CAN总线技术BT-Canbus(完整版)
- 格式:ppt
- 大小:18.99 MB
- 文档页数:103
CANBUS总线说明CANBUS特性系统采用CANBUS通讯方式,设计为现场总线连接方式,即是手拉手接线方式组网非常方便,终端上并跳接120欧姆电阻,总线方式实现“即插即用”的便利条件。
CAN总线可以由多个子网络组成,每个子网络必须满足以下条件:(1)同一网络中允许挂接110个节点(2)传输距离最远为10千米如果子网络超出以上任一条件,须增加网络桥扩展可组成多重网。
以下是CANBUS单个网络的结构:CAN总线方式优点:1、线路简单有利于综合布线,节省管线材,具有组网自由、安装方便、扩充容易,改造灵活。
2、硬件连接简单, 具有实时性强、可靠性高、通信速率快、结构简单、互操作性好、总线协议具有完善的错误处理机制、灵活性高和价格比高。
3、数据传输速率高,在传输距离小于40 m时,最大传输速率可达1 Mb/s,传输距离10km时速率达5kbps。
4、传输距离远,扰干扰能力强。
5、具有突出的可靠性、实时性和灵活性。
6、采用点对点、一点对多点及全局广播几种数据收发方式。
7、实现单点、双点、多点、区域、群组控制、场景设置、定时开关、亮度手自动调节、红外线探测、集中监控、遥控等多种照明控制控制。
8、可实现全分布式多机系统,并且无主、从机之分,每个节点均主动发送报文,可方便地构成多机备份系统。
9、采用非破坏性总线仲裁技术,两个节点同时上传送数据时,优先级低的节点主动停止数据发送,优先级高的节点可不受影响地继续传输数据,有效避免了总线冲突。
10、短帧结构总线上每帧有效字节数最多为8个,并有可靠的错误检测和处理机制CRC 循环冗余校验措施,受干扰数据出错率极低,万一某一节点出现严重错误,可自动脱离总线,总线上的其他操作不受影响。
11、控制回路与强电分离,采用弱电DC24VCANBUS综合布线CANBUS总线为4线制现场总线采用STP 4*0.75将其所有元件连成一个网络,为了保证系统通讯的可靠,布线时CAN总线尽量不与强电缆共用同一线槽,应将CAN总线单独穿钢管或PVC管敷设,并与电力电缆的水平距离至少大于300mm,下列为某项目布线图:1、CANBUS总线(控制面板)采用STP 4*0.75手拉手方式进行连接汇聚于配电箱。
CAN总线原理介绍一.现场总线简介1、现场总线的概念:现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统。
也被称为开放式的数字化多节点通信的底层控制网络。
现场总线作为智能设备的联系纽带,把挂接在总线上的作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化及控管一体化的综合自动化功能。
2、几种较有影响的现场总线技术:基金会现场总线(FF-Foundation Fieldbus),Lonworks,PROFIBUS,HART,CAN现场总线是几种较重要的现场总线技术。
二.CAN总线技术:1、CAN 总线简介:CAN(Controller Area Network)-控制器局域网。
它是一种有效支持分布式控制或实时控制的串行通信网络。
CAN总线最早是由德国Bosch公司在80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆、光导纤维,通信速率可达1Mbps。
CAN 总线通信接口中集成了CAN 协议的物理层,数据链路层功能,可完成对通信数据的成帧处理,包括位填充,数据块编码,循环冗余校验,优先级判别等项工作。
2、CAN总线技术的主要特点:⑴多主站依据优先权进行访问。
CAN为多主方式工作,网络上的任一节点在任何时候都可以主动地向网络上的其他节点发送信息。
⑵采用短帧传送。
CAN采用短帧结构,废除了对传统的站地址编码,而是对通讯数据进行编码。
每帧数据信息为0∽8个字节,具体长度由用户决定。
⑶无破坏基于优先权的仲裁。
当多个节点同时向总线发送信息时,优先级较低的节点会主动的退出总线发送,而最高优先级的节点可不受影响地继续传输数据,从而大大节省了总线冲突时间。
⑷借助接收滤波的多地址帧传送。
CAN只需通过报文滤波即可实现点对点,一点对多点以及全局广播等几种方式来传输数据,无需专门的“调度”。
canbus现场总线第三章 CANbus现场总线现场总线是安装在生产过程区域的现场设备仪表与控制室内的自动控制装置系统之间的一种串行、数字式、多点通信的数据总线。
现场总线(Fieldbus)技术是实现现场级控制设备数字化通信的一种工业现场层网络通信技术,可使用一条通信电缆将现场设备(智能化、带有通信接口)连接,用数字化通信代替4-20mA/24VDC信号,完成现场设备控制、监测、远程参数化等功能。
CAN,全称为“Controller Area Network”,即控制器局域网,由德国Bosch 公司最先提出,已成为国际标准ISO11898(高速应用)和ISO11519(低速应用)。
CAN是一种多主方式的串行通讯总线,CAN的规范定义了OSI模型的最下面两层:数据链路层和物理层。
CAN 协议有2.0A和2.0B两个版本,CAN协议的2.0A版本规定CAN 控制器必须有一个11位的标志符,在2.0B版本中规定CAN控制器的标志符长度可以是11位或29位。
第一节 CAN通信协议3.1.0协议特点CAN总线是一种串行数据通信协议。
它有如下特点:1、CAN协议分层分为目标层、传输层、物理层。
目标层的功能:确定要发送的报文、确认传输层接收到的报文、为应用层提供接口。
传输层的功能:帧组织、总线仲裁、检错、错误报告、错误处理。
物理层的范围包括实际位传送过程中的电气特性。
2、CAN协议逻辑位使用2种逻辑位表达方式。
当总线上的CAN控制器发送的都是弱位时,此时总线状态是弱位(逻辑1);如果总线上有强位出现,弱位总是让位于强位,即总线状态是强位(逻辑0)。
上有强位出现,弱位总是让位于强位,即总线状态是强位(逻辑0)。
3、CAN协议校验.采用CRC校验并可提供相应的错误处理功能,保证了数据通信的可靠性。
4、CAN协议编码方式.使用了数据块编码方式,使得网络内的节点个数在理论上不受限制。
5、CAN协议数据块的长度.规定了数据块的长度最多为8个字节,传输时不会过长占用总线,保证了通信的实时性。
1. CAN总线的产生与发展控制器局部网(CAN-CONTROLLER AREA NETWORK)是BOSCH 公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。
控制器局部网将在我国迅速普及推广。
随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。
由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。
分散式工业控制系统就是为适应这种需要而发展起来的。
这类系统是以微型机为核心,将 5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION(通信技术)、CRT(显示技术)和 CHANGE(转换技术)紧密结合的产物。
它在适应围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。
典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。
现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。
现场总线的研究与应用已成为工业数据总线领域的热点。
尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。
同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。
控制器局部网 CAN (CONTROLLER AERANETWORK)正是在这种背景下应运而生的。
由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。
为此,1991年 9月 PHILIPS SEMICONDUCTORS制订并发布了 CAN技术规(VERSION 2.0)。
CAN总线1. 简介CAN(Controller Area Network)总线是一种串行通信协议,广泛应用于汽车、工控等领域中。
它是一种高可靠性、高抗干扰的通信方式,具有多主机、多从机的结构,能够支持多个节点之间的通信。
2. CAN总线的特点2.1 高可靠性CAN总线采用差分传输方式,通过在两条通信线上分别传输互补的信号来实现数据传输,可以有效地抵抗传输线上的电磁干扰和噪声。
此外,CAN总线拥有校验机制,当数据传输过程中发生错误时,接收端可以通过异或校验位来检测错误,并进行纠正。
2.2 多主从结构CAN总线可以支持多个主机和多个从机的通信。
主机用于发送命令和控制数据的节点,从机用于接收并执行命令的节点。
这种结构使得CAN总线非常适用于分布式控制系统,能够实现多个节点之间的实时通信。
2.3 高速通信CAN总线的通信速率可以达到几百kbps甚至几Mbps,可以满足多数应用的通信需求。
高速通信可以保证节点之间的实时性,并且降低通信延时。
2.4 灵活的网络拓扑结构CAN总线支持多种网络拓扑结构,包括总线型、星型、树型等。
这种灵活的结构使得CAN总线可以适用于不同的应用场景,如汽车电子系统中的各种控制模块之间的通信。
3. CAN总线的应用3.1 汽车领域CAN总线在汽车领域中得到了广泛应用。
汽车中有许多控制模块,如发动机控制单元(ECU)、制动控制单元(BCU)、车身控制单元(BCU)等,这些模块之间需要进行实时通信才能保证汽车的正常运行。
CAN总线通过其高可靠性和实时性,成为了汽车电子系统的首选通信协议。
3.2 工控领域在工控领域中,CAN总线也得到了广泛应用。
工控设备通常需要各种传感器和执行器之间的实时通信,以实现工艺过程的监控和控制。
CAN总线可以提供高可靠性的通信,并且支持多主从结构,非常适用于工控场景。
4. CAN总线的实现4.1 硬件实现CAN总线的硬件实现主要包括CAN控制器和CAN收发器。
1. CAN总线的产生与发展控制器局部网(CAN-CONTROLLER AREA NETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。
控制器局部网将在我国迅速普及推广。
随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。
由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。
分散式工业控制系统就是为适应这种需要而发展起来的。
这类系统是以微型机为核心,将5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION (通信技术)、CRT(显示技术)和CHANGE(转换技术)紧密结合的产物。
它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。
典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。
现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。
现场总线的研究与应用已成为工业数据总线领域的热点。
尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。
同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。
控制器局部网CAN (CONTROLLER AERANETWORK)正是在这种背景下应运而生的。
由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。
为此,1991年9月PHILIPS SEMICONDUCTORS制订并发布了CAN技术规范(VERSION 2.0)。
CAN总线工作原理1. 介绍CAN(Controller Area Network)总线是一种串行通信协议,用于在汽车、工业控制和其他领域的电子设备中传输数据。
它是一种高性能、可靠且实时的通信系统,可以连接多个节点,使它们能够相互通信。
CAN总线的工作原理基于分布式网络的概念,其中每个节点都可以发送和接收消息。
这种分布式的通信架构使得CAN总线非常适合在复杂的系统中进行数据交换。
2. 物理层CAN总线的物理层使用差分信号传输,其中两根导线分别被称为CAN_H和CAN_L。
CAN_H线携带高电平信号,而CAN_L线携带低电平信号。
这种差分信号的设计可以提高抗干扰能力,使得CAN总线能够在噪声环境中可靠地工作。
CAN总线的物理层还定义了传输速率,常见的速率包括1 Mbps、500 kbps、250 kbps和125 kbps等。
较高的速率可以提供更高的数据传输能力,但也会增加传输的误码率。
3. 数据帧格式CAN总线使用数据帧来传输信息。
数据帧由以下几个部分组成:•报文起始位(SOF):用于标识报文的开始。
•标识符(ID):用于唯一标识报文的发送者和接收者。
•控制位(Control):包含一些控制信息,例如数据长度和帧类型。
•数据域(Data):包含实际的数据信息。
•CRC(Cyclic Redundancy Check):用于检测数据传输过程中的错误。
•确认位(ACK):用于确认数据帧是否被成功接收。
•结束位(EOF):用于标识报文的结束。
CAN总线使用基于事件的通信模式,即只有在总线空闲时才能发送数据帧。
当多个节点同时尝试发送数据时,会发生冲突,这种情况称为总线冲突。
为了解决总线冲突,CAN总线采用了一种冲突检测和处理机制,称为非破坏性位定址(Non-Destructive Bitwise Arbitration)。
在非破坏性位定址中,每个节点在发送数据时都会监测总线上的数据信号。
如果发送的数据与总线上的数据不一致,节点会停止发送数据,以避免干扰其他节点的通信。
新一代CAN总线停车场系统特点1、本系统采用光电隔离抗雷击CAN总线通讯网络,多主方式工作,信息主动发送,实时性、灵活性和可靠性远高于采用RS485查询方式工作的通讯网络。
通讯距离可达10KM,非常适合停车场系统现场条件,明显优于100米就要中继的TCP/IP网络。
2、本系统采用非接触式感应卡操作,无机械磨损,免维护。
系统适配各种WG接口IC、ID卡读头及MifareCM500/LEGIC/ TiRFM007B/羊城通等各种专用接口的IC、ID卡读头,新增条码打印机、激光条码扫描枪接口。
适配各种品牌的IC、ID卡,既可新建小区一卡通系统,亦方便与小区原有的门禁、消费等系统组成一卡通。
3、本系统采用专门为停车场系统自主研制的新一代CAN总线控制器,集成度及可靠性极高,功能全面,接口丰富,所有接口均采用抗雷击设计。
具备联机脱机自动切换、临时卡脱机收费、语音提示收费等停车场功能。
标准版控制器具备LED显示屏、车位引导屏、费额屏、自动道闸、微型车辆检测器、发卡机、补光灯及两级CAN总线等接口,卡片容量12000张,脱机记录4万条。
专业版控制器新增EPSON条码打印机、激光条码扫描枪接口,另外具备视频输入输出切换、音频对讲、钱箱电锁、满位灯箱、低温加热、红绿灯等接口。
4、本公司的停车场系统控制器的研发生产经历了近十年的专业实践,整合了各种客户的要求,支持月卡、储值卡、临时卡、操作卡等16种卡片类型,支持16种收费车型及室内室外、节假日、展览日、黄金周、峰谷等多种收费模式。
新一代的CAN总线控制器更可精确完成各类专业停车场系统所要求的各种控制逻辑。
如:车到才能读卡或取卡、一车只能取一卡、月卡读卡与临时发卡互锁(即读了月卡,临时发卡封闭;取了临时卡,不可再读月卡进场,取了临时卡入场的月卡车出场必须读临时卡,确保临时卡无恶意丢失;月卡过期无效时,临时发卡再度开放)、临时发卡无需再次读卡、临时发卡需拔卡后才能抬闸、车到地感捕捉图像、发卡机剩余卡片计数、发卡机缺卡塞卡及时上报、车场剩余车位计数、满位自动关闭系统或关闭临时发卡功能等等。
CANBUS原理介绍
CAN总线(Controller Area Network,CAN)是一种高性能多点环形
总线系统,是由Robert Bosch GmbH公司研制的局域网技术,它采用多路
复用的物理环形局域网,结构简单,支持全双工,具有抗干扰能力强,实
现简易,可靠性高,操作速率高,安装灵活,可编程性强、节约线缆布线
长度等特点,可以有效解决多点控制的问题,现已成为车用总线通信系统
中最成功和最广泛采用的总线系统。
CAN总线系统由总线线缆、各终端终端控制芯片、映射器、收发器、
电缆接头等组成。
CAN总线线缆由两条线组成,分别为CAN_H和CAN_L,CAN_H是正极性,CAN_L为负极性,它们分别对应于CAN总线系统的两个
总线信号线,它们同时传输信号。
CAN总线系统中的终端芯片可以被分为发送控制芯片和接收控制芯片,它们分别用于发送和接收CAN总线信息。
发送控制芯片主要用于将CAN总
线信息发送出去,发送控制芯片可以通过对CAN总线信息的编码来发送CAN总线信息。
接收控制芯片可以接收CAN总线信息,并将其解码,以供
使用。
映射器是一种用于连接CAN总线系统的中间设备,它可以将CAN总线
信息转换为其他总线信息,如I2C、SPI等,以符合其他终端芯片的要求。
CANBUS介绍及工作原理什么是CANBUS?CANBUS即CAN总线技术,全称为“控制器局域网总线技术(Controller Area Network-BUS)”。
CANBUS总线技术最早被用于飞机、坦克等武器电子系统的通讯联络上。
将这种技术用于民用汽车最早起源于欧洲,在汽车上这种总线网络用于车上各种传感器数据的传递。
CANBUS的工作原理大家知道当今车辆的电控系统是越来越多,例如电子燃油喷射装置、ABS装置、安全气囊装置、电动门窗、主动悬架等等。
同时遍布于车身的各种传感器实时的监测车辆的状态信息,并将此信息发送至相对应的控制单元内。
『车身上各种控制单元的分布图』通过上图我们可以看到车身上的各种控制单元,车越高级,车身上的控制单元也就越多,每个控制单元都可看做一台独立的电脑,它可以接受信息,同时能对各种信息进行处理、分析,然后发出一个指令。
比如发动机控制单元会接受来自进气压力传感器、发动机温度传感器、油门踏板位置传感器、发动机转速传感器等等的信息,在经过分析和处理后会发送相应的指令来控制喷油嘴的喷油量、点火提前角等等,其它控制单元的工作原理也都类似。
在这里可以给大家做一个比喻,车上的各种控制单元就好比一家公司各个部门的经理,每个部门的经理接受来自自己部门员工的工作汇报,经过分析作出决策,并命令该部门的员工去执行。
『控制单元』车身上的这些控制单元并不是独立工作的,它们作为一个整体,需要信息的共享,那么这就存在一个信息传递的问题。
比如发动机控制单元内的发动机转速与油门踏板位置这两个信号也需要传递给自动变速器的控制单元,然后自动变速器控制单元会据此来发出升档和降档的操作指令,那么两个控制单元之间又是如何进行通信的呢?『每项信息都通过各自独立的数据线进行交换』目前在车辆上应用的信息传递形式有两种。
第一种是每项信息都通过各自独立的数据线进行交换。
比如两个控制单元间有5种信息需要传递,那么则需要5根独立的数据线。
CAN总线技术详解CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。
最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。
一个由CAN 总线构成的单一网络中,理论上可以挂接无数个节点。
实际应用中,节点数目受网络硬件的电气特性所限制。
CAN 可提供高达1Mbit/s的数据传输速率,这使实时控制变得非常容易。
另外,硬件的错误检定特性也增强了CAN的抗电磁干扰能力。
CAN总线技术原理CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。
CAN与I2C总线的许多细节很类似,但也有一些明显的区别。
当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。
对每个节点来说,无论数据是否是发给自己的,都对其进行接收。
每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。
在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。
当几个站同时竞争总线读取时,这种配置十分重要。
当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。
CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。
每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。
由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。
我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。
当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。