流体力学第七章(旋转流体动力学)
- 格式:ppt
- 大小:812.50 KB
- 文档页数:48
第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。
本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。
基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。
二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了dy yu y ∂∂,而yu y ∂∂就代表1=dy 时液体基体运动时,在单位时间内沿y 轴方向的伸长率。
x u x ∂∂,y u y ∂∂,zuz ∂∂ 三、角变形(角变形速度)ddd DCABCDBAdt yu dy dt dy y u d x x ∂∂=⋅∂∂=α dt x udx dt dx x u d yy∂∂=⋅∂∂=β θβθα+=-d d 2βαθd d -=∴ 角变形: ⎪⎪⎭⎫⎝⎛∂∂+∂∂=+=-=x u y u d d d y x z 212βαθαθ ⎪⎭⎫⎝⎛∂∂+∂∂=x u z u z x y 21θ⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y x 21θ 四、旋转(旋转角速度)⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-=y u x u x y z 21θω ⎪⎪⎭⎫⎝⎛∂∂-∂∂=z u y u y zx 21ω 即, ⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ωzyxu u u z y x k ji ∂∂∂∂∂∂=21ω 那么,代入欧拉加速度表达式,得:z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t xu u u u u u u u dt t y u u uu u u u u dt t z αθθωωαθθωωαθθωω∂∂⎫==++++-⎪∂∂⎪∂∂∂⎪==++++-⎬∂∂⎪⎪∂∂∂==++++-⎪∂∂⎭各项含义: (1) 平移速度(2)线变形运动所引起的速度增量(3)(4)角变形运动所引起的速度增量 (5)(6)微团的旋转运动所产生的速度增量流体微团的运动可分解为平移运动,旋转运动,线变形运动和角变形运动之和。
流体的旋转流与涡量流动机制解析流体的旋转流与涡量流动机制一直是流体力学中一个重要的研究方向。
在自然界及工程领域中,流体的旋转流和涡量流动现象经常出现,对于理解和控制流体的运动具有重要意义。
本文将对流体的旋转流和涡量流动机制进行深入分析和解析。
一、流体的旋转流动机制解析流体的旋转流动是流体颗粒在特定条件下围绕某个轴线或中心点进行旋转的流动现象。
旋转流动一般可分为二维旋转流和三维旋转流两种情况。
二维旋转流是指流体颗粒沿着某一平面旋转的流动。
在二维旋转流中,流体颗粒在运动过程中,速度大小和方向均随着位置的不同而变化。
二维旋转流的旋转中心即为流场中的旋转中心,且在旋转中心处速度为零。
二维旋转流常常出现在某些特殊的流动情况下,例如旋转涡、旋转涡流等。
三维旋转流是指流体颗粒沿着三个坐标轴方向旋转的流动。
在三维旋转流中,流体颗粒在运动过程中,速度大小和方向同时随着位置的不同而变化。
三维旋转流中的旋转中心即为流场中的旋转中心,但与二维旋转流不同的是,三维旋转流中旋转中心处的速度不一定为零。
三维旋转流是一种复杂的流动形式,常见于涡流、湍流等情况下。
流体的旋转流动机制主要与流体中的涡量流动密切相关。
涡量流动是指流体颗粒围绕旋转中心形成涡旋的流动现象。
涡量流动是流体动力学中的一个重要概念,可以用涡量和涡旋线表示。
涡量类似于流体颗粒的旋转速度,而涡旋线则是描述流体颗粒围绕旋转中心运动轨迹的曲线。
二、涡量流动机制解析涡量流动是流体力学中的一种特殊的流动形式,其运动方式具有明显的旋转性。
涡量流动的机制主要包括涡度生成、涡度传输和涡度衰减三个过程。
涡度生成是指在流体中产生涡旋的过程。
涡度生成的主要原因是流体颗粒的速度随着位置的变化而发生变化,从而形成流体颗粒的旋转运动。
涡度生成通过流体的非定常性和非线性性机制来实现。
涡度传输是指涡旋沿着流动方向传输的过程。
涡度传输使得涡旋从一个区域传输到另一个区域,从而形成流体中的涡量流动。
西北工大875流体力学讲义 第七章 粘性流体动力学基础第一节 粘性流体运动的基本方程采用流体力学微元体平衡分析方法可以推导出粘性流体运动的基本方程组,该方法可参考本书的第二章和第三章。
本节将直接由两大守恒定律(质量守恒定律和动量守恒定律)来建立控制流体运动的基本方程组。
首先需要给出空间某点物理量的随体时间导数表达式、雷诺输运方程以及本构关系。
一、随体导数描述流体运动规律有拉格朗日和欧拉两种基本方法。
拉格朗日法着眼于确定的流体质点,观察它的位置随时间的变化规律。
欧拉法着眼于从空间坐标去研究流体流动,它的描述对象是流场。
随体导数的物理意义是:将流体质点物理量q 的拉格朗日变化率以欧拉导数的形式表示出来。
随体时间导数的数学表达式为:()q V tqdt dq ∇⋅+= ∂∂(7-1)式中右边第一项代表由时间的变化所引起的变化率,也就是由于场的时间不定性所造成的变化率,叫做当地导数。
第二项代表假定时间不变时,流体质点在流场中的位置变化所引起的变化率。
这是由于场的不均匀性造成的,叫做迁移导数。
二、雷诺输运方程雷诺输运方程描述了积分形式的拉格朗日法和欧拉法的时间导数的变换关系。
设封闭系统在t 时刻占有体积()t Ω,如图7-1所示。
其中关于物理量q 的总量的随体时间导数有图7-1 封闭系统输运示意图()()()⎰⎰⎰⎰⎰⎰⎰⎰⋅+Ω=ΩΩΩt S t t dS n V q d t qd q dt d ∂∂ (7-2)其中()t S 为封闭体积的曲面,n为曲面的法向向量。
上式表明:封闭系统中,某物理量总和的随体导数等于该瞬间与该系统重合的控制域中该物理量总和的当地时间导数(非定常效应)和通过控制面流出的该物理量的流量(对流效应)之和,此即为流体的雷诺输运方程。
用广义的高斯公式将面积分转换成体积分,上式也可以写成()()()Ω∂∂ΩΩΩd V q tqd q dt d t t ⎰⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡⋅∇+=(7-3)三、连续方程连续性方程反映了流体在运动过程中必须满足质量守恒定律。
流体力学流体动力学和流量的计算流体力学是研究流体运动规律的学科,其中流体动力学是其中的一个重要分支。
流体动力学主要关注流体的运动行为以及与力学相关的现象,涉及到流体的流速、压力、密度等参数的计算和分析。
流量是流体动力学中的一个重要概念,代表单位时间内通过某个截面的流体量。
本文将介绍流体力学中流体动力学和流量的计算方法。
一、流体动力学基本理论流体动力学研究流体中质点的运动规律,通过分析流体的连续性、动量守恒和能量守恒等基本方程,可以描述流体的运动状态。
其中,连续性方程是基于质量守恒原理得到的,它表明流体在任何一点的流速都相同。
动量守恒方程描述了流体流动中的力学行为,能量守恒方程则考虑了热力学因素对流体运动的影响。
二、流体动力学的计算方法在实际应用中,为了计算流体在各种复杂情况下的运动行为,需要借助数值模拟和实验测试等手段。
其中,常用的计算方法包括有限差分法、有限元法和计算流体力学(CFD)等。
1. 有限差分法有限差分法是一种常见的数值模拟方法,通过离散化流体连续性、动量守恒和能量守恒方程,将偏微分方程转化为代数方程组,再求解该方程组得到流体的数值解。
有限差分法主要适用于简单的流动情况,其计算结果与真实情况之间存在一定的误差。
2. 有限元法有限元法是一种广泛应用于工程领域的数值计算方法,通过将流体领域划分为有限个小区域,利用数学插值和积分等技术对偏微分方程进行离散化处理,进而求解流体的运动状态。
有限元法能够适应较为复杂的流动情况,但计算精度相对较低。
3. 计算流体力学(CFD)计算流体力学是一种基于数值模拟的流体动力学计算方法,它通过离散化流体领域、建立相应的数学模型,并利用计算机进行求解,得到流体的运动状态。
CFD方法适用于各种复杂的流动情况,能够提供较为精确的计算结果,但计算量较大。
三、流量的计算流量是流体动力学中一个重要的物理量,用来描述单位时间内通过流体的体积。
根据连续性方程,流体在截面上的流速和截面积相关联,因此流量可以通过流速和截面积的乘积来计算。