计量经济学上机实验多元回归模型
- 格式:doc
- 大小:263.00 KB
- 文档页数:9
X X X学院实验报告第 1 页(1)用eviews得到数据如下:建立回归模型:AHE=-6.631562+0.186713*CLFPRM+0.004974*UNRMR2=0.622402,F=11.53822,P=0.001094,T=(-2.093464)(4.419819)(0.238515)可知城市男性劳动参与率和城市男性失业率与真实的平均小时工资存在正相关关系。
经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加一个百分点,真实的平均小时工资增加0.186713美元,城市男性失业率每增加百分之一,真实的平均小时工资增加0.004974美元。
(2)用eviews得到数据如下:建立回归模型:AHE=10.60094-0.05345*CLFPRFR2=0.65384,F=28.33262,P=0.000085,T=(18.85195)(-5.32284)可知城市女性劳动参与率与真实的平均小时工资存在负相关关系。
经济意义:说明在其他条件保持不变的情况下,城市女性劳动参与率每增加一个百分点,真实的平均小时工资减少0.05345美元。
(3)用eviews得到数据如下:第 3 页建立回归模型:AHE=157.048-1.919573*CLFPRM-0.232917*UNRMR2=0.91981,F=80.29262,P=0.000,T=(11.69701)(-10.72079)(-2.635153)可知城市男性劳动参与率和城市男性失业率与当前平均小时工资存在显著的负相关关系。
经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加百分之一,当前平均小时工资减少1.919573美元,城市男性失业率每增加百分之一,当前平均小时工资减少0.232917美元。
(4)用eviews得到数据如下:建立回归模型:AHE=-23.92719+0.595155*CLFPRFR2=0.958337,F=345.0332,P=0.000,T=(-13.33538)(18.57507)可知城市女性劳动参与率与当前平均小时工资存在显著的正相关关系。
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
第三章多元线性回归模型案例分析一、研究目的1提出问题:研究中国税收收入增长的主要原因(必须要有研究的意义,且具创新价值)2分析问题:从宏观经济看经济增长是税收增长的源泉;公共财政的需求;物价水平;税收政策(要注重经济理论的相关性和逻辑性)二、模型设定1被解释变量:为了全面反映中国税收增长的全貌,选择包括中央和地方的的“国家财政收入”中的各项税收作为被解释变量2解释变量:选择“国内生产总值GDP”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表,选择“商品零售物价指数”作为物价水平的代表,而由于财政体制的改革难以量化,且1985年后财税体制改革对税收增长影响不是很大,故暂不考虑。
3设定线性模型为:Y t= β1+β2X2t+β3 X3t+β4 X4t +u t注:X1默认为14经济理论构造成功之后,即着手收集数据资料(这要借助统计学的知识进行整理,并不是什么数据都可以直接拿来用。
首先,数据来源的权威性,即必须保证数据的准确可靠性,不能随意捏造,其次,数据的合理分类,最后是数据的合理运用)附:数据三、估计参数利用eviews3.0进行分析1建立工作文件新建工作文档:file-new-workfile,在打开的workfile range 对话框中的workfile frequency 中选择annual,start date 输入1978,end date输入2002,点击ok。
2输入数据直接在命令窗口输入“data Y X2 X3 X4 、、、”本案例中输入data Y X2 X3 X4然后是将excel中的数据复制过来,并点击name命名GROUP01。
3估计参数直接在命令窗口输入“LS Y C X2 X3 X4 、、、”。
LS是做最小二乘估计的命令,Y为被解释变量,C为截距项,X为解释变量,注意LS Y C X之间要有空格,被解释变量紧接在命令LS之后。
本案例中输入LS Y C X2 X3 X4 本题中得到下表,点击name 命名eq01。
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
《计量经济学》上机实验报告一题目:多元回归模型和多重共线性实验日期和时间:2013年4月18日班级:学号:姓名:实验室:实验楼104实验环境:Windows XP ; EViews 3.1实验目的:利用相关数据建立多元回归模型,分析在不同的经济条件下一定的要素对某个经济体发展的影响程度并建立一定的关系模型。
检验设定的模型是否存在多重共线性,分析产生多重共线性的原因及作用因素,并对存在多重共线性的模型进行必要的修正。
实验内容:1、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI,根据提供的模型估计参数,判断多重共线性是否存在,表述多重共线性的性质。
2、检验能源消费需求总量Y的影响因素,选取国民总收入X1、国内生产总值X2、工业增加值X3、建筑业增加值X4、交通运输邮电业增加值X5、人均生活电力消费X6和能源加工转换效率X7七个变量,模拟回归,检验修正多重共线性。
3、为什么会产生“农业的发展反而会减少财政收入”的异常结果,如何解决这种异常。
实验步骤:一、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI(一)建立多元回归模型,估计参数在命令窗口依次键入以下命令:1、建立工作文件:CREATE A 1985 20072:输入统计资料:DATA Y GDP CPI3、生成变量:GENR LNY=LOG(Y)GENR LNGDP=LOG(GDP)GENR LNCPI=LOG(CPI)4、建立回归模型:LS LNY C LNGDP LNCPI得出回归结果为:由此可见,该模型的参数形式为:LNŶt=-3.06+1.66LNGDP t-1.06LNCPI t,其中该模型R2=0.9922,R2=0.9914可决系数很高,F检验值1275.093,明显显著,且T检验的临界概率均非常小,回归效果较好。
(二)检验多重共线性利用简单相关系数法进行检验,输入命令COR LNY LNGDP LNCPI,得到相关系数矩阵:由相关系数矩阵可以看出,各解释变量相互之间的相关系数均很高,说明数据中存在严重的多重共线性。
实验一多元线性回归模型的估计和检验一、实验名称和性质二、实验目的(1) 熟悉EViews软件在多元回归模型中的基本使用功能;(2) 掌握多元线性回归模型中回归参数的OLS估计方法;(3) 掌握多元线性回归模型中回归参数的t检验方法;(4) 掌握多元线性回归模型中回归方程的F检验方法;(5) 掌握多元线性回归模型中回归方程的预测方法。
三、实验的软硬件环境要求硬件环境要求:计算机网络设备,需要连接Internet使用的软件名称、版本号以及模块带Windows操作系统以及EViews应用演示四、知识准备前期要求掌握的知识:了解EViews软件在多元回归模型中的基本功能,熟悉多元线性回归模型的基本假设,基本理论。
实验相关理论或原理:(1)理解多元元线性模型的以下基本假设:(a)解释变量不是随机变量;(b)误差项的均值为零;(c)误差项同方差性、无序列相关性;(d)解释变量之间无关。
(2)掌握多元回归分析中的普通最小二乘法(OLS)的统计思想和EViews实现。
(3) 掌握模型统计检验:(a)拟合优度检验;(b)变量的显著性检验(t检验);(c)即方程的显著性检验(F检验)。
(4) 掌握模型统计模型的预测。
实验流程:多元线性回归模型假设→多元线性回归模型参数估计→多元线性回归模型统计检验→多元线性回归模型预测五、实验材料和原始数据中国城镇居民人均消费支出(单位:元)及价格指数其中X是中国城镇居民人均消费支出,X1是人均食品消费支出,GP表示中国城镇居民消费价格指数,FP是中国城镇居民食品消费价格指数。
以1990年价格测度的城镇居民人均消费支出为XC,人均食品消费支出Q,以及城镇居民消费支出价格缩减指数P0,城镇居民消费支出价格缩减指数P1。
六、实验要求和注意事项能用EViews软件完成多元线性回归模型的参数的估计、检验和模型的预测。
能对数据做一些初步分析,并能以表格形式体现。
并对软件输出的结果能做初步分析。
实验报告课程名称金融计量学实验项目名称多元线性回归模型班级与班级代码实验室名称(或课室)专业任课教师xxx学号:xxx姓名:xxx实验日期:2012年5 月3日广东商学院教务处制姓名xxx 实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存多元线性回归模型一、实验目的通过上机实验,使学生能够使用 Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。
二、实验内容(一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L进行回归分析。
(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法(三)根据实验结果判断中国该年制造业总体的规模报酬状态如何?三、实验步骤(一)收集数据下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。
序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)1 3722.7 3078.22 113 17 812.7 1118.81 432 1442.52 1684.43 67 18 1899.7 2052.16 613 1752.37 2742.77 84 19 3692.85 6113.11 2404 1451.29 1973.82 27 20 4732.9 9228.25 2225 5149.3 5917.01 327 21 2180.23 2866.65 806 2291.16 1758.77 120 22 2539.76 2545.63 967 1345.17 939.1 58 23 3046.95 4787.9 2228 656.77 694.94 31 24 2192.63 3255.29 1639 370.18 363.48 16 25 5364.83 8129.68 24410 1590.36 2511.99 66 26 4834.68 5260.2 14511 616.71 973.73 58 27 7549.58 7518.79 13812 617.94 516.01 28 28 867.91 984.52 4613 4429.19 3785.91 61 29 4611.39 18626.94 21814 5749.02 8688.03 254 30 170.3 610.91 1915 1781.37 2798.9 83 31 325.53 1523.19 4516 1243.07 1808.44 33表1(二)创建工作文件(Workfile)。
2011-2012学年第1学期计量经济学实验报告实验(二):多元回归模型实验(1)估计参数利用EViews6估计模型的参数,方法是:1、建立工作文件:首先,双击EViews6图标,进入EViews6主页。
在菜单一次点击File\New\Workfile,出现对话框“Workfile Create”。
在“Workfile structure type ”中选择数据频率:Datad-regular frequency.在“Data specification”中Start data输入“1980”,在End data中输入“2002”点击“ok”出现“Workfile UNTITLED”工作框。
其中已有变量:“c”—截距项“resid”—剩余项。
2、Eviews命令:data y x p1 p2 p3 回车,输入数据,得到如图:图2-1 数据的输入3.对数据进行回归分析,eviews命令:LS Y C X P1 P2 P3图2-2根据上图,模型的估计的结果为:lnY=3.616+0.001lnX-0.506lnP1+0.119lnP2+0.048lnP3(0.450) (0) (0.162) (0.086) 0.051)t=(0.805) (4.652) (-3.115) (1.388) (0.942)R2=0.940 2 r=0.926 F=70.105(2)作对家庭人均鸡肉年消费量Y与猪肉价格P2、牛肉价格P3的散点图,图2-3和图2-4图2-3 图2-4图2-3 家庭人均鸡肉年消费量Y与猪肉价格P2的散点图图2-4 家庭人均鸡肉年消费量Y与牛肉价格P3的散点图由上面两张图可知都呈现线性关系,建立线性回归方程:i i i u X X Y +++=22110i βββi=1,2, .....,23 输入LS Y C P2 P3,用eviews6进行估计的输出结果如图:模型的估计结果为: Y=2.111+0.168P2+0.031P3(0.371)(0.060)(0.077) t=(5.689) (2.813) (0.402)R 2=0.834 2-r =0.817 F=50.150模型检验:①经济意义检验该地区家庭人均鸡肉消费量与鸡肉价格和牛肉价格成正相关,当牛肉价格不变时,猪肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.168单位;当猪肉价格不变时,牛肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.031单位,与猪肉价格成更大正相关关系符合一般情况。
《计量经济学》上机实验参考答案实验一:线性回归模型的估计、检验和预测(3 课时)实验设备:个人计算机,计量经济学软件Eviews,外围设备如U 盘。
实验目的:(1)熟悉Eviews 软件基本使用功能;(2)掌握一元线性回归模型的估计、检验和预测方法;正态性检验;(3)掌握多元线性回归模型的估计、检验和预测方法;(4)掌握多元非线性回归模型的估计方法;(5)掌握模型参数的线性约束检验与参数的稳定性检验。
实验方法与原理:Eviews 软件使用,普通最小二乘法(OLS),拟合优度评价、t 检验、F 检验、J-B 检验、预测原理。
实验要求:(1)熟悉和掌握描述统计和线性回归分析;(2)选择方程进行一元线性回归;(3)选择方程进行多元线性回归;(4)进行经济意义检验、拟合优度评价、参数显著性检验和回归方程显著性检验;(5)掌握被解释变量的点预测和区间预测;(6)估计对数模型、半对数模型、倒数模型、多项式模型模型等非线性回归模型。
实验内容与数据1(第2 章思考与练习:三、简答、分析与计算题第12 小题):12. 表1 数据是从某个行业的5 个不同的工厂收集的,请回答以下问题:ˆˆˆˆ(1)估计这个行业的线性总成本函数:yˆt= b0 + b1 x t ;(2)b0 和b1 的经济含义是什么?;(3)估计产量为10 时的总成本。
表1 某行业成本与产量数据参考答案:(1)总成本函数(标准格式):yˆt = 26.27679 + 4.25899xts = (3.211966) (0.367954)t = (8.180904) (11.57462)R 2 = 0.978098 S.E = 2.462819 DW =1.404274 F =133.9719ˆˆ(2) b0 =26.27679 为固定成本,即产量为0 时的成本;b1 =4.25899 为边际成本,即产量每增加1 单位时,总成本增加了4.25899 单位。
目录一、选择方程 (1)1.作散点图 (1)2.进行因果关系检验 (2)二、多元线性回归 (3)三、居民消费方程 (5)四、固定投资方程 (8)五、货物和服务净流出方程 (10)六、存货增加方程的估计 (12)实验三多元线性回归模型的估计和检验实验目的:掌握多元线性回归模型的估计和检验方法。
实验要求:选择方程进行多元线性回归。
实验原理:普通最小二乘法。
实验步骤:一、选择方程根据广东数据选择不变价GDP(GDPB)、不变价资本存量(ZC)和从业人员(RY)的数据,把GDPB作为应变量,ZC和RY作为两个解释变量进行二元线性回归分析。
1.作散点图从散点图(图3-1,图3-2)看,变量间不一定呈现线性关系,可以先试着作线性回归。
图3-1图3-22.进行因果关系检验从因果关系检验看,ZC明显影响GDPB、RY不太明显,这是可以理解的,计划经济时期存在着隐性失业,使得劳动力的变化对产出的影响不太明显。
二、多元线性回归得到估计方程GDPB=0.377169694502*ZC+0.353688537498*RY-800.599732335 估计方程的判定系数R2接近1;参数显著性i检验值均大于2;方程显著性F检验显著。
调整的判定系数为0.999085,比下面的一元回归有明显改善。
根据广东数据得到的五个估计方程的前四个,即劳动报酬LB、固定资产折旧ZJ、生产税净额SE和营业盈余YY分别对国内生产总值GDPS 回归的方程,其回归系数其实就是它们四者占GDPS比例的平均数,这个比例数是随着时间的变化而变化的,所以应该进行下面的二元回归:得到估计方程LB=0.36143886124*GDPS+36.781366735*TZJ=0.163625595483*GDPS-2.83149724876*TSE=0.141354057469*GDPS+1.6517682756*T 估计方程的判定系数R2、参数显著性t检验、方程显著性F检验和调整的判定系数有些比一元回归有改进,表明这些确实应该进行二元回归。
实验三多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】建立我国国有独立核算工业企业生产函数。
根据生产函数理论,生产函数的基本形式为:()ε,,,KLtfY=。
其中,L、K分别为生产过程中投入的劳动与资金,时间变量t反映技术进步的影响。
表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
表3-1 我国国有独立核算工业企业统计资料年份时间t 工业总产值Y(亿元)职工人数L(万人)固定资产K(亿元)1978 1 3289.18 3139 2225.70 1979 2 3581.26 3208 2376.34 1980 3 3782.17 3334 2522.81 1981 4 3877.86 3488 2700.90 1982 5 4151.25 3582 2902.19 1983 6 4541.05 3632 3141.76 1984 7 4946.11 3669 3350.95 1985 8 5586.14 3815 3835.79 1986 9 5931.36 3955 4302.25 1987 10 6601.60 4086 4786.05 1988 11 7434.06 4229 5251.90 1989 12 7721.01 4273 5808.71 1990 13 7949.55 4364 6365.79 1991 14 8634.80 4472 7071.35 1992 15 9705.52 4521 7757.25 1993 16 10261.65 4498 8628.77 1994 17 10928.66 4545 9374.34 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型㈠建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量t : GENR T=@TREND(77) ⒋建立回归模型: LS Y C T L K 则生产函数的估计结果及有关信息如图3-1所示。
图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y7764.06667.06789.7732.675ˆ+++-= (模型1) t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。
回归系数的符号和数值是较为合理的。
9958.02=R ,说明模型有很高的拟合优度,F 检验也是高度显著的,说明职工人数L 、资金K 和时间变量t 对工业总产值的总影响是显著的。
从图3-1看出,解释变量资金K 的t 统计量值为7.433,表明资金对企业产出的影响是显著的。
但是,模型中其他变量(包括常数项)的t 统计量值都较小,未通过检验。
因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除t 统计量最小的变量(即时间变量)而重新建立模型。
㈡建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。
图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为:K L y8345.02085.127.2387ˆ++-= (模型2) t =(-2.922) (4.427) (14.533)9956.02=R 9950.02=R 953.1589=F 从图3-2的结果看出,回归系数的符号和数值也是合理的。
劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。
模型2的拟合优度较模型1并无多大变化,F 检验也是高度显著的。
这里,解释变量、常数项的t 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。
㈢建立非线性回归模型——C-D 生产函数。
C-D 生产函数为:εβαe K AL Y =,对于此类非线性函数,可以采用以下两种方式建立模型。
方式1:转化成线性模型进行估计; 在模型两端同时取对数,得:εβα+++=K L A y ln ln ln ln在EViews 软件的命令窗口中依次键入以下命令:GENR LNY=log (Y ) GENR LNL=log (L ) GENR LNK=log (K ) LS LNY C LNL LNK 则估计结果如图3-3所示。
图3-3 线性变换后的C-D 生产函数估计结果即可得到C-D 生产函数的估计式为:K L yln 6737.0ln 6045.09513.1ˆln ++-= (模型3) t = (-1.172) (2.217) (9.310)9958.02=R 9951.02=R 407.1641=F 即:6737.06045.01424.0ˆK L y= 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。
方式2:迭代估计非线性模型,迭代过程中可以作如下控制: ⑴在工作文件窗口中双击序列C ,输入参数的初始值; ⑵在方程描述框中点击Options ,输入精度控制值。
控制过程:①参数初值:0,0,0;迭代精度:10-3; 则生产函数的估计结果如图3-4所示。
图3-4 生产函数估计结果此时,函数表达式为:0317.101161.197.4721ˆK L y-= (模型4) t =(0.313)(-2.023)(8.647)9840.02=R 9817.02=R可以看出,模型4中劳动力弹性α=-1.01161,资金的产出弹性β=1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。
而且模型的拟合优度也有所下降,解释变量L 的显著性检验也未通过,所以应舍弃该模型。
②参数初值:0,0,0;迭代精度:10-5;图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。
③参数初值:0,0,0;迭代精度:10-5,迭代次数1000;图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为:6649.06110.01450.0ˆK L y = (模型5)t =(0.581)(2.267)(10.486)9957.02=R 9950.02=R 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,9957.02=R ,具有很高的拟合优度,解释变量都通过了显著性检验。
将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。
④参数初值:1,1,1;迭代精度:10-5,迭代次数100;图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。
比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。
若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。
因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。
二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型: ㈠回归系数的符号及数值是否合理; ㈡模型的更改是否提高了拟合优度; ㈢模型中各个解释变量是否显著; ㈣残差分布情况以上比较模型的㈠、㈡、㈢步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。
分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table (图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。
可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。
而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。
模型1的各期残差中大多数都落在σˆ±的虚线框内,且残差分别不存在明显的规律性。
但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。
模型2、模型3、模型5都具有合理的经济意义,都通过了t检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。
但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。
最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。
图3-8 回归方程的残差分析图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布。