数字电子技术基础 第1章
- 格式:pdf
- 大小:1.62 MB
- 文档页数:21
前言第一章数制与码制: “数”在计算机中怎样表示。
第二章逻辑代数基础: 逻辑代数的基本概念、逻辑函数及其标准形式、逻辑函数的化简。
第三章组合逻辑电路: 组合电路的分析与设计。
第四章同步时序逻辑电路:触发器、同步时序电路的分析与设计。
第五章异步时序逻辑电路:脉冲异步电路的分析与设计。
第六章采用中,大规模集成电路的逻辑设计。
绪论一、数字系统1.模拟量:连续变化的物理量2.数字量:模拟→数字量(A/D)3.数字系统:使用数字量来传递、加工、处理信息的实际工程系统4.数字系统的任务:1) 将现实世界的信息转换成数字网络可以理解的二进制语言2)仅用0、1完成所要求的计算和操作3)将结果以我们可以理解的方式返回现实世界5.数字系统设计概况1 ) 层次:从小到大,原语单元、较复杂单元、复杂单元、更复杂单元2)逻辑网络:以二进制为基础描述逻辑功能的网络3)电子线路:物理构成4)形式描述:用硬件描述语言(HDL)描述数字系统的行为6.为什么采用数字系统1)安全可靠性高2)现代电子技术的发展为其提供了可能7.数字系统的特点1)二值逻辑(“0”低电平、“1”高电平)2)基本门电路及其扩展逻辑电路(组成)3)信号间符合算术运算或逻辑运算功能4)其主要方法为逻辑分析与逻辑设计(工具为布尔代数、卡诺图和状态化简)第一章数制与码制学习要求:•掌握二、十、八、十六进位计数制及相互换;•掌握二进制数的原码、反码和补码表示及其加减运算;•了解定点数与浮点数的基本概念;掌握常用的几种编码。
1.1 进位计数制1.1.1 十进制数的表示1、进位计数制数制:用一组统一的符号和规则表示数的方法2、记数法•位置计数法例:123.45 读作一百二十三点四五•按权展形式例:123.45=1×102+2×101+3×100+4×10-1+5×10-23、基与基数用来表示数的数码的集合称为基(0—9), 集合的大小称为基数(十进制10)。
《数字电子技术基础简明教程(第三版)答案》《数字电子技术基础简明教程(第三版)答案》数字电子技术是现代电子工程中的重要领域之一,它涉及到数字信号的处理和电子电路的设计。
《数字电子技术基础简明教程(第三版)》是一本经典教材,本文将为读者提供此教材的答案,以帮助读者更好地学习和理解数字电子技术的基础知识。
第一章:数字系统基础1.1 数字系统的表示与计数1.1.1 二进制数的表示答案:二进制数是一种使用0和1表示数值的数制。
它与我们日常生活中常用的十进制数不同,但在数字电子技术中却是最基本和常用的表示方式。
1.1.2 进制转换答案:进制转换是指将一个数从一种进制表示转换为另一种进制的表示。
常见的进制转换包括二进制转十进制、十进制转二进制、二进制转八进制、八进制转二进制等。
1.2 逻辑代数与逻辑函数1.2.1 逻辑代数基本概念答案:逻辑代数是一种用于描述和分析逻辑函数的代数系统。
它包括逻辑运算符、逻辑表达式和逻辑常数等基本概念。
1.2.2 基本逻辑函数答案:基本逻辑函数是逻辑代数中的基本构成元素,包括与、或、非等逻辑运算。
常见的基本逻辑函数有与门、或门、非门等。
第二章:组合逻辑电路2.1 组合逻辑电路的基本概念答案:组合逻辑电路是由逻辑门和其他逻辑元件组成的电路,其输出只与当前输入有关,与过去的输入和未来的输入无关。
2.2 组合逻辑电路的设计2.2.1 真值表法答案:真值表法是一种根据逻辑函数的真值表推导出逻辑电路的设计方法。
通过真值表可以清晰地了解逻辑函数的各种输入输出组合。
2.2.2 卡诺图法答案:卡诺图法是一种用于简化逻辑函数的方法。
通过在卡诺图上标示出逻辑函数的主项和次项,可以得到较为简化的逻辑函数,从而减少逻辑门的使用数量。
第三章:时序逻辑电路3.1 时序逻辑电路的基本概念答案:时序逻辑电路是一种具有存储功能的电路,其输出不仅与当前输入有关,还与过去的输入有关。
3.2 触发器与寄存器3.2.1 SR 触发器答案:SR 触发器是一种常见的时序逻辑电路元件,它具有两个输入端(S和R)和两个输出端(Q和Q)。
第一章数字逻辑基础第一节重点与难点一、重点:1.数制2.编码(1) 二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码。
常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3.电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。
《数字电子技术》知识点《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义 2.数字电路的分类 3.数制、编码其及转换 要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1; 或运算:见1为1,全零为零;与非运算:见零为1,全1为零; 或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非运算:零变 1, 1变零; 要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则 ①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。