NOx控制技术
- 格式:pptx
- 大小:796.61 KB
- 文档页数:26
氮氧化物的控制技术*名:***学号: **********班级:动研114专业:动力工程及工程热物理完成日期:2011年 12月 18 日NOx控制技术1 引言近年来能源利用造成的环境污染越来越严重,其中矿物燃料的燃烧所排放出来的氮氧化物(NOx)己成为环境污染的一个重要方面。
NOx是N2O、NO、NO2、N2O3、N 2O4和N2O5的总称。
我国能源以煤为主。
燃煤所产生的大气污染物占污染物排放总量的比例较大,其中NOx占67%。
有关资料表明,电站锅炉的NOx排放量占各种燃烧装置NOx排放量总和的一半以上,而且80%左右是煤粉锅炉排放的。
国家环保局于2003年12月23日发布的《火电厂大气污染物排放标准》(GB13223—2003)中对于第三时段燃煤电厂执行的排放浓度限值为:当Vdaf<10%时,NOx 排放浓度限值为1100 mg/m3;当10%<Vdaf<20%时,排放浓度限值为650 mg/m3;当Vdaf>20%时,排放浓度限值为450 mg/m3。
据调查,我国燃煤电站固、液态排渣煤粉炉NOx排放质量浓度范围分别为600~1200 mg/m3和850~1150 mg/m3。
因此,降低NOx排放的任务非常紧迫。
NOx的控制可分为燃烧前处理,燃烧中处理和燃烧后处理。
燃烧前脱氮主要是燃烧前将燃料转化为低氮燃料。
这种方法由于技术复杂,成本较高,在我国应用较少。
燃烧后脱硝主要指烟气净化技术,即把已生成的NOx还原为N2从而脱除烟气中的NOx,烟气净化技术主要包括湿法脱氮技术和干法脱氮技术。
干法脱氮技术有选择性催化还原法(SCR)、非选择性催化还原法(SNCR)、吸收法。
湿法脱氮技术有吸附法、等离子体活化法、生化法。
据了解,烟气脱硝的效率可高达90%以上,但由于存在着反应温度窗口较窄(SNCR),需要昂贵的催化剂(SCR)以及需要增加装置和占用空间等不利因素,导致初投资及运行成本较高,因而其应用受到较大限制。
大气环境中NOx的来源与排放控制技术在现代工业化进程中,NOx(一氧化氮和二氧化氮)排放已成为严重的环境问题之一。
NOx的排放主要来源于燃烧过程和工业生产过程。
燃烧过程中,如化石燃料的燃烧以及汽车尾气中都会产生大量的NOx。
而工业生产过程中,如化肥生产、钢铁冶炼等也都是NOx的重要排放源。
首先,燃烧过程中产生的NOx是主要来源之一。
当燃料中的氮和氧气在高温下发生反应时,会生成一氧化氮。
而一氧化氮进一步与空气中的氧气反应,会形成二氧化氮。
这种反应主要发生在燃烧室内,如汽车引擎、煤燃烧炉等。
因此,交通运输产业和能源行业是NOx排放的重要来源。
其次,工业生产过程中的排放也不可忽视。
以化肥生产为例,氨气的生产过程中会产生大量的NOx。
此外,钢铁冶炼、电力行业等也会释放出大量的NOx。
这些工业过程中的NOx排放主要源于高温燃烧、氮氧化物的脱除和废气处理过程。
这些行业因为其特殊的生产工艺,往往会有较高的NOx排放。
如何控制和降低大气中的NOx排放成为了当前的重要任务之一。
首先,科技的发展提供了有效的NOx控制技术。
例如,饱和窑炉、脱氮除尘减排技术、SCR(Selective Catalytic Reduction,选择性催化还原)装置等技术的应用,可以将NOx排放降低到很低的水平。
特别是SCR技术,通过催化剂将氮氧化物还原为氮和水,有效地解决了NOx排放问题。
此外,燃烧优化技术、锅炉低氮燃烧技术等也能够减少燃烧过程中产生NOx的量。
其次,政府的相关政策也在NOx排放控制方面起到了重要作用。
一方面,政府鼓励和引导企业加强燃煤电厂、钢铁企业等重点行业的脱硝改造工作。
另一方面,政府推动低碳经济发展,提倡清洁能源的使用,这也有助于降低NOx排放。
此外,政府还对排放严重的企业进行监管和执法,加大对违规排放行为的处罚力度,通过这些措施来促使企业加强NOx排放控制工作。
此外,公众的环保意识和参与也是降低NOx排放的重要力量。
NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
天然气燃烧产生的氮氧化物的控制方法天然气燃烧产生的氮氧化物(NOx)是空气污染的重要成分之一,它对环境和人体健康都会造成负面影响。
为了保护环境和人类健康,我们需要采取有效的方法控制天然气燃烧产生的氮氧化物排放。
本文将介绍几种常用的控制方法。
一、低氮燃烧技术低氮燃烧技术是一种有效降低氮氧化物排放的方法。
它通过改变燃烧设备的设计和优化燃烧过程,减少氮氧化物的生成。
例如,利用预混燃烧技术,将燃料和空气充分混合,在高温下完全燃烧,可以降低氮氧化物的生成。
此外,采用分级燃烧技术,将燃料分为多个燃烧阶段,也可以有效地降低氮氧化物排放。
二、选择低氮燃料选择低氮燃料也是一种减少氮氧化物排放的方法。
天然气本身就是相对较低的氮氧化物排放燃料,与煤炭和油类燃料相比较,其氮氧化物排放要低得多。
因此,使用天然气作为燃料可以有效地减少氮氧化物的生成和排放。
三、使用排放控制技术除了改变燃烧方式和燃料选择外,还可采用一些排放控制技术来降低天然气燃烧产生的氮氧化物排放。
例如,脱硝装置是一种常用的氮氧化物控制技术,可以在燃烧过程中或烟气处理过程中,减少氮氧化物的排放。
此外,采用催化还原技术,通过将还原剂与燃烧产生的氮氧化物反应,将其转化为无害物质,也可以有效地降低氮氧化物的排放。
四、加强燃烧过程管理强化燃烧过程管理也是控制天然气燃烧产生的氮氧化物的重要手段。
通过合理的操作和管理,优化燃烧设备和燃烧工艺,可以提高燃烧效率,降低氮氧化物排放。
例如,合理调整燃料供给量和氧气含量,控制燃烧温度和燃烧时间,可以减少氮氧化物的生成。
此外,定期进行设备维护和清洁,保证燃烧设备的正常运行也是减少氮氧化物排放的重要措施。
综上所述,通过采用低氮燃烧技术、选择低氮燃料、使用排放控制技术以及加强燃烧过程管理,可以有效地控制天然气燃烧产生的氮氧化物排放。
这些方法在工业、交通和家庭等领域都有广泛的应用和推广前景。
我们应该积极采取这些措施,共同保护环境,改善空气质量,保障人类的健康。
NOx生成及控制措施一概述中国是一个以煤炭为主要能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方法利用的。
煤燃烧所释放出废气中的氮氧化物(NOx),是造成大气污染的主要污染源之一.氮氧化物(NOx)引起的环境问题和人体健康的危害主要有以下几方面:氮氧化物(NOx)的主要危害:(1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx 是形成酸雨、酸雾的主要污染物;(4)NOx与碳氢化合物可形成光化学烟雾;(5)NOx参与臭氧层的破坏。
(2)不同浓度的NO2对人体健康的影响二、燃煤锅炉NOx生成机理氮氧化物(NOx)是造成大气污染的主要污染源之一。
通常所说的NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO 和NO2是重要的大气污染物,另外还有少量N2O。
我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx 排放的主要来源之一.煤的燃烧过程中产生的氮氧化物(NOx )主要是一氧化氮(NO )和二氧化氮(NO2),在煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等密切相关.燃烧形成的NOx 生成途径主要由以下三个:为燃料型、热力型和快速型3种。
其中快速型NOx 生成量很少,可以忽略不计。
1. 热力型NOx指空气中的氮气(N2)和氧(O2)燃料燃烧时所形成的高温环境下生成的NO 和NO2的总和,其总反应式为:22222NO O NO NO O N ↔+↔+ 当燃烧区域温度低于1000℃时,NO 的生成量较少,而温度在1300℃—1500℃时,NO 的浓度约为500—1000ppm,而且随着温度的升高,NOx 的生成速度按指数规律增加,当温度足够高时热力型NOx 可达20%.因此,温度对热力型NOx 的生成具有绝对性的作用,过量空气系数和烟气停留时间对热力型NOx 的生成有很大影响。