《医学影像成像原理》名词解释教学内容
- 格式:doc
- 大小:72.50 KB
- 文档页数:12
医学影像成像理论复习笔记一、名词解释1、超声探头(换能器):是一种利用正压电效应将从人体组织、脏器反射回的超声脉冲回波信号转化为电信号,再由接收电路进行放大、信息处理形成各种图像的装置。
2、X线强度(I):直单位时间内通过垂直x线束的方向上单位面积上的X线光子数目(N)与能量(hν)乘积的总和。
3、X线的质:又叫线质,它表示X线的硬度,即穿透物质本领的大小。
4、光电效应:也称光电吸收。
能量为hν的光子通过物质时与物质原子的内层轨道相互作用,将全部能量交给电子,获得能量的电子摆脱原子核的束缚变成自由电子,而光子本身整个的被原子吸收,该过程称为光电效应。
5、康普顿效应:又称康普顿散射。
是射线能量被部分吸收而产生散射线的过程。
6、电子对效应:在原子核场中,当辐射光子能量足够高时,在它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种过程称作电子对效应。
7、X线照片的密度:是指照片的暗度或不透明程度,也成黑化度。
8、照片对比度:指照片上相邻组织影像的密度差。
包括物质对比度、X线对比度、胶片对比度、照片对比度和人工对比度等物种对比度,五种对比度在成像过程中相互关联。
9、影像清晰度:指图像能显示更多细节和具有清晰边缘的能力。
在很大程度上取决于分辨力、模糊度和影像噪声。
10、模糊:物体中每个点经过空间传递成像后,一定能够会被扩展增大变得模糊一些,不可能在影像内真实的还原。
这种物理现象称为模糊。
模糊在X线影像上两种具体表现形式,即背景模糊和影像失锐。
11、影像噪声:医学影像学上将照片密度或影像亮度的随机变化称为影像噪声。
通常由量子噪声、增感屏噪声、X线胶片噪声引起。
12、滤线栅:用于滤除散乱射线对胶片的影响,提高X线对比度的装置。
应置于人体和胶片之间,可将大部分的散射线滤去,只有很小一部分的散射线漏过。
13、模/数(A/D):指把模拟信号转换成数字形式,即把连续的模拟信号分解成离散的信息,并分别赋予相应的数字量级,完成这种转换的元件称为模数转换器(简称A/D转换器或ADC)14、灰阶:在影像或显示器上所呈现的黑白图像上的各点表现出不同深度的灰色,把白色和黑色之间分成若干级,称为灰度等级,表现的灰度信号的等级差别称为灰阶。
检查技术名词解释LTX线摄影检查技术1.模拟X线摄影检查:是指X线照射到人体时,由于人体的不同组织和器官对X线产生不同程度的吸收,使穿透人体的X线强度变得不均匀,把这种强度不均匀的X线直接记录在胶片上的检查方法称为模拟X线摄影检查。
2.数字X线摄影检查:把穿透人体的X线直接记录在成像板(IP)、平板探测器(FPD)上的检查方法称为数字化X线摄影检查。
3.焦—片距:指X线管焦点至胶片间的距离。
4.肢—片距:指被检部位中心所在的平面至胶片间的距离。
5.摄影床面中线:沿X线摄影床面长边方向,经床面短边中点所作的直线亦称为台中线6.前后位:指被检者后面紧贴暗盒(胶片,IP,FPD),身体矢状面与暗盒(胶片,IP,FPD)垂直,X线中心线由被检者的前面射至后面的摄影体位称为前后位。
7.后前位:指被检者前面紧贴暗盒,身体矢状面与暗盒垂直,X线中心线由被检者后面射至前面的摄影体位称为后前位。
8左侧位:指被检者左侧紧贴暗盒,身体矢状面与暗盒平行(冠状面与暗盒垂直),X线中心线由被检者右侧射至左侧的摄影体位称为左侧位。
9.右侧位:指被检者右侧紧贴暗盒,身体矢状面与暗盒平行(冠状面与暗盒垂直),X线中心线由被检者左侧射至右侧的摄影体位称为右侧位。
10.右前斜位:指被检者右前部靠近暗盒(冠状面与暗盒呈一定角度),X线中心线从被检者左后方射入的摄影体位称为右前斜位,也称第一斜位。
11.左前斜位:指被检者左前部靠近暗盒(冠状面与暗盒呈一定角度),X线中心线从被检者右后方射入的摄影体位称为左前斜位,也称第二斜位。
12.轴位:指身体矢状面与暗盒垂直,中心线方向与身体或器官长轴平行或近似平行投射。
13.听眉线:为外耳孔与眉间的连线。
与同侧听眶线约呈10°角。
14.听眦线:为外耳孔与同侧眼外眦间的连线。
与同侧听眶线约呈12°角。
15.听眶线:为外耳孔与同侧眼眶下缘间的连线。
16.听鼻线:为外耳孔与同侧鼻翼下缘间的连线。
第3章医学影像成像原理医学影像成像原理是指在医学上应用的各种成像技术中,根据不同物理原理和仪器设备的操作原理,对人体内部结构和功能进行成像。
本章将重点介绍常见的医学影像成像原理。
1.X射线成像原理:X射线成像原理是利用X射线具有透射性的特性,通过对人体进行X 射线照射,再通过感光器材记录X射线通过后的影像,来获取人体内部结构信息。
成像时,X射线的吸收程度会受到不同组织的密度差异的影响,在射线影像上呈现为明暗不同的图像。
2.CT(计算机断层成像)原理:CT成像原理是通过使用X射线和计算机算法进行断层成像,一般是以旋转式X射线扫描器为基础,通过不同角度的扫描,得到多个层面的断层图像。
CT利用X射线的透射特性,测量射线通过患者身体时的吸收情况,再将这些数据转化为图像。
3.磁共振成像(MRI)原理:MRI成像原理是利用磁场和射频脉冲的相互作用来获取人体内部结构信息。
患者被置于强磁场中,通过对患者进行射频脉冲的照射,可以使患者体内的水分子发生共振,产生信号。
通过强磁场和射频信号的处理,可以形成人体内部器官的具体图像。
4.超声成像原理:超声成像原理是利用声波的特性,通过超声波的传播和反射来获取人体内部结构信息。
超声波被饰物中的组织结构反射回来,再通过接收器转化为电信号,经过处理后形成图像。
超声波具有高频、高能量的特点,对人体无创伤,被广泛应用于妇产科、心脏等领域。
5.核医学成像原理:核医学成像原理是利用放射性核素的特性,通过核素的注射等方式让其在人体内部发放放射线,并通过探测器捕获射线发射的信号,形成图像。
核素的选择和特点决定了不同核医学成像的应用领域和成像原理。
以上是常见的医学影像成像原理,不同的成像原理适用于不同的临床需求。
通过利用这些原理,医学影像学能够直观地显示人体内部结构和功能,为临床诊断和治疗提供重要的参考依据。
医学影像成像原理名词解释
医学影像成像原理是指通过不同的物理原理和技术手段获取人体内部结构和功能信息的过程。
以下是一些常见的医学影像成像原理的解释:
1. X射线成像,X射线是一种高能电磁辐射,通过将X射线穿过人体,利用不同组织对X射线的吸收能力不同,形成影像来显示人体内部的结构。
2. CT扫描,CT(计算机断层扫描)利用X射线通过旋转式的探测器进行多个角度的扫描,通过计算机重建出人体内部的横断面图像,提供更详细的结构信息。
3. 核磁共振成像(MRI),MRI利用强磁场和无线电波来激发人体内的原子核,通过检测原子核放出的信号来生成图像,能够提供高分辨率的结构和功能信息。
4. 超声成像,超声成像利用高频声波在人体组织中的传播和反射特性,通过探头发射和接收声波信号,生成图像来显示人体内部的结构。
5. 核医学影像,核医学影像利用放射性同位素标记的药物,通
过人体摄取这些药物,利用放射性同位素的衰变来获取人体内部的
代谢和功能信息。
6. 磁共振弹性成像(MRE),MRE结合了MRI和机械振动的原理,通过在人体内施加机械振动,利用MRI检测振动的传播来评估
组织的弹性特性,对肿瘤等病变的诊断有一定帮助。
7. 电生理成像,电生理成像通过记录和分析人体产生的电信号,如脑电图(EEG)、心电图(ECG)等,来评估人体的生理功能和病
理状态。
以上是一些常见的医学影像成像原理的解释,它们各自利用不
同的物理原理和技术手段来获得人体内部结构和功能信息,为医学
诊断和治疗提供重要的辅助手段。
医学影像成像原理名词解释医学影像成像原理是指通过不同的物理原理和技术手段,对人体内部的结构、功能和病理变化进行观察和记录的过程。
下面我将从多个角度解释医学影像成像原理的相关名词。
1. X射线成像原理,X射线成像利用X射线的穿透性质,通过人体组织对X射线的吸收程度不同来形成影像。
吸收较多的组织(如骨骼)呈现较亮的区域,而吸收较少的组织(如肌肉、脂肪)呈现较暗的区域。
2. CT扫描原理,CT(计算机断层扫描)利用X射线通过人体的不同角度的扫描,通过计算机重建技术生成横断面的影像。
它通过测量X射线的吸收量,得到组织的密度信息,从而呈现出不同组织的结构。
3. MRI成像原理,MRI(磁共振成像)利用强磁场和无线电波,通过检测人体组织中氢原子的信号来生成影像。
不同组织中的氢原子具有不同的信号强度,通过对信号进行分析和处理,可以呈现出不同组织的对比度。
4. 超声成像原理,超声成像利用超声波在人体组织中的传播和反射来生成影像。
超声波通过探头发射到人体内部,当遇到不同组织界面时会发生反射,探头检测到反射信号后,通过处理和重建,形成图像。
5. 核医学成像原理,核医学成像利用放射性同位素的特性,通过人体内摄取或注射放射性示踪剂,测量放射性同位素的分布和代谢来生成影像。
核医学包括单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)等技术。
6. 磁刺激成像原理,磁刺激成像是一种通过磁场刺激人体神经系统,并通过检测神经元活动引起的磁场变化来生成影像的技术。
它可以用于研究大脑的功能连接和神经元活动。
以上是医学影像成像原理的一些常见名词解释,每种原理都有其特定的应用领域和优缺点。
医学影像学的发展使得医生能够更好地观察和诊断疾病,为疾病的早期发现和治疗提供了重要的手段。
《医学影像成像原理》教学大纲医学影像成像原理教学大纲一、基本信息课程名称:医学影像成像原理适用专业:医学影像学、医学工程等相关专业课程学时:48学时学分:3学分先修课程:医学基础、解剖学、生理学、影像学基础二、课程目的和任务本课程旨在通过对医学影像成像原理的学习,培养学生对医学影像学的基本理论与技术的掌握,具备医学影像学的基本分析和判断能力。
具体任务如下:1.培养学生对医学影像学的基本概念和原理的理解;2.掌握常见医学影像技术的工作原理和操作方法;3.培养学生分析、判断并解读医学影像的能力;4.培养学生对医学影像学中的常见问题进行诊断和处理的能力。
三、教学内容和学时安排1.医学影像学基础(4学时)1.1医学影像学的定义和发展历程1.2常见影像设备和技术1.3影像学术语与医学图像的表示方法2.传统医学影像技术(12学时)2.2X射线成像原理和技术2.2放射生物学和放射病理学基础2.3CT成像原理和技术2.4核医学成像原理和技术2.5超声成像原理和技术3.现代医学影像技术(16学时)3.1MRI成像原理和技术3.2CT和MRI在临床应用中的优势和不足3.3PET和SPECT成像原理和技术3.4光学成像原理和技术3.5影像数字处理和医学图像分析技术4.医学影像学中的常见问题(8学时)4.1医学影像学中的误诊、漏诊和错诊4.2医学影像学中的辐射安全问题4.3医学影像学中的法律伦理问题4.4医学影像学中的质量控制和质量评估四、教学方法和手段1.授课2.案例分析3.实验4.讨论与小组活动5.课程设计五、考核方式1.课堂表现和参与度:10%2.作业和实验报告:20%3.期中考试:30%4.期末考试:40%六、教材及参考书目教材:1.《医学影像学基础》2.《医学影像学导论》3.《医学影像学概论》参考书目:1.《医学影像学手册》2.《医学影像学原理与技术》3.《医学影像学基础与技术》七、教学团队主讲教师:医学影像学专业教师、医学影像科室专家辅助教师:医学影像学专业教师助教、医学影像科室技术人员八、参考评价标准1.理论知识掌握程度:学生能够准确描述医学影像学基本概念和原理。
医学影像成像原理培训课件xx年xx月xx日•医学影像概述•X光影像原理•CT影像原理•MRI影像原理目录01医学影像概述X射线是一种穿透力较强的电磁波,能够拍摄骨骼结构,最初于19世纪末由德国科学家伦琴发现。
X射线成像CT即计算机断层扫描,利用X射线旋转扫描人体,并通过计算机重建得到人体内部结构的二维图像。
CT成像MRI即磁共振成像,利用磁场和射频脉冲让人体某一部位产生共振,通过计算机分析共振信号得到人体内部结构的图像。
MRI成像PET即正电子发射断层扫描,通过注射放射性示踪剂,探测人体内部放射性物质的分布及代谢情况。
PET成像1 2 3解剖学是医学的基础学科之一,主要研究人体各器官、组织的形态、结构、位置及相互关系。
解剖学生理学是研究人体正常生理功能的学科,包括人体各器官、组织的生理功能及相互关系。
生理学病理学是研究人体疾病发生、发展规律的学科,为临床诊断和治疗提供理论依据。
病理学医生通过分析医学影像能够准确地诊断病情,如肿瘤、心脏病、脑血管疾病等。
临床诊断医生利用医学影像能够进行精确的手术导航,提高手术的准确性和安全性。
手术导航医生通过观察患者治疗前后的医学影像,能够对治疗效果进行评估。
疗效评估医学影像在科研中也发挥着重要作用,如研究疾病的发展过程、药物的疗效等。
科研医学影像的应用范围02 X光影像原理X光是由高能电子撞击靶物质(通常是钨)时产生的。
当高能电子撞击靶物质时,会产生一种能量为几个keV至几十keV的电磁辐射,这种辐射被称为X光。
X光的本质是一种电磁波,具有波粒二象性。
它与可见光不同,没有明显的颜色和频率,但其波长范围在0.01-10nm之间。
X光的产生与性质当X光穿过人体组织时,它会被不同程度地吸收和散射。
较重的组织,如骨骼,会吸收更多的X光,而较轻的组织,如脂肪和肌肉,则吸收较少。
因此,当X光穿过人体后,它携带了人体内部结构的图像信息。
X光成像系统通过将X光照射到人体上并测量穿过人体后的强度,可以重建出反映人体内部结构的图像。
医学影像成像原理重点医学影像是医疗中非常重要的一个部分,通过医学成像技术可以进行人体的观察分析和疾病的诊断治疗。
医学影像成像原理作为医学影像技术的核心内容,是医学影像技术应用的关键,它涉及到了各种物理学原理和医学原理。
下面我们来详细介绍一下医学影像成像原理的相关知识。
一、X射线成像原理X射线是指波长在0.01到10纳米之间的电磁波,它是一种高能电磁波。
当X射线通过人体组织时,会发生多次散射和吸收,不同的组织会有不同的吸收和散射,这使得X射线最终在接受器上的成像散射强度和吸收强度不同,从而可以用来形成不同的影像。
常见的X射线成像原理包括经典成像和数字成像两种。
经典成像通过X射线照射一个平板探测器,吸收更多射线的组织颜色会变成黑色,反之,则为白色。
而数字成像则是采用数字检测器,通过数字化的方法将X射线转化成像素绘制成数字图像。
二、CT成像原理计算机断层成像(CT)是一种医学影像技术,它利用X射线和计算机技术,可以将切片图像转化成二维和三维的影像。
CT成像原理是通过一个旋转的X射线束在不同的角度下扫描患者的身体,通过计算机重建来生成具有高分辨率的二维和三维图像。
不同密度的组织会吸收不同程度的X射线,这样,计算机会根据吸收的程度来生成不同的灰度级区别。
三、MRI成像原理MRI是磁共振成像的简称,它是一种利用核磁共振现象来获取人体或物体内部结构图像的一种医学成像技术。
它利用强磁场和无线电波来激发人体内部的氢原子共振信号,并通过计算机技术将其转换成图像。
MRI成像原理是通过磁共振现象来实现的,即磁共振现象是一种特殊的量子机制,它是由核磁偶极矩和主磁场之间的相互作用而产生的。
当人体磁矩受到外部磁场作用时,磁矩会发生翻转,通过监测这种转换过程来获得图像。
不同组织中的氢原子具有不同的信号强度,这样就可以根据不同的信号强度来区分不同的组织。
超声成像是利用高频声波来获得人体内部组织图像的一种影像技术。
超声成像原理是利用声波在人体组织中的传播和反射来形成图像。
医学影像技术《医学影像成像原理》课程说课课件xx年xx月xx日•说课内容及目的•说课对象及要求•说课程序目录•说课重点•说课难点•说课总结01说课内容及目的课程基本情况医学影像成像原理是医学影像技术专业的一门必修课程,主要内容包括X线、CT、MRI等多种医学影像成像原理和技术。
教学内容本课程的教学内容主要包括以下几个方面:医学影像成像的基本原理、医学影像设备的构成和原理、医学影像采集和处理的基本方法、医学影像的质量控制和评价等。
教学重点本课程的教学重点是医学影像成像的基本原理和医学影像采集和处理的基本方法,同时注重培养学生的实践操作能力和应用能力。
说课内容随着医疗技术的不断发展和进步,医学影像技术在临床上的应用越来越广泛,因此对于医学影像技术人才的需求也越来越大。
本课程紧密结合临床实际应用,注重与时代发展相适应。
社会需求医学影像技术是不断发展的学科,新的技术和设备不断涌现。
本课程注重介绍最新的医学影像技术和设备,让学生掌握最新的医学影像技术知识。
学科发展与时俱代的关系教学目标通过本课程的学习,学生应该掌握医学影像成像的基本原理和医学影像采集和处理的基本方法,熟悉多种医学影像成像技术和设备的操作和应用,提高实践操作能力和应用能力。
教学方法本课程采用理论与实践相结合的教学方法,注重学生的自主学习和实践操作,培养学生的创新意识和团队协作精神。
说课目的02说课对象及要求说课对象02医学影像技术从业者03医学影像技术爱好者1医学影像技术的关系23医学影像技术是医学领域中的重要分支学科医学影像技术是医学诊断和治疗的重要辅助手段医学影像技术涵盖了放射学、医学影像物理学、医学影像设备等多个领域学习要求掌握医学影像技术的基本概念和原理具备一定的临床操作技能和实践经验熟悉医学影像设备的原理、应用及维护了解医学影像技术的最新进展和发展趋势03说课程序理论学习-医学影像技术专业的基本概念医学影像技术的定义、分类、发展历程和现状医学影像技术的物理基础和成像原理医学影像技术的图像特点、显示方式和观察技巧实操学习-医学影像技术的实践操作医学影像技术实验的课程安排、实验要求和实验考核医学影像技术实验的仪器设备、操作规程和注意事项医学影像技术实验的实践项目设计和实验报告撰写临床实践-医学影像技术的临床应用医学影像技术在临床上的应用范围、适应症和禁忌症医学影像技术的临床操作规范、安全防护和辐射防护医学影像技术的临床应用案例、诊断和治疗的应用前景04说课重点培养目标培养具有医学影像技术的基本理论、基本知识和基本技能,能在医疗卫生单位从事医学影像技术工作的专门人才。
《医学影像成像原理》名词解释《医学影像成像原理》名词解释第一章1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X 线平片影像方式表现出来的技术。
2.X 线计算机体层成像(computed tomography,CT):经过准直器的X 线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(¦)分布,并以灰度方式显示人体这一层面上组织、器官的图像。
3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号(MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。
4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。
5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。
6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。
7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏- 片系统作为X 线信息接收器(探测器)。
8.数字减影血管造影(digital subtraction angiography,DSA):是计算机与常规X 线血管造影相结合的一种检查方法,能减去骨骼、肌肉等背景影像,突出显示血管图像的技术。
9.计算机辅助诊断(computer aided diagnosis,CAD):借助人工智能等技术对医学影像作图像分割、特征提取和定量分析等增加诊断信息,用以辅助医生对各种医学影像进行诊断的技术。
第二章1.X 线强度(X-ray intensity):指在垂直于X 线传播方向单位面积上、单位时间内通过光子数量(N)与能量(hν)(hv)乘积的总和。
常用X 线强度表示X 线的量与质。
2.光学密度(density,D):又称黑化度。
指X 线胶片经过曝光后,通过显影等处理在照片上形成的黑化程度。
3.光激励发光(photo stimulated luminescence,PSL):某些物质在第一次受到光(一次X 线激发光)照射时,能将一次激发光所携带的信息贮存下来,当再次受到光(二次激光激发光)照射时,能发出与一次激发光所携带信息相关荧光的现象。
4.光激励发光物质(photo stimulated luminescence substance):能发生光激励发光(PSL)现象的物质。
第三章1.潜影:是感光胶片被曝光后,在胶片内部产生的微量的新生银原子集团。
2.感绿胶片:这是一种配合发绿色荧光增感屏使用的胶片,吸收光谱的峰值约为550nm。
3.感蓝胶片(色盲片):是配合发蓝色荧光增感屏使用的胶片,感光乳剂的固有感色是以蓝色为主,不添加色素。
其吸收光谱的峰值约为420 nm。
4.感光中心:就是在乳剂的制备过程中形成的微量银质点。
5.感光效应:使感光系统(屏-片系统)产生的感光效果称为感光效应(E)。
6.胶片特性曲线:是指曝光量与所曝光量产生的密度之间关系的一条曲线,由于这条曲线可以表示出感光材料的感光特性,所以称之为〝特性曲线〞。
7.本底灰雾(最小密度min D ):感光材料未经曝光,而在显影加工后部分被还原的银所产生的密度,称为本底灰雾或最小密度。
它由片基灰雾和乳剂灰雾组合而成。
8.片基灰雾:指感光材料不经显影,直接在定影中处理,将卤化银全部溶解之后的密度。
9.乳剂灰雾:指乳剂制作中,为谋求一定的感度而产生的感光中心。
带有这种感光中心的卤化银结晶,即使不经曝光在显影加工时也会还原成银。
这种较大的感光中心称为灰雾中心,灰雾度的大小取决于乳剂中灰雾中心的量。
乳剂灰雾可由本底灰雾减去片基灰雾得到。
10.感光度(S):是指感光材料对光作用的响应程度,也即感光材料达到一定密度值所需曝光量的倒数。
医用X 线胶片感光度定义为产生密度1.0 所需曝光量的倒数。
11.反差系数(γ值):称对比度(contrast)系数。
反差系数是指特性曲线直线部分的斜率。
12.平均斜率(用G表示):连接特性曲线上指定两点密度(0.25 min D 和2.00 min D )的连线与横坐标夹角的正切值。
13.最大密度(D max):对某种感光材料来说,密度上升到一定程度时,不再因曝光量的增加而上升,此时的密度值称为最大密度(D max)。
14.宽容度(L):是指特性曲线上直线部分在横坐标上的投影,表示的是正确曝光量的范围。
15.增感率:增感屏的增感作用常以增感率表示。
在照片上产生同等密度为1.0 时,无屏与有屏所需照射量之比称为增感率(增感倍数或增感因数)。
16.中心X 线:X 线束中心部分的射线。
中心线垂直于窗口平面,是摄影方向的代表。
一般情况下,中心X 线应通过被检部位的中心并与胶片垂直,也有时需要倾斜一定角度经被检体射入胶片。
17.斜射线:X 线束中除中心线外的射线。
在某些特殊体位摄影时利用斜射线作为中心线摄影,以减少肢体影像的重叠。
18.照射野:指通过X 线管窗口的X 线束入射于成像介质的曝光面大小。
X 线束在照射野内的线量分布是不均匀的。
19.焦点的方位特性:在平行于X 线管的长轴方向的照射野内,近阳极侧有效焦点小,近阴极侧有效焦点大。
在短轴方向上观察,有效焦点的大小对称相等。
20.焦点的阳极效应:阳极倾角约为20o时,在平行于X 线管的长轴方向上,近阳极侧X 线量少,近阴极侧的X 线量多,最大值在110o处,分布是非对称性的现象。
在X 线管的短轴方向上,X 线量的分布基本上是对称相等。
21.实际焦点:灯丝发射的电子经聚焦后在X 线管阳极靶面上的撞击面积称为实际焦点。
22.有效焦点:把实际焦点在X 线管长轴垂直方向上的投影称为X 线管标称的有效焦点。
23.照片密度:又称光学密度或黑化度,用D 表示。
是指X 线胶片经过曝光后,通过显影等处理在照片上形成的黑化程度。
24.X 线照片对比度:X 线照片上相邻组织的密度差(亦称光学对比度)。
25.散射线:当X 线管发射出的原发X 线照射到被检体等物体时,会产生光电吸收和康普顿散射,其中散射吸收的二次射线,由于射线方向不定,能量低,称之为散射线。
26.X 线照片层次:指照片局部范围内组织结构微小的的密度差或对比度的显示能力。
27.锐利度:是指在照片上所形成的影像边缘的清楚程度。
28.失真度:照片影像相对被检体的大小和形状的改变称之为影像失真,其变化的程度称为的影像失真度。
第四章1.体素(voxel):代表一定厚度的三维空间的人体体积单元。
是一个三维的概念。
2.像素(pixel):组成数字图像的基本单元。
是一个二维概念,是体素在成像平面的表现。
3.像素值:就是像素的灰度值或强度值,一个像素只具有一个灰度值。
4.矩阵(matrix):表示由像素组成的,横成行、纵成列的数字方阵。
5.采集矩阵(acquisition matrix):每幅画面观察视野所含像素的数目。
6.显示矩阵(display matrix):监视器上显示的图像像素数目。
为了保证显示图像的质量,显示矩阵一般等于或大于采集矩阵。
7.视野(field of view,FOV):拟进行检查容积的选定区域。
8.比特(bit):是信息量单位。
二进制数的一位所包含的信息就是一比特。
9.模/数转换(analog/ data,A/D):指通过某种方法把模拟量转换为数字量。
同样,数字量转换为模拟量也叫做数/模转换或D/A 转换。
10.灰阶(gray sca1e):在影像或显示器上所呈现的黑白图像上的各点表现出不同深度灰色,把白色与黑色之间分成若干级,称为〝灰度等级〞,表现的亮度(或灰度)信号的等级差别称为灰阶。
11.原始数据(raw data):由探测器直接接收到的信号,经放大后再通过A/D 转换所得到的数据。
12.显示数据(display data):组成某层面图像的数据,亦即该层面各体素灰度值的矩阵中的数据。
13.图像重建(image reconstruction):用采集的原始数据经计算而得到显示图像数据的过程。
14.信噪比(signal noise ratio,SNR):在实际的信息中一般都包含有信号和噪声。
用来表征信号强度同噪声强度之比的参数称为信号噪声比。
15.调制传递函数(MTF):是以空间频率(spatial frequency)ω为变量的函数。
各个ω值都有自己的调制传递值和相位传递值。
16.噪声(noise):图像中可见的斑点、细粒、网纹或雪花状的异常结构,是影响影像质量的重要因素,它掩盖或降低了某些影像细节的可见度,使影像的清晰度下降。
17.量子检出效率(detective quantum efficience,DQE):成像系统的有效量子的利用率。
18.部分容积效应(partial volume effect):某像素位置上可能有多个不同X 线吸收系数的体素存在,该处像素的灰度值往往是多个体素灰度值依其体积所占比例而得的平均灰度值的现象。
19.窗口技术(window technology):是显示数字图像的一种重要方法。
即选择适当的窗宽和窗位来观察图像,使病变部位明显地显示出来。
20.窗宽(window width,WW):表示数字图像所显示信号强度值的范围,即放大的灰度范围上下限之差。
21.窗位(window level,WL):又称窗水平。
是图像显示放大的灰度范围的平均值,即放大灰度范围的灰度中心值。
22.空间分辩力(spatial resolution):是指图像能分辨相邻两点的能力,常用能分辨两个点间的最小距离来表示。
又称几何分辨力。
23.密度分辩力(density resolution):图像中可辨认低密度差别的最小极限,即对细微密度差别的分辨能力(数字图像灰度精度的范围)。
又称为图像的灰度分辨力(或对比度分辨力)。
24.时间分辩力(temporal resolution):成像系统对被检体组织运动部位的瞬间成像能力。