CM=CB=CD,① S△AEF=S△CED,① 12EF⋅AP=12DE⋅CD,即12(n+1)⋅AP=12CM,① APCM =1n+1,① S△AEGS△EGC =12EG⋅AP12EG⋅CM=12AG12CG,① AGCG =APCM=1n+1.。
北安二中七年级下数学期末测试卷1
一、选择题(每小题3分,共33分)
1. 下列调查中,适宜采用全面调查方式的是( ) A.对全国中学生心理健康现状的调查 B.对冷饮市场上冰淇淋质量情况的调查 C.对我市市民实施低碳生活情况的调查
D.对我国首架大型民用直升机各零件部件的调查 2.下列说法正确的有( )个
①两条直线被第三条直线所截,如果同旁内角相等,那么同位角互补。
②等腰三角形的一边长是4,一边长是8,则它的周长是16或20。
③若x+y<0,xy>0点P (x,y )在第二、象限。
④若ac 2>bc 2,则a>b A 、0 B 、1 C 、2 D 、3
3.不等式组⎪⎩⎪⎨⎧+>->-3
21
2
3x a x x 的解集是x<1,则a 的取值范围是( ) A a ≤2 B a<2 C a-4 D a ≤4
4.已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( ) A.1 B.2 C .3 D .O
5. 如图7T ,OP ∥QR ∥ST ,则下列各式中正确的是( ); A.∠1+∠2+∠3=180° B.∠1+∠2-∠3=90° C.∠1-∠2+∠3=90° D.∠2+∠3-∠1=180°
6.△ABC 中,∠A=13
∠B=14
∠C,则△ABC 是( )
A.锐角三角形
B.直角三角形;
C.钝角三角形
D.都有可能
7.把不等式组110
x x +⎧⎨
-≤⎩>0,的解集表示在数轴上,正确的是( )
A B C D
8.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )
(A )1种 (B )2种 (C )3种 (D )4种 9.用代入法解方程组⎩⎨
⎧-=-=-)
2(122)1(327y x y x 有以下步骤:
①:由⑴,得2
37-=
x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x
③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解
以上解法,造成错误的一步是( )
A 、①
B 、②
C 、③
D 、④
10.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )
A 、⎩⎨
⎧=-=+1284
65836y x y x B 、⎩⎨
⎧=-=-1284
56836y x y x C 、⎩⎨
⎧
=-=+1284
56836x y y x D 、⎩⎨
⎧=-=-1284
56836x y y x
11.如图6T,不能作为判断AB ∥CD 的条件是( );
A.∠FEB=∠ECD
B.∠AEC=∠ECD
C.∠BEC +∠ECD=180°
D.∠AEG=∠DCH 二、填空题(每小题3分,共30分)
12.不等式(a-b )x>b 的解集是x<1,则不等式ax<b 的解集是 13.如图④,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
14. 等腰三角形三边长是a,2a-4,12-a.则a 的值是______________.
15.点P (2a+3,3-4a )到x 轴,y 轴的距离相等,则a 的值是___________. 16.如图9T ,将Rt △ABC 沿BC 方向平移到△DEF 位置,则阴影部分的面积为 ;
17.如图10T 所示,AB ∥CD ,∠CFE 与∠EGB 的平分线交于点P ,若∠E=20°,则∠P 的度数为 ;
18.一个多边形的每一个内角都等于150°它的对角线一共有 条 19.如右下图,则____A B C D E ∠+∠+∠+∠+∠=
-1 -1 0 1 1 0 1 0 -1 1 0 -1
20. 如图△ABC 中,AD,AE 分别是△ABC 的高和角平分线,∠B=42°,∠C=74°∠EAD=
21.为了解某市七年级15000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,样本是 三、解答题
22、(本小题16分) .解下列方程组或不等式组:
(1) 131,222;
x y x y ⎧
-=⎪⎨
⎪+=⎩ (2) 2525,4315.x y x y +=⎧⎨+=⎩ (3) 236,145 2.x x x x -<-⎧⎨-≤-⎩
(4)x 取哪些非负整数时,325x -的值大于213
x +与1的差
23、(本小题6分) (10分)如图,长方形OABC 中,O 为平面直角坐标
系的原点,点A 、C 的坐标分别为 A (3,0)、C (0,2),点B 在第一象限。
(1) 写出点B 的坐标;
(2) 若过点C 的直线交长方形的0A 边于点D ,且把长方形OABC 的
周长分成2 :3两部分,求点D 的坐标;
(3) 如果将(2)中的线段CD 向下平移3个单位长度,得到对应线段
C ‘
D ‘,在平面直角坐标系中画出三角形CD ‘C ‘
,并求出它的面积。
24、(本小题5分)如图,AE 为BAD ∠的角平
分线,CF 为BCD ∠的角平分线,且B D ∠=∠,
试说明//AE CF .
A
B
C
E F
D
-1
1-2
-12
1
y
x C B
A
O。