风机变频节能计算
- 格式:docx
- 大小:37.55 KB
- 文档页数:3
变频不是到处可以省电,有不少场合用变频并不一定能省电。
作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。
一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。
这是体现节电效果的三个条件。
除此之外,无所谓节不节电,没有什么意义。
变频节能什么是变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。
PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
锅炉风机变频节能方案一、在提倡环保与节能国际前提下,众多厂家的锅炉风机都在运用风门的开度来调节其风量,用风门档板调节风量时,风机长期工作在额定转速下,不可避免其风量(或能量)有相当部分会损失在档板上,存在着能耗较大、设备损坏率高、维修难度大等特点。
如采用变频调速实施对该系统的改造,可发挥该系统的节能潜力。
由于电机轴功率与转速的三次方成正比的关系可知,转速若降低一些,风机轴功率则成三次方关系下降,即风机所损耗的电能大大下降。
在交流调速中,根据交流电机的调速公式,电机转速n=60f(1-s)/p可把调速方式分为三大类:1.改变电动的转差率S。
2.改变电动机的极对数P。
3.改变电源的频率f。
以上三者均可调速,但改变电机的极对数相当困难,并且不能实现无级调速,改变电机的转差率会带来较大的转差损耗,使效益值降低,而且调速范围也受限制.只有改变电源频率的方法,从高速到低速都可保持高效率、宽范围和高精度的调速性能;因此交流调速以变频调速器最为可行。
二、节能理论分析由流体力学原理知,风机的风量Q与转速n成正比,风压H与转速n的平方成正比,所消耗的功率P等于风量Q与风压H之积(即功率与转速的立方成正比,)具体关系表达式:即Q=K1n;H=K2n²;P=Q×H=K1K2n³其中K1,K2,K3——是比例系数当用档板的开度来控制风量大小时,管阻档板阻曲线与功率P变化,由曲线1到曲线路,风量减少了,而功率却没有减少多少。
而通过改变转速n来调节风量情况就不同了。
调节转速时H-Q曲线由曲线1到曲线2,档板开度100%时,管阻曲线不变,功率节省了很多。
节省量,其中n1为调节前转速,n2为调节后转速。
从风机使用的一般性经验我们可以知道:工频状态下用风门(风阀)调节风量的风机在使用过程中的负荷是在50%~100%之间波动;负荷越小风门(风阀)的节流损失就越大,风机电机的空载损耗就显得更加突出,风机效率也就越低;而改为变频调节方式(即电机改变供电频率的方式)就几乎不存在风门的节流损失和风机电机的空载损耗,同时变频装置采用软启动方式也不存在启动冲击电流,对于短路容量有限的厂用电系统也可提高其安全系数。
节能原理及计算方法一、节能原理风机和水泵,前者工作介质为液体,均属于流体机械设备。
下面以风机为例说明它们的工作特性。
特别是离心式风机及水泵,工作特性基本相同。
以下就以风机为例说明他们的调速工作原理。
风机的工作特性图如下:风机的工作特性图由上图可以看出,风机工作的位置,即风机的风量是由风机特性曲线(风压特性)和管网特性曲线(风阻特性)决定的,无论是改变风机的特性曲线,或者是改变管网特性曲线,都可以达到改变风量的目的。
图中:风机特性曲线 HA =kQ12K——风机特性系数;管网特性曲线 HA =Hc-λQ12λ——管网特性系数。
(一)工频工作方式工频工作方式是指泵的特性曲线保持不变,而改变管网特性曲线。
通常采取的方式是保持风机的特性曲线不变,即不改变风机的转速,而用调节挡板改变出风口的大小,达到改变风量的目的。
如下图所示:工频工作方式时风机的工作特性图从图中可以看出,风机工作在A点时,风量为Q1,风压为H1。
保持风机的转速不变,用挡板将风量调节为Q2时,风压将上升到H2,风机工作点变为B点。
由于挡板的节流作用,风道的阻力曲线变为OB。
风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
虽然Q2<Q1,但H3>H1,所以PA与为PB的值变化不大,说明采用工频工作方式时,改变风机的风量,风机的轴功率减小有限。
(二)变频工作方式变频工作方式是指管网特性曲线保持不变,而改变风机的特性曲线。
通常采取的方式是保持管网特性曲线不变,即不改变风机出口的大小,而改变风机的特性曲线,即改变风机的转速,达到改变风量的目的。
如下图所示:风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
Q 2<Q1,而且 H2>H1,所以PA与为PB的值变化较大,说明采用变工频工作方式时,改变风机的风量,风机的轴功率减小很大,节能效果显著。
变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]概述在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。
与实际的工况存在较大的可调整空间。
在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。
同时分析变频器在选型、应用中的注意事项。
1变频调速原理三相异步电动机转速公式为:60fn=式中:n-电动机转速,r/min;f-电源频率,Hz;p-电动机对数s-转差率,从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。
变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。
变频工作原理异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。
电机定子绕组内部感应电动势为U 1≈U 1=4.44U 1UU 11式中U 1-定子绕组感应电动势,V ;1-气隙磁通,Wb ; U -定子每相绕组匝数;U 1-基波绕组系数。
在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。
由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。
若在降低频率的同时降低电压使U 1U 1⁄保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。
这种方式称为恒磁通控制方式。
此时电动机转矩为T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2式中T -电动机转矩,;U 1—电源极对数;U—磁极对数;U—转差率;U2—转子电阻;U2—转子电抗;由于转差率U较小,(U2U⁄)2U22则有T≈U1UU12πU2U(U11)2=UU1U其中U=U1U2πU2(U1 U1)2由此可知:若频率U1保持不变则T∝s;若转矩T不变则s∝1U1⁄;常数由此可知:保持U1U1=⁄常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。
关于风机变频改造的节能计算风机变频改造是一种常见的节能技术,通过改变风机的驱动方式,将传统的恒速供风方式改为变频调速供风方式,能够有效地提高风机的运行效率和控制精度,从而实现节能减排的目的。
在进行风机变频改造时,需要对其节能效果进行计算评估,以确定改造的效果和节能潜力。
风机变频改造的节能计算主要考虑两个方面,即变频调速带来的机械能消耗减少和电能消耗减少。
下面将详细介绍风机变频改造的节能计算方法。
1.机械能消耗减少风机变频调速可以根据实际需要灵活地调整风机的运行转速,避免了传统的恒速运行模式下风机过大的额定负载,降低了系统中的机械能消耗。
机械能消耗的节能计算公式如下:节能率=(1-新风机转速/额定负载转速)×100%其中,新风机转速是风机进行变频改造后的实际转速,额定负载转速是经过计算得到的风机在实际需求工况中的额定转速。
节能率越高,表示通过风机变频改造减少的机械能消耗越多。
2.电能消耗减少风机变频调速还可以避免传统的恒速运行模式下由于流量控制的不准确而造成的额外阻力损失,进而减少系统的电能消耗。
电能消耗的节能计算公式如下:节能率=(1-新风机功率/额定负载功率)×100%其中,新风机功率是风机进行变频改造后的实际功率,额定负载功率是经过计算得到的风机在实际需求工况中的额定功率。
节能率越高,表示通过风机变频改造减少的电能消耗越多。
需要注意的是,风机变频改造的节能计算需要根据实际情况进行,包括风机的型号、负载特性、运行条件等因素的考虑。
在进行节能计算时,还需要获取相应的参数数据,包括风机的额定功率、额定转速、额定流量等信息。
同时,还需要收集对比研究数据,即变频前后的运行参数、节能措施前后的能耗统计数据等,进行综合分析和计算。
风机变频改造的节能计算不仅可以用于风机的节能改造方案的确定,还可以用于节能成本和回报周期的评估。
通过对节能效果的精确计算,可以为企业决策者提供科学、准确的节能改造方案,帮助其合理安排资源,降低能耗成本,提高能源利用效率。
风机水泵负载变频调速节能原理相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。
流量按照相似定律,由连续运动方程流量公式:φπηη⨯⨯⨯⨯⨯=⨯⨯=d D A vm vm vv v q流速公式: 60π⨯⨯=n D v m 式中:q v——体积流量,s m3;ηv——容积效率,实际容积效率约为0.95;A ——有效断面积(与轴面速度vm垂直的断面积),m²;D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ;vm——圆周速度,m/s ;φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95;按照电机学的基本原理,交流异步电动机转速公式: p f s n ⨯⨯-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。
流量、转速和频率关系式:f n q v∞∞⇒ 可见流量和转速的一次方成正比,和频率的一次方成正比。
扬程按照流体力学定律,扬程公式:²21v m H ⨯⨯=ρ 扬程、转速和频率关系式:可见扬程和转速的二次方成正比,和频率的二次方成正比。
式中:H ——水泵或风机的扬程,m ;功率风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。
水泵:H g q Pve⨯⨯⨯=ρ或 风机:P q P ve⨯=可见有效功率和转速的三次方成正比,和频率的三次方成正比。
式中:Pe——有功功率,w ;ρ——流体质量密度,m Kg3;P ——压力,Pa ;电量风机水泵效率:有效功率和轴功率之比。
ηp轴功率:电动机输出给风机水泵的功率。
轴功率(电动机的输出功率)公式: ηρpvshHg q P⨯⨯⨯=⇒水泵ηpvshPq P⨯=⇒风机电动机和风机水泵的传动效率: ηc电动机效率:ηm电量(电动机的输入功率)公式:ηηmcshgP P ⨯=ηηηρpmcvgHg q P⨯⨯⨯⨯⨯=⇒水泵ηηηρpm c gPP⨯⨯⨯=⇒风机节能工频状态下的耗电量计算Pd :电动机功率 ; ηd :电动机效率 ; U :电动机输入电压 ; I :电动机实际运行电流 ;cos φ:功率因子。
变频技术在风机中应用的节能分析作者:李乔来源:《城市建设理论研究》2013年第22期摘要:根据风机在不同工况下的性能曲线,分析了变流量运行时,风机流量(风量)、扬程(压头)、功率(轴功率)与转速之间的关系;根据风机入口风门不同开度的特性曲线和风机等效率曲线以及效率曲线的比对,分析了变频调速过程中风机效率的变化。
介绍了使用变频器变频调速与风门调节的节流对比,阐述了变频调速节能原理和经济效益。
关键字:风机;变频调速;节能中图分类号:TM08 文献标识码:A 文章编号:前言就目前的工厂现状而言,风机是工厂配置的通用设备。
而由于设计选型及节流控制等方面的原因造成了设备损耗和电能浪费。
通风工程设计者对管网阻力计算不够准确,从而造成所选用风机的额定风量远远超过工况实需风量。
这时风机操作只好采用插板节流来增加阻力, 以求减少风量, 使之符合工况要求。
而采用风门调节的变流量控制方式会存在以下几种问题:①设备长期运行,节流损失大,能耗高;②多数为低负荷运行工况,设备负荷得不到有效利用,风机效率低下;③设备维护费用高;④电机的启动电流大,会对电网造成冲击从而影响电网质量;⑤自动化程度低,对风量的控制精度达不到使用要求。
若在风机系统采用高压变频技术,则能根据系统风量的需求有效地调节电机转速达到工艺需求,减少管网损耗,提高风机效率和设备控制精度。
2、风机变频节能原理从流体力学的原理得知,使用感应电动机驱动的风机负载,轴功率P与流量Q,扬程H 的关系为:当电动机的转速由n1变化到n2时,Q、H、P与转速的关系如下:=理论分析可以看出,风机类负载的流量与速度变化成正比,扬程与电动机转速的平方正正比,而风机的轴功率与速度的三次方成正比。
而通过对风机的特性曲线(图1)的分析:可以看出我们通常所用的节流调节和变频调速的变流量控制在输入功率上存在巨大差别。
图1 变频前后的特性曲线图1中所示为风机类负载变频前后的性能曲线,曲线(1)、(2)为风机负载在风门控制的变流量控制下的管网特性曲线,曲线N1、 N1为变频前后风机的特性曲线。
节能计算1. 离心式风机1.1 不考虑压力,调节风量时的能耗比较流量(%)功率%叶片调节液力偶合器变频调速挡板调节图1 风机各调节方式的能耗-流量曲线上述均为百分比,100%流量为风机的额定流量,100%功率为工频额定工况运行时消耗功率(即电机输入功率= 风机额定轴功率/电机效率,电机效率一般为93-96%,额定功率较大者效率较高)。
变频调速时的节能量即为两种调节方式的能耗差值(百分比乘额定消耗功率)。
需要了解的参数:电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速运行工况:现有调节方式、实际需求流量Q、运行电压U、运行电流I(或实际消耗功率P)计算步骤:●电机额定效率ηN = P N/(1.732I N U N COSΦN)式(1-1)●额定消耗功率P IN = N N /ηN 式(1-2)●根据Q/Q N*100%从图1查出变频调速时的节约功率百分比,乘上P IN即为变频运行时的节约功率△P。
●△P 乘上运行时间(小时)即为节约电度数。
1.2 不考虑流量,仅调节压力假设采用变频调速后,不考虑风阻的变化,将压力从工频运行时的H1下调到H2。
需要了解的参数:电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速运行工况:工频运行压力H1、实际需求压力H2、运行电压U、运行电流I(或实际消耗功率P)计算:●计算工频运行时的消耗功率P●计算变频运行时的消耗功率P1=(H2/H1)1.5 *P/0.96式(1-3)●节约功率△P = P – P1●△P 乘上运行时间(小时)即为节约电度数。
运行功率的几种计算方式:●装有功率表:直接查表●装有电度表:P = 电度数(度)/记录时间(小时)●仅知道电流I和电压U:(1-COS2ΦN)I4NP = √3 U ×I2 -————————√(2I N-I)2式(1-4)2. 离心式水泵2. 1 当不考虑压力,仅调节流量时阀门调节功率%流量(%)变频调速图2 水泵不同调节方式的能耗-流量曲线上述均为百分比,100%流量为水泵的额定流量,100%功率为工频额定工况运行时消耗功率(即电机输入功率 = 水泵额定轴功率/电机效率)。
风机变频节能计算
引言:
随着能源资源的日益紧缺和环境污染的加剧,节能减排已经成为全球
范围内的共同关注的议题。
在工业生产中,风机作为一种常见的动力设备,在电力消耗和节能方面具有重要意义。
本文将对风机变频节能进行详细探讨,并介绍风机节能计算的相关内容。
一、风机变频节能原理:
理想的风机工作状态应该是按需提供所需风量和风压,但实际情况下,风机的负载变化往往会导致过量供风和能量浪费。
风机变频控制技术通过
改变风机驱动电机的频率,实现对风机转速的调节,从而提供所需风量和
风压。
这种调节能力可以达到最优风机工作状态,减少不必要的能量消耗,实现节能效果。
二、风机变频节能计算方法:
1.风机性能曲线:
风机性能曲线是风机输出风量和风压之间的关系图。
通过测量风机在
不同转速下的输出风量和风压,可以得到风机性能曲线。
该曲线可以直观
显示风机的工作状态和性能参数。
在风机变频控制中,根据实际需要选择
合适的工作点,从而实现风机的节能运行。
2.节能潜力分析:
风机节能潜力是指在实际运行中,通过风机变频控制技术实现的节能
效果。
节能潜力的分析可以从两个方面入手:电能节约和运行成本节约。
(1)电能节约:
通过变频控制,可以减少电动机的运行频率,降低电能消耗。
具体的
电能节约计算方法是:根据风机的负载率、变频控制前后的平均电能消耗,计算节能百分比。
例如,风机原始工作频率为50Hz时,电能消耗为
1000W,变频后降至45Hz时,电能消耗为800W,则节能百分比为(1000-800)/1000*100%=20%。
(2)运行成本节约:
风机的运行成本主要包括电能消耗、维护成本和停机损失。
通过风机
变频控制,可以降低电能消耗,减少维护频率,缩短停机时间,从而实现
运行成本的节约。
具体的运行成本节约计算方法是:根据风机的负载率、
变频控制前后的运行成本,计算节约的运行成本。
例如,风机原始工作频
率为50Hz时,运行成本为100元/小时,变频后降至45Hz时,运行成本
为80元/小时,则节约的运行成本为(100-80)*运行时间。
三、风机变频节能案例:
下面以工厂中的风机为例,进行具体的风机变频节能计算。
工厂中的风机在原始状态下,工作频率为50Hz,平均电能消耗为
1000W,运行成本为100元/小时。
通过风机性能测试,得到风机的性能曲
线为:
风量(m³/h)=5000-20×风压(Pa)
在实际工作中,需要风量为4000m³/h,风压为500Pa。
通过风机性能
曲线,确定风机运行于27.5Hz时,可以满足工作需求。
根据变频控制前后的电能消耗和运行成本,可以计算节能和运行成本
的节约。
电能节约:
原始电能消耗=1000W,变频后电能消耗=800W
节能百分比=(1000-800)/1000*100%=20%
运行成本节约:
原始运行成本=100元/小时,变频后运行成本=80元/小时
假设变频控制工作时间为8小时,则节约的运行成本=(100-
80)*8=160元
四、结论:
风机变频控制技术是一种有效的节能措施,通过合理选择工作点和控制频率,可以实现风机的最优工作状态,减少能量浪费,达到节能减排的目的。
对于工业生产中常用的风机设备,风机变频节能计算对于节约运行成本和保护环境具有重要意义。