浙教版2017-2018学年八年级数学下册期中试题含答案
- 格式:doc
- 大小:640.00 KB
- 文档页数:7
(第12题)2017-2018学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是()A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a >B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( ) A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). 14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .(第10题)15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程(1)240x x +=; (2)2670x x -+=. -19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0 (1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。
2017-2018学年八年级数学下册期中检测题(时间:100分钟满分:120分)、精心选一选(每小题3分,共30分) 1.下列计算结果正确的是() A. 2+ 5 = 7 B . 3 2- 2 = 32.某小组7位同学的中考体育测试成绩 (满分30分)依次为27, 30, 29, 27, 30, 28, 30,则这组数据的众数与中位数分别是 ()A . 30, 27B . 30, 29C . 29, 30D . 30, 283.学校广播站要招聘 1名记者,小明、小亮和小丽报名参加了 3项素质测试,成绩如F 表:采访写作 计算机 创意设计 小明 70分 60分 86分 小亮90分 75分 51分 小丽60分84分72分现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由 3 :5 : 2变成5 : 3 : 2,成绩变化情况是()A .小明增加最多B .小亮增加最多C .小丽增加最多D .三人的成绩都增加4. 若关于x 的方程x 2 + 2x - 3 = 0与亠=丄有一个解相同,则a 的值为()x + 3 x — a A . 1 B . 1 或—3 C . — 1 D . — 1 或 3 5.若 2v a v 3,则〔(2 — a ) 2— . (a — 3) 2等于() A. 两地气温的平均数相同B. 甲地气温的中位数是 6C C .乙地气温的众数是 4CD .乙地气温相对比较稳定aA. a B A ./ — a C . — ■/— a D . — '-/a8 .已知关于x 的一元二次方程(k — 2)2x 2 + (2k + 1)x + 1 = 0有两个不相等的实数根 k 的取值范围是()C. 2X 5 = 10a7.已知a v b ,化简—-a — b——a D .亠型+疋的结果是(5— 2a B . 1 — 2a C . 2a — 5 D . 2a — 1 甲、乙两地去年A . k> 3B . k>3C . k>3且k半2D . k>4且k-29.王叔叔从帀场上买了一块长80 cm,宽70 cm 的长万形铁皮,准备制作一个工具箱.女口图,他将长方形铁皮的四个角各剪掉一个边长x cm 的正方形后,剩余的部分刚好能围成一个底面积为3000 cm 2的无盖长方体工具箱,根据题意列方程为()A. (80 — x)(70 — X) = 3000B. 80X 70 — 4x 2= 3000 C . (80 — 2x)(70 — 2x)= 3000 2D . 80 X 70 — 4x — (70+ 80)x = 30001 1 110 .若x 为实数,且X 2+ ~2+ 3(X + 一)= 2,则x + -的值为() A . — 4 B . 4 C . — 4 或 1 D . 4 或—1 二、细心填一填(每题4分,共24分) 11 .若代数式73 2x有意义,则x 的取值范围是___.x — 2-12 .已知实数 x , y 满足(x 2+ y 2)2— 9 = 0,则 x 2+ y 2= ____ .人数*13.国家规定“中小学生每天在校体育活动时间不低于1小时” •为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区 300名初中学生.根据调查结果绘制14•数据1, 3, 5,12, a ,其中整数a 是这组数据的中位数,则该组数据的平均数是15 .如果方程2x 2— 2x + 3m — 4 = 0有两个不相等的实数根,那么化简|m — 2| -寸m 2— 8m + 16的结果是 _______ .16. _________________________________________________________________ 已知关于x 的方程x — (a + b )x + ab — 1 = 0, X 1, X 2是此方程的两个实数根 ,现给 出三个结论:①X 1^ X 2;②X 1X 2< ab ;③x/+ X 22v a 2 + b 2.则正确结论的序号是 _________________________________ _ .(填 上你认为正确结论的所有序号 )三、耐心做一做(共66分) 17. (8分)计算或解方程:f组------- 成的统计图(部分)如图所示,其中分组情况是: 1 h < t v 1.5 h ; D 组:t > 1.5 h .根据上述信息 组. A 组:t v 0.5 h ; B 组:0.5 h w t v 1 h ; C 组:,你认为本次调查数据的中位数应落在 000-0 oo Co- 420-86 4 2⑵(2x + 1)2+ 4(2x + 1)+ 3= 0.⑴3 45■ ;5x 3 2318. (6分)同学们已经学习了不少关于二次根式的知识,老师为了解同学们掌握知识的情况,请同学们根据所给条件求式子.25—x2+ .15—x2的值,可达达却把题目看错了,根据条件他得到25 —X2—15- x2= 2 ,你能利用达达的结论求出.25—x2+ 15-X2的值吗?219. (7分)做一个底面积为24 cm ,长,宽,高的比为4:2: 1的长方体•求:(1) 这个长方体的长、宽、高分别是多少?(2) 长方体的表面积是多少?(2) 根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. (7分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元,可售出180个,定价每增加1元,销售量将减少10个;定价每减少1元,销售量将增加10个.因受库存影响,每批进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?22. (9分)已知关于x的一元二次方程x2—2(k—1)x+ k2= 0有两个实数根冷,x2.(1)求实数k的取值范围;⑵是否存在实数k,使X1+ X2= X1X2—5•若存在,求出实数k的值;若不存在,请说明理由.23. (10分)王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算出甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?24. (12分)某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部旅行包的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过550个.(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价一成本)2017-2018学年七年级数学下册期中检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列计算结果正确的是(C )rA. 2+ 5 = 7B. 3 2- 2 = 3C. 2X 5 = 10 。
浙教版八年级数学下册单元测试题全套(含答案)第1章 达标检测卷 (满分100分 时间60分钟)一、选择题(每小题4分,共20分) 1.若为二次根式,则m 的取值范围为( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列式子中,二次根式的个数是( )⑴;⑵;⑶;⑷;⑸;⑹ ; ⑺.A .2 B.3C .4D.53是同类二次根式的是() 4.下列计算正确的有( )①;②; ③;④. A .1个 B .2个C .3个D .4个5,, 中最简二次根式 是( )A .①②B .③④C .①③D .①④ 二、填空题(每小题4分,共20分) 6.化简:. 7.计算:= . 8.在实数范围内分解因式: . 9.比较大小:(填“>”“<”或“=” ).m-3313-12+-x 382)31(-)1(1>-x x 322++x x 694)9)(4(=-⋅-=--694)9)(4(=⋅=--145454522=-⋅+=-145452222=-=-=<)0(82a b a =-322x --10,则它的周长是cm.三、解答题(共60分)11.计算:(每小题5分,共25分) (1)(2(3) (4)(512.(8分)已知一个矩形的长和宽分别是和,求这个矩形的面积.13.(8分)14.(9分) 已知,,求代数式的值.15.(10分)实数p 在数轴上的位置如图,化简 .n m 218)36)(16(3--⋅-1022的值。
互为相反数,求与已知:b a b a b a ∙-++-8632-=x 32+=y 22y xy x ++()222)1(p p -+-参考答案一、选择题1.A 2.C 3.D 4.A 5.C 二、填空题 6. 7. 8. 9.> 10.三、解答题11.(1) (2)6 (3)-24 (4) (5)第2章 达标检测卷 (100分 60分钟 )一、选择题(本大题共9个小题,每小题3分,共27分) 1.下列方程,是关于的一元二次方程的是( ). A. B.C. D.2.方程的根为( ). A. B. C. D.3.解下列方程:(1),(2),(3)x 2+2x +1=0,较适当的方法分别为( ). A.(1)直接开平法方,(2)因式分解法,(3)配方法 B.(1)因式分解法,(2)公式法,(3)直接开平方法 C.(1)公式法,(2)直接开平方法,(3)因式分解法 D.(1)直接开平方法,(2)公式法,(3)因式分解法4.方程的两根的情况是( ). A.没有实数根 B.有两个不相等的实数根 C.有两个相同的实数根 D.不能确定5.若与互为倒数,则实数为( ).b a 22-39194()()3232-+x x 3225+n m 233222b a 258+x 23(1)2(1)x x +=+21120x x+-=20ax bx c ++=2221x x x +=-()()24330x x x -+-=3x =125x =12123,5x x =-=12123,5x x ==()225x -=2320x x --=0322=-+x x 12+x 12-x xA. B. C. D.6.如果是方程的两个根,那么的值为( ).A. -1B. 2C.D.7.若方程有两个相等的实数根,则=( ).A. B. 0 C. 2 D.8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有名同学,那么根据题意,列出方程为( ).A. B. C. D.9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是,则可以列方程为( ).A. B.C. D.二、填空题(本大题共8个小题,每小题3分,共24分)10.方程的解是.11.如果二次三项式是一个完全平方式,那么的值是_______. 12.如果一元二方程有一个根为0,那么. 13.若方程的两个根是和3,则的值分别为.14是同类二次根式,则=____________. 15.已知方程的一个根是1,则另一个根是,的值是.16. 若一元二次方程有两根1和-1,则a +b +c =______,a -b +c =_____. 17.若,则=____________. 三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1) ; (2) .12±1±2±21,x x 0122=--x x 21x x +21-21+0522=+-m x x m 2-813x (1)1035x x +=(1)10352x x -=⨯(1)1035x x -=2(1)1035x x +=x 720)21(500=+x 720)1(5002=+x 720)1(5002=+x 500)1(7202=+x 2310x x -+=221)16x m x -++(m 043)222=-++-m x x m (m =02=++q px x 2-q p ,x 022=-+kx x k 20ax bx c ++=2225120x xy y --=xy26730x x +-=22510x x +-=19.(10分)已知,求的值.20. (10分)已知关于的方程. (1) 当取何值时,方程有两个实数根;(2) 为选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21. (10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的 是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,)0(04322≠=-+y y xy x yx yx +-x 222(1)0x m x m -++=mm十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A2.D3.D4.B5.A6.B7.D8.B9.B 二、填空题 10.11. 12. 13. 14. 2或 15. 16. 0,0 17. 4或三、解答题 18.[解] (1) . (2) .19.[解]原方程可变形为: 即 ∴ 当 当 20.[解] (1)依题意得:△≥0即 ≥0 整理得:≥0 解得:当.(2) 当时,原方程可化为:解得:.21.(1) 60平方米 4平方米 2017年. (2)22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得, x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章 达标检测卷(时间:90分钟 满分:120分)253±125,3m m =-=2m =-1,6p q =-=-1222,1x k =-=32-1213,32x x ==-12x x ==(4)()0+-=x y x y (4)0()0+=-=或x y x y 4=-=或x y x y 45443---=-==+-+,x y y y x y x y y y 0--===++,x y y yx y x y y y224(1)4+-m m 84+m 12≥-m 4=m 210160-+=x x 122,8==x x 10%一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是( )A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )A.8 B .7 C .9 D .106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( ) A .2 2 B .5 C .8 D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x 的值为___.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___; (2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人. 20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图; (2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A 10.B 11. 乙 12.11 13.15314.90 15.2 16.4 17.7 18.nk 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平.22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x甲=(87+86+83+85+79)÷5=84;x乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%.(2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x甲=x乙,S甲2>S乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24.解:(1)B旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2)x A=1+2+3+4+55=3(万人),x B=3+3+2+4+35=3(万人).S A2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A,B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.(3)由题意得5-x100≤4,解得x≥100,100-80=20(元).答:门票价格至少应提高20元.第4章达标检测卷(120分120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0°B.60°C.120°D.150°2.在平行四边形ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD3.若点P(a,2)与Q(-1,b)关于坐标原点对称,则a,b分别为()A.-1,2 B.1,-2 C.1,2 D.-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是()A.1 B.2 C.3 D.45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有()A.1个B.2个C.3个D.4个6.下列图形,既是轴对称图形又是中心对称图形的是( )7.一个多边形的内角和是720°,那么这个多边形是( )A .四边形B .五边形C .六边形D .七边形 8.在四边形ABCD 中,AD ∥BC ,若ABCD 是平行四边形,则还应满足( ) A .∠A+∠C=180° B .∠B+∠D=180° C .∠A+∠B=180° D .∠A+∠D=180°9.已知平行四边形 ABCD 的周长为30cm ,AB :BC=2:3,则AB 的长为( ) A .6cm B .9cm C .12cm D .18cm10.如图,在平行四边形ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数是( )A .7B .8C .9D .11 二、填空题(每小题4分,共40分)11.在四边形ABCD 中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________. 13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E ,F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个条件,使四边形AECF •也是平行四边形.你添加的条件是:___________. 15.如图,在平行四边形ABCD 中,∠A 的平分线交BC 于点E .若AB=10cm ,CD=14cm , 则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________. 18.在平行四边形ABCD 中,AC ,BD 交于点O ,若AB=6,AC=8,则BD 的取值范围是_______. 19.如图,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数是.O20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题(共50分)21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22. (8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23. (10分) 如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE = BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________; ⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24. (12分) 如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.25. (14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。
2017-2018学年浙教版八年级数学下册期中考试数学试题及答案2017-2018学年第二学期八年级数学期中试卷一、选择题1.下列方程中,一元二次方程的是()A.2x-x^2=B.3(x-2)+x=1C.x^2-2xy-3y^2=D.(1-x)/x^2=32.下面这几个图形中,是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个3.把方程x^2-4x-7=0化成(x-m)=n的形式,则m、n的值是()A.2,7B.-2,11C.-2,7D.2,114.若一个多边形的内角和等于720度,则这个多边形的边数是()A.5B.6C.7D.85.一元二次方程x^2+x+2=0的根的情况()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根6.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)。
132 133 134 135 136 137甲班人数(人)。
1.2.4.4.1.2乙班人数(人)。
1.4.1.1.2.2通过计算可知两组数据的方差分别为S甲=2,S乙=2.7,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有()A.1个B.2个C.3个D.4个7.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD。
从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个。
设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)^2=182B.50+50(1+x)+50(1+2x)=182C.50(1+2x)=182D.50+50(1+x)+50(1+x)^2=1829.如图,四边形YABCD的对角线AC、BD相交于O,EF过点O与AD、BC分别相交于E、F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.1010.已知点D与点A(-5,0),B(0,12),C(a,a)是一个平行四边形的四个顶点,则CD长的最小值为()A。
浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A =B 1=C .3+=D 2= 2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A .41度B .42度C .45度D .46度 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是( )A .0m ≠B .14m ≥C .14m ≤D .14m >5.若22440a b b -++++=,则 abc =( ) A .4 B .2C .− 2D .1 6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm 7.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=408.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是 10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .B .C .6D .12二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.12.若x 满足|2017-x|+ =x, 则x -20172=________13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.16.已知y +18,_____.17.如图,在平行四边形ABCD 中,AB ,点E 为AD 的中点,连接BE 、CE,且BE =BC,过点C 作CF∠BE,垂足为点F,若BF =2EF,则BC 的长=________.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)18.解方程(1)(1)(2)1x x x +-=+ 24x -=19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.20.计算:|(2)3+-21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩?(2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A=B1=C.3+=D=[答案]D[分析]直接利用二次根式的加减运算法则分别计算得出答案.[详解]解:A无法合并,故此选项错误;B无法合并,故此选项错误;C、3无法合并,故此选项错误;D=故此选项正确;故选D.[点睛]此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A.41度B.42度C.45度D.46度[答案]C[分析]将用电量从小到大排列,再根据中位数的定义计算.解:将用电量从小到大排列为:42,42,42,42,42,42,45,45,45,50,50,50,50,50,共有3+5+6=14户,则中位数为:(45+45)÷2=45度,故选C .[点睛]本题考查了中位数,解题的关键是掌握中位数的求法.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .[答案]A[分析]根据轴对称图形和中心对称图形的定义进行判断即可;[详解]A 、既是轴对称图形又是中心对称图形,符合题意;B 、既不是轴对称图形也不是中心对称图形,不符合题意;C 、是轴对称图形但不是中心对称图形,不符合题意;D 、不是轴对称图形是中心对称图形,不符合题意;故选:A .[点睛]本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键;4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是A .0m ≠B .14m ≥C .14m ≤D .14m > [答案]C[分析]由方程有实数根即△=b 2﹣4ac≥0,从而得出关于m 的不等式,解不等式即可得答案.[详解]△关于x 的一元二次方程()22210x m x m --+=有实数根, △△=b 2﹣4ac≥0,即[-(2m -1)]2-4m 2≥0,解得:m≤14, [点睛]本题主要考查根的判别式,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2﹣4ac,当△>0时,方程有两个不相等得实数根;当△=0时,方程有两个相等得实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的根与判别式间的关系是解题的关键.5.若22440a b b -++++=,则 abc =( ) A .4B .2C .− 2D .1 [答案]C[分析] 先根据绝对值,完全平方式以及二次根式的非负性,求出a,b,c 的值,进而即可求解.[详解]△2|2|44a b b -+++△2|2|(2)0a b -+++=,△|2|a -=0,2(2)b +0=, 即: a=2,b=-2,c=12, △abc =2×(-2)×12=-2. 故选C .[点睛] 本题主要考查绝对值,完全平方式以及二次根式的非负性,根据非负性,求出a,b,c 的值,是解题的关键.6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm[答案]A[分析] 根据在□ABCD 中,AE 平分△BAD,得到△BAE=△AEB,即AB=BE,即可求出EC 的长度.[详解]△在□ABCD 中,AE 平分△BAD,△△DAE=△BAE,△DAE=△AEB,△△BAE=△AEB,△AB=BE,△AD=5cm,AB=3cm,△BE=3cm,BC=5cm,△EC=5-3=2cm,故选:A.[点睛]本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.7.如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A.32x+2x2=40B.x(32+4x)=40C.64x+4x2=40D.64x﹣4x2=40[答案]B[分析]设小路的宽度为x米,则小正方形的边长为2x米,根据小路的横向总长度(20+2x)米和纵向总长度(12+2x)米,根据矩形的面积公式可得到方程.[详解]解:设道路宽为x米,则中间正方形的边长为2x米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B.[点睛]考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.8.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个[答案]B[分析] 利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.[详解] 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =,12AE BE BC ∴==, AE CE ∴=,故△错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故△正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故△不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故△正确; 故正确的个数为2个,故选:B .[点睛]此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE ∆是等边三角形是关键.9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 [答案]C[分析] 根据二次根式的性质分析即可得出答案.[详解]解:,m 、n 是正整数, △m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C .[点睛]本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A.B .C .6 D .12[答案]A[分析] 设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =从而可得CD =,最后利用平行四边形的面积公式即可得.[详解]设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=, 909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .[点睛]本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.[答案]8 2[分析] 样本方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.[详解] 解:由于22221281[(2)(2)(2)]8S x x x =-+-+⋯+-,所以该组数据的样本容量是8,该组数据的平均数是2.故答案为:8,2.[点睛]本题考查了方差,样本容量,平均数,熟练记住公式:2222121[()()()]n S x x x x x x n=-+-+⋯+-中各个字母所代表的含义.12.若x 满足|2017-x|+ =x, 则x -20172=________[答案]2018[分析]根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题. [详解]解:由条件知,x -2018≥0, 所以x≥2018,|2017-x|=x -2017.所以x -2017+ =x,即 =2017,所以x -2018=20172 ,所以x -20172=2018,故答案为:2018.[点睛]本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.[答案]12a [分析]延长BC ,使BE AD =,根据题意先证明四边形ABED 是平行四边形,可解得111222BC AD BE b ===,继而得到C 是BE 的中点,再结合中位线的性质解题即可.解:延长BC ,使BE AD =,//AD BC∴四边形ABED 是平行四边形,△DE=AB,,2AB a AD BC b ===111222BC AD BE b ∴=== C ∴是BE 的中点, M 为BD 的中点,111222CM DE AB a ∴=== 12CM a ∴= 故答案为:12a . [点睛]本题考查平行四边形的判定与性质、中位线的性质等知识,是重要考点,难度较易,掌握相关知识、作出正确的辅助线是解题关键.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______.[答案]2021根据题意得a 2+a -2022=0,即a 2+a=2022,利用根与系数的关系得到a+b=-1,代入整理后的代数式求值.[详解]解:a,b 分别是方程x 2+x -2022=0的两个实数根,△a+b=-1,a 2+a -2022=0,△a 2+a=2022,故a 2+2a+b=a 2+a+(a+b)=2022-1=2021,故答案为:2021.[点睛]本题主要考查了一元二次方程的根,根与系数的关系,一元二次方程20ax bx c ++=(0a ≠) 的根与系数的关系为12b x x a +=-,12c x x a=. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.[答案]3或4.[分析]分等腰三角形的腰长为3和底边为3两种情形求解即可.[详解]当等腰三角形的腰长为3时,则另一边长为3,△另两边长是关于x 的方程240x x k -+=的两个根,△x=3是方程240x x k -+=的根,△23430k -⨯+=,△2430x x -+=,△x=3或x=1,△等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,△另两边长是关于x 的方程240x x k -+=的两个根,△2(4)40k --=,△k=4,△2440x x -+=,△122x x ==,△等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.[点睛]本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.16.已知y +18,_____.[答案][分析]首先由二次根式有意义的条件求得x =8,则y =18,然后代入化简后的代数式求值.[详解]解:由题意得,x﹣8≥0,8﹣x≥0,解得,x=8,则y=18,△x>0,y>0,△把x=8, y=18代入=﹣=故答案为:[点睛]本题考查了二次根式有意义的条件和二次根式的化简求值,解题关键是根据二次根式有意义的条件确定x、y的值,能够熟练的运用二次根式的性质化简.17.如图,在平行四边形ABCD中,AB,点E为AD的中点,连接BE、CE,且BE=BC,过点C作CF∠BE,垂足为点F,若BF=2EF,则BC的长=________.[答案][分析]过点C 作CG AD ⊥于点G,由平行四边形的性质可得://AD BC ,AB =,AD=BC,由平行线性质可得:BCE DEC ∠=∠,由BE =BC 可得:BCE BEC ∠=∠,进而可得=BEC DEC ∠∠,用AAS 可证EFC EGC ≅,可得EF=EG,FC=GC,由BF =2EF 可设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,由勾股定理可求FC 的长度,故可得CG 和DG 的长度, 在Rt CDG 中,由勾股定理可列方程解出x 即可求出.[详解]如图所示,过点C 作CG AD ⊥于点G,△四边形ABCD 为平行四边形,△//AD BC ,AB =△BCE DEC ∠=∠,△BE =BC,△BCE BEC ∠=∠,△=BEC DEC ∠∠,又△90EFC EGC ∠=∠=︒,EC=EC,△EFC EGC ≅,△EF=EG,FC=GC,△BF =2EF,△设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,FC ==,,EG=EF=x ,△E 为AD 中点, △ED= 12BC= 32x , △DG= 3122x x x -=,在Rt CDG 中,DG=12x ,△)22212x ⎛⎫+= ⎪⎝⎭,解得:3x =,△BC=3x =故答案为:[点睛]本题主要考查了全等三角形的判定与性质,勾股定理,平行四边形的性质,根据已知条件作出适当的辅助线构造直角三角形是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.解方程(1)(1)(2)1x x x +-=+ 24x -=[答案](1)11x =-,23x =;(2)1x =,2x =[分析](1)先将方程化为一般式,再利用因式分解法解题;(2)先将方程化为一般式,再利用配方法解题.[详解]解:(1)(1)(2)1x x x +-=+整理得,2230x x --=(3)(+1)=0x x -121,3x x ∴=-=;24x -=240x --=240x ∴--=2(60x ∴-=2(6x ∴-=x ∴=12x x ∴==[点睛]本题考查解一元二次方程,涉及因式分解法、配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.[答案](1)3x2x+4=0;(2)见解析[分析](1)由a=3,b=4,由a2+b2=c2求出c=±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.[详解](1)解:由a2+b2=c2可得:当a=3,b=4时,c=±5,相应的勾系一元二次方程为3x2x+4=0;(2)证明:根据题意,得△=2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0△△≥0,△勾系一元二次方程ax2=0(a≠0)必有实数根.[点睛]本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.20.计算:|(2)3+-[答案]3;(2)-[分析](1)分别化简各项,再作加减法;(2)利用完全平方公式和平方差公式展开,再作加减法.[详解]解:+=452+3;(2)3+-=2338+--=-[点睛]本题考查了二次根式的混合运算,解题的关键是掌握运算法则.21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?[答案](1)28,(2)1.5元,1.8元;(3)960[分析](1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.[详解]解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.[点睛]本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩? (2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?[答案](1)500吨;(2)300吨[分析](1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩,根据题意列不等式即可求解;(2)设每年在网络平台上销售了m 吨“留香瓜”,根据题意列方程即可求解.[详解]解:(1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩.由题意,得1101000(600)810004x x ⨯-≤⨯⨯ 解之得:x 500≥答:利用电商平台进行销售前,每年至少有500吨“留香瓜”卖给了水果商贩.(2)本地自产自销“留香瓜”的销量按(1)问中的最大值为:600-500=100(吨)设每年在网络平台上销售了m 吨“留香瓜”.则101000100201000m ⨯⨯+⨯+81000(500)9200000100m m ⎫⎛+⨯-= ⎪⎝⎭解得11400m =(舍去),2300m =,答:每年在网络平台上销售了300吨“留香瓜”.[点睛]本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是理清题目中的数量关系,列出方程或不等式.23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.[答案](1)t=5;(2)t=9;(3)t=15[分析](1)由平行四边形的性质得出DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由题意得出方程,解方程即可;(2)当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由梯形面积公式得出方程,解方程即可;(3)当10.5≤t <16时,点P 到达C 点返回,由梯形面积公式得出方程,解方程即可.[详解]解:(1)△四边形PQDC 是平行四边形,△DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,如图1所示:△DQ=AD-AQ=16-t,CP=21-2t△16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.[点睛]本题是四边形综合题目,考查了直角梯形的性质、平行四边形的判定与性质、梯形的面积等知识,熟练掌握直角梯形的性质和平行四边形的判定与性质是解题的关键.。
浙教版八年级(下)数学期中考试卷含答案
一、单选题
1.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()
A.45°B.50°C.55°D.60°
2.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()
A.B.C.D.
3.已知是一元二次方程的一个解,且,则的值为()
A.B.0C.5D.10
4.下列命题错误的是()
A.平行四边形的对角线互相平分B.矩形的对角线相等
C.对角线互相垂直平分的四边形是菱形D.对角线相等的四边形是矩形
5.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.
这15名员工每人所创年利润的众数、平均数分别是
A.10,5B.7,8C.5,6.5D.5,6
6.下列说法中,不正确的是()
A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴
C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心
7.二次根式有意义时,x的取值范围是()
A.B.C.D.
8.若函数的值随自变量的增大而增大,则函敷的图象大致是()A.B.
C.D.
9.某校为了了解学生课外阅读情况,随机调查了50名学生平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( )
A.1小时B.0.9小时C.0.5小时D.1.5小时
10.一元二次方程总有实数根,则m应满足的条件是()
A.B.C.D.
二、填空题。
绝密★启用前2017--2018学年度第二学期 浙教版八年级期中考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分=-2 B. =-2=±=±22.(本题3 ) A. a=b-1 B. a=b+1 C. a+b=1 D. a+b=-13.(本题3分)若a =, b =,则a 、b 两数的关系是( )A. a b =B. 5ab =C. a b 、互为相反数D. a b 、互为倒数4.(本题3分)已知关于x 的方程x 2+3x +a =0有一个根为-2,则另一个根为A. 5B. -1C. 2D. -5 5.(本题3分)(2017山东烟台第10题)若是方程的两个根,且,则的值为( ) A.或2 B. 1或C.D. 16.(本题3分)(2017湖南常德第3题)一元二次方程3x 2−4x +1=0的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等的实数根D. 两个不相等的实数根 7.(本题3分)从一块正方形铁皮的四角上各剪去一个边长为3cm 的小正方形,制成一个无盖的盒子,若盒子的容积为300cm 3,则铁皮的边长为( ) A. 16cm B. 14cm C. 13cm D. 11cm均数均是9.2环,方差分别为s 甲2=0.56,s 乙2=0.60,s 丙2=0.50,s 丁2=0.45,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁 9.(本题3分)数据3,2,4,2,5,3,2的中位数和众数分别是 ( ) A. 2,3 B. 4,2 C. 3,2 D. 2,2 10.(本题3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是43二、填空题(计32分)11.(本题4分)(÷.12.(本题4分)如果,3,那么x 2y+xy 2=________.13.(本题4分)若正三角形的边长为,则这个正三角形的面积是_______cm 2。
浙教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 102.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,103.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−24.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b5.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√56.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,167.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 78.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√39.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.10.①若a+b+c=0,则b2−4ac≥0;11.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;12.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;13.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)214.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③15.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,每小题3分,共21分)16.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.17.已知a=√5+1,则代数式a2−2a+7的值为______.18.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.19.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.20.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.21.22.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.23.24.25.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)26.解方程:27.(1)x(x+2)=2x+4;(2)3x2−x−2=0.)−2;28.(1)√9+(−1)2019+(6−π)0−(−1229.(2)|√3−3|−(2−√3)2−√27.30.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:31.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.32.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接33.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,34.CF.35.(1)求证:四边形AFCD是平行四边形.,求AB的长.36.(2)若GB=3,BC=6,BF=3237.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.38.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.39.40.(1)求证:四边形AEFD是平行四边形;41.(2)当t为何值时,△DEF为直角三角形?请说明理由.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)43.一个多边形的外角和是内角和的2,这个多边形的边数是()7A. 7B. 8C. 9D. 10[答案]C[解析]解:设这个多边形的边数为n,(n−2)180°=360°,依题意得:27解得n=9,故选:C.设这个多边形的边数为n,由n边形的内角和是(n−2)⋅180°,多边形的外角和是360°列出方程,解方程求出n的值即可.本题考查了多边形内角与外角,掌握n边形的内角和是(n−2)⋅180°,多边形的外角和是360°是解题的关键.44.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数、中位数、众数分别是()A. 27.6,10,20B. 27.6,20,10C. 37,10,10D. 37,20,10[答案]B×(5×6+10×17+20×14+50×8+100×5)= [解析]解:这组数的平均数是15027.6;=20,把这些数从小到大排列,最中间两个数的平均数20+202这组数据中,10出现次数17次,故众数为10.故选:B.根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.本题考查了平均数和中位数、平均数和众数,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).45.一元二次方程x2=2x的根为()A. x=0B. x=2C. x=0或x=2D. x=0或x=−2[答案]C[解析]解:∵x2=2x,∴x2−2x=0,则x(x−2)=0,∴x=0或x−2=0,解得x1=0,x2=2,故选:C.移项后利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.46.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b[答案]D[解析]解:∵ab<0,−a2b≥0,∴a>0,∴b<0∴原式=|a|√−b,=a√−b,故选:D.根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.47.已知x=√5+1,y=√5−1,则x2+2xy+y2的值为()A. 20B. 16C. 2√5D. 4√5[答案]A[解析]解:当x=√5+1,y=√5−1时,x2+2xy+y2=(x+y)2=(√5+1+√5−1)2=(2√5)2=20,故选:A.原式利用完全平方公式化简,将x与y的值代入计算即可求出值.此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.48.九(1)班“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别为4,6,8,16,16,则这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,16[答案]A[解析][分析]本题考查了中位数和众数,解答本题的关键是掌握众数和中位数的定义,属于基础题.根据中位数和众数的定义求解.[解答]解:这组数据的中位数为:8,众数为:16.故选:A.49.等腰三角形的一边长是3,另两边的长是关于x的方程x2−4x+k=0的两个根,则k的值为()A. 3B. 4C. 3或4D. 7[答案]C[解析][分析]本题考查了根的判别式、一元二次方程的解、等腰三角形的性质、三角形三边关系以及根与系数的关系,分3为腰长及3为底边长两种情况,求出k值是解题的关键.当3为腰长时,将x=3代入原一元二次方程可求出k的值;当3为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出k值,利用根与系数的关系可得出两腰之和,将其与3比较后可得知该结论符合题意.[解答]解:当3为腰长时,将x=3代入x2−4x+k=0,得:32−4×3+k=0,解得:k=3;当3为底边长时,关于x的方程x2−4x+k=0有两个相等的实数根,∴△=(−4)2−4×1×k=0,解得:k=4,此时两腰之和为4,4>3,符合题意.∴k的值为3或4.故选:C.50.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A. 14√3B. 10√3C. 7√3D. 112√3[答案]A[解析]解:过G作GH⊥AD于点H,交BC于点I.则HI=AB⋅sinB=6×√32=3√3,S平行四边形ABCD=8×3√3=24√3.∵四边形ABCD是平行四边形, ∴AD//BC,∴∠DAE=∠AEB,又∵∠DAE=∠BAE,∴∠BAE=∠AEB,∴BE=AB=6,同理,CF=CD=AB=6,∴EF=BE+CF−BC=6+6−8=4, ∵AD//BC,∴△ADG∽△EFG,∴HGGI =ADEF=2,∴HG=2√3,GI=√3,则S△ADG=12AD⋅HG=12×8×2√3=8√3,S△EFG=12EF⋅GI=12×4×√3=2√3,∴S阴影=S平行四边形ABCD−S△ADG−S△EFG=24√3−8√3−2√3=14√3.故选:A.首先过G作GH⊥AD于点H,交BC于点I,则HI是平行四边形的高,求得平行四边形的面积,然后根据平行线的性质,以及角平分线的定义证得∠BAE=∠AEB,则BE=AB,同理求得CF的长,则EF即可求得,根据△ADG∽△EFG,相似三角形对应边上的高的比等于相似比,即可求得HG和GI,求得△ADG和△EFG的面积,根据S阴影=S平行四边形ABCD−S△ADG−S△EFG求解.本题考查了平行线的性质,等腰三角形的判定方法,等角对等边,以及相似三角形的判定与性质,求得HG和GI的长是关键.51.对于一元二次方程ax2+bx+c=0(a≠0),下列说法.52.①若a+b+c=0,则b2−4ac≥0;53.②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;54.③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;55.④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)256.其中正确的()A. 只有①②B. 只有①②④C. ①②③④D. 只有①②③[答案]B[解析]解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2−4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=0−4ac>0∴−4ac>0则方程ax2+bx+c=0的判别式△=b2−4ac>0∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0∴c(ac+b+1)=0若c=0,等式仍然成立但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=−b+√b2−4ac2a 或x0=−b−√b2−4ac2a∴2ax0+b=√b2−4ac或2ax0+b=−√b2−4ac∴b2−4ac=(2ax0+b)2故④正确.故选:B.按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案.本题主要考查了一元二次方程的实数根与判别式的关系,牢固掌握二者的关系并灵活运用,是解题的关键.57.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD=AC⋅CD;④S四边形OECD =32S△AOD,其中成立的个数为()A. 1个B. 2个C. 3个D. 4个[答案]C[解析]解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD//BC,∠ABC=∠ADC=60°,OB=OD,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB ∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵AB=12BC,∴EC=AE,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;∵∠BAD=120°,∠CAD=30°,∴∠BAC=90°,∴BO>AB,∴OD>AB,故②错误;∴S▱ABCD=AB⋅AC=AC⋅CD,故③正确;∵∠BAC=90°,BC=2AB,∴E是BC的中点,∴S△BEO:S△BCD=1:4,∴S四边形OECD:S△BCD=3:4,∴S四边形OECD:S▱ABCD=3:8,∵S△AOD:S▱ABCD=1:4,∴S四边形OECD =32S△AOD,故④正确.故选:C.结合平行四边形的性质可证明△ABE为等边三角形,由AB=12BC可判定①,证明∠BAC=90°,可判定②;由平行四边形的面积公式可判定③;利用三角形中线的性质结合三角形的面积可求解判定④.本题主要考查平行线的性质,直角三角形的性质,三角形的面积,灵活运用三角形的面积解决问题是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分)58.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克______.[答案]7.2元=7.2(元/千克),[解析]解:根据题意售价应该定为6×5+7×10+8×105+10+10故答案为7.2元.平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.本题考查的是加权平均数的求法.本题易出现的错误是求6、7、8这四个数的平均数,对平均数的理解不正确.59.已知a=√5+1,则代数式a2−2a+7的值为______.[答案]11[解析]解:a2−2a+7=a2−2a+1+6=(a−1)2+6,当a=√5+1时,原式=5+6=11,故答案为:11.首先利用完全完全平方把式子进行变形,然后再代入a的值进行计算即可.此题主要考查了二次根式的化简求值,关键是掌握完全平方公式.60.某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为______.×20×30[答案](30−2x)(20−x)=34×20×30,[解析]解:设花带的宽度为xm,则可列方程为(30−2x)(20−x)=34×20×30.故答案为:(30−2x)(20−x)=34矩形空地的面积可得.根据剩余空白区域的面积=34本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.61.关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,则实数m的取值范围是______.[答案]m<3[解析][分析]本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.[解答]解:∵关于x的一元二次方程x2−2√3x+m=0有两个不相等的实数根,∴△=(−2√3)2−4×1×m>0,∴m<3.故答案为:m<3.62.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是______.63.[答案]120°[解析]解:∵点P是对角线BD的中点,点E、F分别是AB、CD的中点,∴PF=12BC,PE=12AD,又AD=BC,∴PE=PF,∴∠PFE=∠PEF=30°, ∴∠EPF=120°,故答案为:120°.根据三角形中位线定理得到PF=12BC,PE=12AD,根据题意得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.64.如图,将□ABCD沿对角线BD折叠,使点A落在点Aˈ处.若∠1=∠2=48°,则∠Aˈ的度数为________.65.66.[答案]108°[解析][分析]本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求∠1=24°,再由三角形内角和定理求出∠A,即可得到结果.出∠BDG=∠DBG=12[解答]解:∵AD//BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=48°,∴∠ADB=∠BDG=24°,又∵∠2=48°,∴△ABD中,∠A=108°,∴∠A′=∠A=108°,故答案为108°.67.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=√3,将△ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为____.[答案]2或3[解析][分析]本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论.在▱ABCD中,AB<BC,要使△AB′D是直角三角形,有两种情况:∠B′AD=90°或∠AB′D=90°,画出图形,分类讨论即可.[解答]解:当∠B′AD=90°,AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD//BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=√3,∴∠AB′C=30°,∴GC=12B′C=12BC,∴G是BC的中点,在Rt△ABG中,BG=√32AB=√32×√3=32,∴BC=3;当∠AB′D=90°时,如图2,设AD交CB′于O.∵AD=BC,BC=B′C,∴AD=B′C,∵∠1=∠2=∠3,∴OA=OC,∴OB=OD,∴∠4=∠5,∵∠AOC=∠DOB′,∴∠2=∠5,∴AC//B′D,∴四边形ACDB′是等腰梯形, ∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=√3,∴BC=AB÷√32=√3×√3=2,∴当BC的长为2或3时,△AB′D是直角三角形.故答案为2或3.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)68.解方程:69.(1)x(x+2)=2x+4;70.(2)3x2−x−2=0.[答案]解:(1)∵x(x+2)=2(x+2),∴x(x+2)−2(x+2)=0,则(x+2)(x−2)=0,∴x+2=0或x−2=0,解得x1=−2,x2=1;(2)∵3x2−x−2=0,∴(x−1)(3x+2)=0,∴x−1=0或3x+2=0,解得x1=1,x2=−23.[解析]利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.)−2;71.(1)√9+(−1)2019+(6−π)0−(−1272.(2)|√3−3|−(2−√3)2−√27.)−2[答案]解:(1)√9+(−1)2019+(6−π)0−(−12=3+(−1)+1−4=−1;(2)|√3−3|−(2−√3)2−√27=3−√3−(4−4√3+3)−3√3=3−√3−7+4√3−3√3=−4.[解析](1)根据有理数的乘方、零指数幂和负整数指数幂可以解答本题;(2)先化简,然后根据二次根式的加减法可以解答本题.本题考查二次根式的混合运算、有理数的乘方、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.73.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:74.根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.[答案]9 9 8 10[解析]解:(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)a=9;b=9;c=8;d=10,故答案为:9,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.(1)设一班C等级的人数为x,列方程求出C等级的人数,再补全统计图即可;(2)根据中位数、众数的概念分别计算即可;(3)先比较一班和二班的平均分,再比较一班和二班的中位数,即可得出答案.此题考查了中位数、平均数、众数,关键是掌握中位数、平均数、众数的概念和有关公式,会用来解决实际问题.75.如图,在△ABC中,过点C作CD//AB,E是AC的中点,连接76.DE并延长,交AB于点F,交CB的延长线于点G,连接AD,77.CF.78.(1)求证:四边形AFCD是平行四边形.79.(2)若GB=3,BC=6,BF=3,求AB的长.2[答案]解:(1)∵E是AC的中点, ∴AE=CE,∵AB//CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵{∠AFE=∠CDE ∠AEF=∠CED AE=CE,∴△AEF≌△CED(AAS),∴AF=CD,又AB//CD,即AF//CD,∴四边形AFCD是平行四边形;(2)∵AB//CD,∴△GBF∽△GCD,∴GBGC =BFCD,即33+6=32CD,解得:CD=92,∵四边形AFCD是平行四边形,∴AF=CD=92,∴AB=AF+BF=92+32=6.[解析](1)由E是AC的中点知AE=CE,由AB//CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB//CD即可得证;(2)证△GBF∽△GCD得GBGC =BFCD,据此求得CD=92,由AF=CD及AB=AF+BF可得答案.本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.80.已知x=2是关于x的方程x2−(5+m)x+5m=0的一个根.(1)求m的值;(2)若这个方程的另一个根为整数x2,且2<x2<6,这两个根恰好是等腰三角形ABC的两条边长,求△ABC的周长.[答案]解:(1)将x=2代入方程,得4−2(5+m)+5m=0,解得m=2;(2)由(1)得方程:x2−7x+10=0.∵x2为整数,且2<x2<6,∴可找出x2=5是方程x2−7x+10=0的另一个根.∵这两个根恰好是等腰三角形ABC的两条边长,∴三边长只能为2,5,5,∴△ABC的周长=2+5+5=12.[解析]本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系,等腰三角形的性质.(1)把x=2代入方程x2−(5+m)x+5m=0得4−2(5+m)+5m=0,然后解关于m 的方程即可;(2)方程化为x2−7x+10=0,结合方程的另一根2<x2<6且为整数,可得x2=5,根据三角形三边的关系得到等腰三角形ABC的腰长为5,底边长为2,然后计算△ABC的周长.81.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.82.83.(1)求证:四边形AEFD是平行四边形;84.(2)当t为何值时,△DEF为直角三角形?请说明理由.[答案](1)证明:∵∠B=90°,∠A=60°,∴∠C=30°,AC=30,∴AB=12由题意得,CD=4t,AE=2t,∵DF⊥BC,∠C=30°,CD=2t,∴DF=12∴DF=AE,∵DF//AE,DF=AE,∴四边形AEFD是平行四边形;(2)当∠EDF=90°时,如图①,∵DE//BC,∴∠ADE=∠C=30°,∴AD=2AE,即60−4t=2t×2,,解得,t=152当∠DEF=90°时,如图②,∵AD//EF,∴DE⊥AC,∴AE=2AD,即2t=2×(60−4t),解得,t=12,或12时,△DEF为直角三角形.综上所述,当t=152[解析](1)根据三角形内角和定理得到∠C=30°,根据直角三角形的性质求出DF,得到DF=AE,根据平行四边形的判定定理证明;(2)分∠EDF=90°、∠DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.。
2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)1 / 192017-2018学年浙江省杭州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 在二次根式√1x−3中,字母x 的取值范围是( )A. x ≥3B. x >3C. x ≤3D. x ≥−32. 若x =1是方程x 2-ax +3=0的一个根,那么a 值为( )A. 4B. 5C. −4D. −5 3. 下列计算正确的是( )A. √8−√2=√2B. √2+√3=√5C. √2×√3=6D. √8÷√2=4 4. 2013年1月份我国多地雾霾天气频发,部分地区平均雾霾天数统计如下:省份 江苏 北京 浙江 安徽 山东 天数(天)241513108这五省1月份雾霾天数的平均数与中位数分别是( ) A. 14,13 B. 15,13 C. 14,14 D. 14,15 5. 一个n 边形的内角和等于它的外角和,则n =( )A. 3B. 4C. 5D. 66. 某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x ,根据题意列出的方程是()A. 100(1+x)2=280B. 100(1+x)+100(1+x)2=280C. 100(1−x)2=280D. 100+100(1+x)+100(1+x)2=2807. 如图O 是边长为9的等边三角形ABC 内的任意一点,且OD ∥BC ,交AB 于点D ,OF ∥AB ,交AC 于点F ,OE ∥AC ,交BC 于点E ,则OD +OE +OF 的值为( ) A. 3 B. 6 C. 8 D. 9 8. 关于x 的方程(a -6)x 2-8x +6=0有实数根,则a 的取值范围是( )A. a <263且a ≠6B. a >263且a ≠6C. a ≤263D. a ≤263且a ≠69. 如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A. y =x −1B. y =45x −45C. y =x −1D. y =3x −310. 如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD =AF ;④S △ABE =S △CEF 其中正确的是( )A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数n满足2√3<n<3√2,则n的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则m2−7m+18m2+1=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+√3,y=2-√3,求(1x +1y)(1x-1y)的值.(2)若√5的整数部分为a,小数部分为b,写出a,b的值并计算a−1b-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-14x=0(2)(x-1)(2x+3)=1.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)3 / 1919. 某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20. 如图,在四边形ABCD 中,AB =AD ,CB =CD ,对角线AC ,BD相交于点O ,下列结论中:①∠ABC =∠ADC ;②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD 的两组对角;④四边形ABCD 的面积S =12AC •BD . (1)写出正确结论的序号; (2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版) 5 / 19(2)当P 、C 两点的距离为√29时,求t 的值.(3)动点M 从点C 出发以每秒2厘米的速度在射线CB 上运动.点M 与点P 同时出发,且当点P 运动到终点D 时,点M 也停止运动.是否存在时刻t ,使得S △PMD =17120S △ABC ?若存在,请求出t 的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】7/ 19解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)故选:D.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.9/ 19故选:C.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD 与△ABD等底(AB=CD)等高(AB 与CD间的距离相等),得出S△FCD=S △ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,11/ 19则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】13/ 19解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=1x2-1 y2=y2−x2x2y2=(y+x)(y−x)(xy)2,∵x=2+√3,y=2-√3,∴x+y=4、y-x=-2√3、xy=1,则原式=4×(−2√3)12=-8√3;(2)∵2<√5<3,∴a=2、b=√5-2,∴a−1b-ab=√5−2-2(√5-2)=√5+2-2√5+4=6-√5.【解析】2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版) 15 / 19(1)将原式变形为,再根据x 、y 的值计算出y+x 、y-x 、xy 的值,继而代入可得;(2)由题意得出a 、b 的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x 2-14x =0,x (2x -14)=0, 则x =0或2x -14=0,解得x 1=0,x 2=18;(2)(x -1)(2x +3)=1,2x 2+x -4=0,解得:x 1=−1+√334,x 2=−1−√334. 【解析】(1)提取公因式x ,即可得到x (2x-)=0,再解两个一元一次方程即可; (2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC 和△ADC 中,∵{AB =AD BC =CD AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①结论正确;②∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∵AB =AD ,∴OB =OD ,AC ⊥BD ,而AB 与BC 不一定相等,所以AO 与OC 不一定相等,故②结论不正确;③由②可知:AC 平分四边形ABCD 的∠BAD 、∠BCD ,而AB 与BC 不一定相等,所以BD 不一定平分四边形ABCD 的对角;故③结论不正确;④∵AC ⊥BD ,∴四边形ABCD 的面积S =S △ABD +S △BCD =12BD •AO +12BD •CO =12BD •(AO +CO )=12AC •BD . 故④结论正确;【解析】①证明△ABC ≌△ADC ,可作判断;②③由于AB 与BC 不一定相等,则可知此两个选项不一定正确; ④根据面积和求四边形的面积即可.2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】17/ 19(1)利用AB 、EF ,填空相交于点P ,如图2,利用平行四边形的性质得到PA=PB ,然后根据等腰三角形的性质可判断OP 平分∠AOB ;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB 的平分线ON . 本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质. 23.【答案】解:(1)∵AB =AC =13,AD ⊥BC ,∴BD =CD =5cm ,且∠ADB =90°,∴AD 2=AC 2-CD 2∴AD =12cm .(2)AP =t ,∴PD =12-t ,在Rt △PDC 中,PC =√29,CD =5,根据勾股定理得,PC 2=CD 2+PD 2,∴29=52+(12-t )2,∴t =10或t =14(舍).即:t 的值为10s ;(3)假设存在t ,使得S △PMD =17120S △ABC .∵BC =10,AD =12,∴S △ABC =12BC ×AD =60, ①若点M 在线段CD 上,即 0≤t <52时,PD =12-t ,DM =5-2t ,由S △PMD =17120S △ABC ,即12(12-t )(5-2t )=172,2t 2-29t +43=0解得t 1=29+√4974(舍去),t 2=29−√4974②若点M 在射线DB 上,即 52<t <12.由S △PMD =17120S △ABC2017-2018年浙江省杭州市八年级(下)期中数学试卷(解析版)19 / 19 得 12(12-t )(2t -5)=172,2t 2-29t +77=0解得 t =11或t =72综上,存在t 的值为29−√4974s 或 11s 或72s ,使得S △PMD =17120S △ABC . 【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD 、MD 的表达式解方程组,由于M 在D 点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年第二学期期中考试八年级数学试卷
一、选择题:(每小题3分,共30分)
1.要使二次根式3x 有意义,则x 应满足(
)A .3x B .3x C .3x D .3
x 2.下列方程是一元二次方程的是(
)A .32x x B .220x C .221x y D .1
12x
x 3.下列运算中,结果正确的是(
) A .636 B .3223C .235 D .2
3
434.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:
金额(元)20 30 35 50 100
学生数(人) 5 15 5 10 10
在这次活动中,该班同学捐款金额的众数和中位数分别是(
) A .50,50 B .30,35 C .30,50 D .15,50
5.下列二次根式中,最简二次根式是()
A .8
B .2.1
C .2
D .3
a
6.将方程2x +4x +3=0配方后,原方程变形为(
) A .2(2)x =1 B .2(4)x =1 C .2(2)x =-3 D. 2(2)x =-1
7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为(
) A.%10 B.%15 C.%20 D.%
258.已知关于x 的方程0112x k kx ,下列说法正确的是()
A .当0k 时,方程无解
B .当1k 时,方程有一个实数解
C .当1k 时,方程有两个相等的实数解
D .当0k 时,方程总有两个不相等的实数解。
2017-2018学年第二学期期中检测八年级数学试卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间为90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、姓名、学号。
3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.计算(▲)A .B .4CD .32.在学校组织的一次汉字听写大赛中,八(1)班的10名学生得分情况如表:那么这10名学生所得分数的众数是(▲)A .80B .85C .90D .953.下列二次根式中,属于最简二次根式的是(▲)A B 0b ≥) C D 4.一元二次方程230x x -=的解是(▲) A .13x =B .3x =C .13x =,02=xD .113x =,02=x5x 的取值范围是(▲)A .x >-3B .3x ≥-C .x <-3D .3x ≤-6.八年级某班7个兴趣小组的人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是(▲)A .7B .6C .5D .47.某市2014年投入教育经费30亿元,为更好地发展教育事业,该市每年教育经费的年增长率均为x ,从2014年到2016年共投入教育经费110亿元,则下列方程正确的是(▲) A .302x =110B .30(1+x )2=110C .30(1+x )2=110 D .30+30(1+x )+30(1+x )2=110 8.下列说法正确的是(▲)A .中位数就是一组数据中最中间的一个数B .10,9,10,12,11,12这组数据的众数是10C .如果1x ,2x ,3x ,…,n x 的平均数是a ,那么)(1a x -+)(2a x -+…+)(a x n -=0D .如果1x ,2x ,3x ,…,n x 的方差是S 2,那么1x -a ,2x -a ,3x -a ,…,n x -a 的方差是S 2-a9.如果关于x 的一元二次方程01122=++-x k kx 有两个不相等的实数根,那么k 的取值范围是(▲)A .k <12 B . k <12且0k ≠ C .12k -≤<12D .12k -≤<12且0k ≠10.若实数x 满足37x -+=,化简24x +的结果是(▲)A .42x +B .42x --C .-2D .2二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
11.已知21370m xx m ---=是关于x 的一元二次方程,则m 的值为 ▲ .12.已知a =b =a ,b 的大小关系是a ▲ b .(用“>”,“=”或“<”填写)13.小龙的期末总评成绩由平时、期中、期末成绩按权重比2:3:5 组成,现小龙平时考试得90分,期中考试得80分,期末考试得86分,那么小龙的期末总评成绩应是 ▲ 分. 14.若102-=x ,则842+-x x = ▲ .15.已知3,a ,4,b ,5这五个数据,其中a ,b 是方程x x 322=+的两个根,那么这五个数据的平均数是 ▲ ,方差是 ▲ .16.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 ▲ .(写出正确说法的序号即可)①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若p 、q 满足2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,则必有229b ac =.三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)计算: (1)324÷|3|32-⨯-0)12(-+ (2)2)13(+2)5(--364-+18.(本小题满分8分)用适当的方法解下列一元二次方程: (1)2(5)9x -= (2)213102x x --=19.(本小题满分8分)已知△ABC 中,AB =1,BC =214,CA =5125.(1)化简214和5125;(2)在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1);(3)求△ABC 最长边上的高的长.20.(本小题满分10分)(1)已知p =q =p ,q(2)已知x 为实数,且210x --=,求1x x-和22x x -+的值.21.(本小题满分10分)现代互联网技术的广泛应用,催生了快递行业的快速发展.据调查,杭州市某家小型“大学生自主创业”的快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.45万件,那么该公司现有的28名快递投递业务员能否完成今年四月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.(本小题满分12分)某校为纪念世界反法西斯战争胜利七十周年,举行了主题为“让历史照亮未来”的演讲比赛,其中代表七、八年级参赛的两队各10人的比赛成绩如下表(10分制):1(1)请直接写出七年级队成绩的中位数和八年级队成绩的众数; (2)分别计算七、八年级队的平均成绩和方差;(3)根据第(2)小题的计算结果,你认为哪个年级队的成绩较为整齐?23.(本小题满分12分)已知:关于x 的方程22210x nx n --+=,其中n 为任意实数.(1)不解方程,判别方程根的情况并说明理由;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求n 的值;(3)n >0时,若1x ,2x (1x >2x )恰是方程的两根,且22124x x +=,求2123x x -的值.数 学 答 题 卷二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 12. 13. 14. 15. 16. 三、全面答一答(本题有7个小题,共66分) 17.(每小题3分,共6分)计算: (1)324÷|3|32-⨯-0)12(-+(2)2)13(+2)5(--364-+18.(每小题4分,共8分)请选择适当的方法解下列一元二次方程: (1)2(5)9x -=(2)213102x x --=19.(本小题满分8分)20.(每小题5分,共10分)(1)已知p =q =p ,q(2)已知x 为实数,且210x --=,求1x x-和22x x -+的值 21.(本小题满分10分) 22.(本小题满分12分) 23.(本小题满分12分)参考答案二、认真填一填(每小题4分,共24分) 11.3212.= 13.85 14.14 15.3,2 16. ②③④. 三、全面答一答(本题有7小题,共66分) 17.(本题共6分)1 … 3分(2)5…3分18.(本题共8分) (1)12x =,28x =…4分(2)13x =23x =…4分 19.(本题共8分) (1)4=2,=;…2分(2)如图所示…3分(2)∵△A BD 的面积为1,BC =,∴BC 边上的高为1×2÷=.…3分20.(本题共10分)122pq == …4分(2) ∵210x --= ∴1x x-=…3分22x x -+=221()2214x x-+=+= …3分21.(本题共10分)(1)设该快递公司投递总件数的月平均增长率为x ,由题意得:10(1+x )2=12.1 解得1x =0.1,2x =-2.1(不合题意,舍去). 答:该快递公司投递总件数的月平均增长率为10%. …6分 (2)今年四月份的快递投递任务是12.1×(1+10%)=13.31(万件).则28名投递员最多能完成的快递投递任务是0.45×28=12.6<13.31, ∴该公司现有的28名快递投递业务员不能完成今年四月份的快递投递任务. 至少需要增加业务员的人数为(13.31-12.6)÷0.45=7145≈2(人) …4分22.(本题共12分)(1)七年级队中位数是9.5,八年级队众数是10 …2分(2)七年级队:190910x =⨯=,2S =110[(7-9)2+(8-9)2+…+(10-9)2]=1.4 …4分 八年级队:190910x =⨯=,2S =110[(10-9)2+(8-9)2+…+(9-9)2]=1. …4分(3)两队的平均成绩相同,但七年级队的方差大于八年级队的方差,故八年级队的成绩比较整齐. …2分23.(本题共12分)(1)a =1,b =-2n ,c =21n -+.∵b 2-4ac =(-2n)2-4×1×(21n -+)=4>0,∴方程22210x nx n --+=有两个不相等的实数根. …3分(2)一元二次方程x 2-2nx+n 2-1=0的解为x 1=n+1,x 2=n-1,…2分 ∵n-1<n+1,∴AB ≠AC .当AB =n-1,AC =n+1,且AB =BC 时,△ABC 是等腰三角形,则n =6;…2分当AB =n-1,AC =n+1,且AC =BC 时,△ABC 是等腰三角形,则n+1=5,解得n =4,…2分 所以n 的值为6或4.(3)[][](1)(1)0x n x n -+--= 解得:11x n =+,21x n =-由22124x x +=得:2224n += ∵n >0 ∴n =1,12x =,20x = ∴2123x x -=4…3分 (用韦达定理求解均可)。