2004高考全国卷4文科数学试题及答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)
- 格式:doc
- 大小:279.46 KB
- 文档页数:8
2004年普通高等学校招生全国统一考试全国卷(Ⅳ)文科数学(甘肃、青海、宁夏、贵州、新疆等地)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{0,1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5} 2.函数)(2R x e y x ∈=的反函数为A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45角,则此三棱柱的体积为 A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于A .1B .2C .3D .45.为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .2207.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于A .3-B .2-C .1- D.11.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===, 则球心到平面ABC 的距离为A .1B .2C .3D .2 12.ABC ∆中,,,a b c 分别为角,,A B C 的对边.如果,,a b c 成等差数列,30B ∠=,ABC ∆的面积为23,那么b =A .231+ B .31+ C .232+ D .32+ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A = . 15.向量a 、b 满足()(2)4a b a b -+=-,且2a =,4b =,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件:10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知α为第二象限角,且sin 4α=,求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{}n a 为等比数列,26a =,5162a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 是数列{}n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响. (Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,8AB =,AD =侧面PAD为等边三角形,并且与底面所成二面角为60. (Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA BD ⊥. 22.(本小题满分14分)双曲线22221x ya b-=(1a >,0b >),的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥.求双曲线的离ABCDP心率e 的取值范围.2004年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅱ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.28 14.23 15.21- 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分.解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4. a 1q=6, 依题意,得方程组a 1q 4=162. 解此方程组,得a 1=2, q=3. 故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=n n n S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b所以直线l 2的方程为.92231--=x y(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6 =0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分.解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得 P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅ 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23, 又知AD=43,AB=8, 得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年全国高考数学试题分类集锦(Ⅳ)王 瑛 整理9 解析几何(1)[全国卷Ⅰ理(7)]椭圆x24+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则 PF2 =( ).(A)32 (B)3 (C)72 (D)4[C](2)[全国卷Ⅰ理(8)]设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( ).(A)[-12,12] (B)[-2,2](C)[-1,1](D)[-4,4][C](3)[全国卷Ⅱ理(4)]已知圆C与圆(x-1)2+ y2=1关于直线y=-x对称,则圆C的方程为( ).(A)(x+1)2+y2=1 (B)x2+y2=1(C)x2+(y+1)2=1(D)x2+(y-1)2=1[C](4)[全国卷Ⅱ理(8)]在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )条.(A)1 (B)2 (C)3 (D)4[B](5)[全国卷Ⅲ理(4)]圆x2+y2-4x=0在点P(1,3)处的切线方程为( ).(A)x+3y-2=0 (B)x+3y-4=0(C)x-3y+4=0(D)x-3y+2=0[D](6)[全国卷Ⅲ理(7)]设双曲线的焦点在x轴上,两条渐近线为y=±12x,则该双曲线的离心率e=( ).(A)5 (B)5 (C)52 (D)54[C](7)[全国卷Ⅳ理(3)]过点(-1,3)且垂直于直线x-2y+3=0的直线方程为( ).(A)2x+y-1=0 (B)2x+y-5=0(C)x+2y-5=0(D)x-2y+7=0[A](8)[全国卷Ⅳ文(8)]已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( ).(A)x2+y2-2x-3=0 (B)x2+y2+4x=0 (C)x2+y2+2x-3=0(D)x2+y2-4x=0[D](9)[全国卷Ⅳ理(8)]已知椭圆的中心在原点,离心率e=12,且它的一个焦点与抛物线y2=-4x 的焦点重合,则此椭圆方程为( ).(A)x24+y23=1 (B)x28+y26=1(C)x22+y2=1(D)x24+y2=1[A]第10题图(2)[北京卷理(4)]如图,在正方体A BCD-A1B1C1D1中,P是侧面B B1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是( ).(A)直线 (B)圆(C)双曲线 (D)抛物线[D](11)[天津卷理(4)]设P是双曲线x2a2-y29=1上一点,双曲线的一条渐近线方程为3x-2y=0, F1、F2分别是双曲线的左、右焦点,若 PF1 =3,则 P F2 =( ).(A)1或5 (B)6 (C)7 (D)9[C](12)[天津卷理(7)]若P(2,-1)为圆(x-1)2 +y2=25的弦A B的中点,则直线A B的方程是( ).(A)x-y-3=0 (B)2x+y-3=0(C)x+y-1=0(D)2x-y-5=0[A](13)[天津卷文(7)]若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是( ).(A)0<k<5 (B)-5<k<0(C)0<k<13(D)0<k<5[A](14)[天津卷文(8)]如图,定点A和B都在平面 内,定点P ,PB⊥ ,C是 内异于A和B的动点,且PC⊥A C.那么,动点C在平面 内的轨迹是( ).(A)一条线段,但要去掉两个点 第14题图(B)一个圆,但要去掉两个点(C)一个椭圆,但要去掉两个点(D)半圆,但要去掉两个点[B](15)[江苏卷(5)]若双曲线x28-y2b2=1的一条准线与抛物线y2=8x的准线重合,则双曲线离心率为( ).(A)2 (B)22 (C)4 (D)42[A](16)[江苏卷(11)]设k >1,f (x )=k (x -1)(x ∈R ).在平面直角坐标系x Oy 中,函数y =f (x )的图像与x 轴交于A 点,它的反函数y =f -1(x )的图像与y 轴交于B 点,并且这两个函数的图像交于P 点.已知四边形OA PB 的面积是3,则k 等于( ).(A )3 (B)32 (C)43 (D )65[B](17)[浙江卷理(9)]若椭圆x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3的两段,则此椭圆的离心率为( ).(A )1617 (B)41717 (C)45 (D)255[D ](18)[浙江卷理(2)]点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23弧长到达Q 点,则Q 点的坐标为( ).(A )(-12,32) (B)(-32,-12)(C)(-12,-32)(D)(-32,12)[A ](19)[浙江卷理(4)]曲线y 2=4x 关于直线x =2对称的曲线方程是( ).(A )y 2=8-4x (B)y 2=4x -8(C)y 2=16-4x (D )y 2=4x -16[C](20)[浙江卷文(2)]直线y =2与直线x +y -2=0的夹角是( ).(A ) 4 (B) 3 (C) 2 (D)3 4[A ](21)[福建卷理(4)]已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△A BF 2是正三角形,则这个椭圆的离心率是( ).(A )33 (B)23 (C)22 (D )32[A]第22题图(22)[福建卷理(12)]如图,B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30°方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km,那么修建这两条公路的总费用最低是( )万元.(A )(27-2)a (B)5a(C)(27+1)a (D)(23+3)a [B](23)[湖北卷理(1)]与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ).(A)2x-y +3=0 (B)2x -y -3=0(C)2x -y +1=0(D )2x -y -1=0[D ](24)[湖北卷理(6)]已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ).(A )95 (B)3 (C)977 (D)94[D ](25)[湖北卷文(2)]已知点M 1(6,2)和M 2(1,7),直线y =mx -7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3∶2,则m 的值为( ).(A )-32 (B)-23 (C)14 (D )4[D ](26)[湖北卷文(4)]两个圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )条.(A )1 (B)2 (C)3 (D)4[B](27)[湖南卷理(2)]如果双曲线x 213-y212=1上一点P 到右焦点的距离等于13,那么点P 到右准线的距离是( ).(A )135 (B)13 (C)5 (D)513[A ](28)[湖南卷文(2)]设直线ax +by +c =0的倾斜角为 ,且sin +co s =0,则a 、b 满足( ).(A )a +b =1 (B)a -b =1(C)a +b =0(D )a -b =0[D ](29)[重庆卷理(3)]圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( ).(A )2 (B)22 (C)1 (D)2[D ](30)[重庆卷理(10)]已知双曲线x 2a -y 2b =1,(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且 PF 1 =4 P F 2 ,则此双曲线的离心率e 的最大值为( ).(A )43 (B)53 (C)2 (D )73[B](31)[广东卷(8)]若双曲线2x 2-y 2=k (k >0)的焦点到它相对应的准线的距离是2,则k =( ).(A )1 (B)4 (C)6 (D)8[C]第32题图(32)[广东卷(12)]如图,定圆半径为a ,圆心为(b ,c ),则直线ax +by +c =0与直线x -y +1=0的交点在( ).(A )第一象限 (B)第二象限(C)第三象限(D )第四象限[C](33)[全国卷Ⅰ理(14)]由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠A P B =60°,则动点P 的轨迹方程为.[x 2+y 2=4](34)[全国卷Ⅱ理(15)]设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是.y 2=1](35)[全国卷Ⅲ理(16)]设P是曲线 y2=4 (x-1)上的一个动点,则点P到点(0,1)的距离与点P到y轴的距离之和的最小值是.[5](36)[全国卷Ⅲ文(16)]设P为圆x2+y2=1上的动点,则点P到直线3x-4y-10=0的距离的最小值为.[1](37)[北京卷理(12)]曲线C:x=cos ,y=-1+sin( 为参数)的普通方程是, C与直线x+y+a=0有公共点,那么实数a的取值范围是.[x2+(y+1)2=1,1-2≤a≤1+2](38)[北京卷文(11)]圆x2+(y+1)2=1的圆心坐标是,如果直线x+y+a=0与该圆有公共点,那么实数a的取值范围是.[(0,-1),1-2≤a≤1+2](39)[天津卷理(14)]如果过两点A(a,0)和B(0,a)的直线与抛物线y=x2-2x-3没有交点,那么实数a的取值范围是.[(-∞,-34 )](40)[上海卷理(2)]设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为.[(5,0)](41)[上海卷理(7)]在极坐标系中,点M(4, 3 )到直线l: (2cos +sin )=4的距离d=.[2155](42)[上海卷理(8)]圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为.[(x-2)2+(y+3)2=5](43)[上海卷理(11)]教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是.[用代数的方法研究图形的几何性质](44)[江苏卷(14)]以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是.[(x-1)2+(y-1)2=25](45)[浙江卷理(15)]设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有种(用数字作答).[5](46)[福建卷理(13)]直线x+2y=0被曲线x2+y2-6x-2y-15=0所截得的弦长等于.[45](47)[湖南卷文(15)]F1、F2是椭圆C:x28+y24=1的焦点,在C上满足PF1⊥P F2的点P的个数为.[2](48)[湖南卷理(16)]设F是椭圆x2+y2=1的右焦点,且椭圆上至少有213,…),使 FP1 , FP2 , PF3 ,…组成公差为d的等差数列,则d的取值范围为.[[-110,0)∪(0,110]](49)[重庆卷理(14)]曲线y=2-12x2与y= 14x3-2在交点处切线的夹角是.(用幅度数作答)[4](50)[重庆卷理(16)]对任意实数k,直线:y=kx+b与椭圆:x=3+2cos ,y=1+4sin . (0≤ ≤2 )恰有一个公共点,则b的取值范围是.[[-1,3]](51)[全国卷Ⅰ理(21)](见本刊2004年第7期P38)(52)[全国卷Ⅱ理(21)]给定抛物线C:y2=4x, F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB= A F,若 ∈[4,9],求l在y轴上截距的变化范围.解 (Ⅰ)C的焦点为F(1,0),直线l的斜率为1,所以l的方程为y=x- 1.将y=x-1代入方程y2=4x,并整理得 x2-6x+1=0.设A(x1,y1),B(x2,y2),则有x1+x2=6,x1x2= 1. OA OB=(x1,y1) (x2,y2)=x1x2+y1y2=2x1x2-(x1+x2)+1=- 3. OA OB =x21+y21 x22+y22 =x1x2[x1x2+4(x1+x2)+16]=41. cos〈O A,OB〉=OA OBOA OB =-34141,所以OA与OB夹角的大小为 -ar cco s34141.(Ⅱ)由题设FB= A F得(x2-1,y2)= (1-x1,-y1),即x2-1= (1-x1),y2=- y1.由 得 y22= 2y21.∵ y21=4x1, y22=4x2,∴ x2= 2x1. 联立 、 解得x2= .依题意有 >0,∴ B( ,2 )或B( ,-2 ),又F(1,0),得直线l方程为( -1)y=2 (x-1)或 ( -1)y=-2 (x-1).当 ∈[4,9]时,l在y轴上的截距为2-1或-2-1.由2-1=1+1+1-1,可知上是递减的,故3≤2-1≤4,-4≤-2-1≤-3.即直线l在y轴上截距的变化范围为[-43,-34]∪[34,43].(53)[全国卷Ⅲ理(21)]设椭圆x2m+1+y2=1的两个焦点是F1(-c,0)与F2(c,0) (c>0),且椭圆上存在点P,使得直线P F1与直线PF2垂直.(Ⅰ)求实数m的取值范围;(Ⅱ)设l是相应于焦点F2的准线,直线PF2与l相交于点Q.若 Q F2P F2 =2-3,求直线P F2的方程.解 (Ⅰ)由题设有m>0,c=m.设点P的坐标为(x0,y0),由P F1⊥P F2,得y0 x0-c y0x0+c=- 1.化简得x20+y20=m.将 与x20m+1+y20=1联立,解得 x20=m2-1m, y20=1m.由 m>0,x20=m2-1m≥0,得 m≥1.所以m的取值范围是 m≥1.(Ⅱ)准线l的方程为x=m+1m.设点Q的坐标为(x1,y1),则 x1=m+1m.QF2 PF2 =x1-cc-x0=m+1m-mm-x0将 x0=m2-1m代入 ,化简得QF2 PF2 =1m-m2-1=m+m2- 1.由题设 Q F2P F2 =2-3,得m+m2-1=2-3,无解.将 x0=-m2-1m代入 ,化简得QF2 PF2 =1m+m2-1=m-m2- 1.由题设 Q F2P F2 =2-3,得m-m2-1=2-3.解得 m= 2.从而 x0=-32,y0=±22,c=2,得到PF2的方程 y=±(3-2)(x-2).(54)[全国卷Ⅳ理(21)]双曲线x2a2-y2b2=1 (a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥45c,求双曲线的离心率e的取值范围.解 直线l的方程为xa+yb=1,即bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离 d1=b(a-1)a2+b2,同理得到点(-1,0)到直线l的距离 d2=b(a+1)a2+b2, s=d1+d2=2aba2+b2=2abc.由s≥45c,得2abc≥45c,即 5a c2-a2≥2c2.于是得5e2-1≥2e2,即4e4-25e2+25≤0.解不等式,得54≤e2≤5.由于e>1>0,所以e的取值范围是 52≤e≤5.第55题图(55)[北京卷理(17)]如图,过抛物线y2=2p x (p>0)上一定点P(x0,y0) (y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).(Ⅰ)求该抛物线上纵坐标为p2的点到其焦点F的距离;(Ⅱ)当P A与PB的斜率存在且倾斜角互补时,求y1+y2y0的值,并证明直线A B的斜率是非零常数.解 (Ⅰ)当y=p2时,x=p8,又抛物线y2= 2p x的准线方程为x=-p2,由抛物线定义得,所求距离为p8-(-p2)=5p8.(Ⅱ)设直线PA的斜率为k PA,直线PB的斜率为k P B.由 y21=2p x1, y20=2p x0,相减得 (y1-y0)(y1+y0)=2p(x1-x0),故 k PA=y1-y0x1-x0=2py1+y0 (x1≠x0).同理可得 k PB=2py2+y0 (x2≠x0).由P A,PB倾斜角互补知 k P A=-k PB,即 2py1+y0=-2py2+y0,故 y1+y2y0=- 2.设直线A B的斜率为k A B,由y22=2p x2,y21=2p x1,相减得 (y2-y1)(y2+y1)=2p(x2-x1),所以 k AB=y2-y1x2-x1=2py1+y2 (x1≠x2).将y1+y2=-2y0(y0>0)代入得k A B=2py1+y2=-py0,所以k AB是非零常数.(56)[天津卷理(22)]椭圆的中心是原点O,它的短轴长为22,相应于焦点F(c,0)(c>0)的准线l与x轴相交于点A, OF =2 FA ,过点A的直线与椭圆相交于P、Q两点.(1)求椭圆的方程及离心率;(2)若OP OQ=0,求直线P Q的方程;(3)设A P= A Q( >1),过点P且平行于准线l的直线与椭圆相交于另一点M,证明:FM=- F Q.(1)解 由题意,可设椭圆的方程为x2a2+y22=1 (a>2).由已知求得a=6, c= 2.所以椭圆的方程为x26+y22=1,离心率e=63.(2)解 由(1)可得A(3,0).设直线P Q的方程为y=k(x-3),与椭圆方程联立得(3k2+1)x2-18k2x+27k2-6=0,依题意 =12(2-3k2)>0,得-63<k<63.设P(x1,y1),Q(x2,y2),则x1+x2=18k23k2+1 x1x2=27k2-63k2+1由直线P Q的方程得y1=k(x1-3), y2=k(x2-3).于是y1y2=k2[x1x2-3(x1+x2)+9].∵ OP OQ=0,∴ x1x2+y2y2=0由 !得5k2=1,从而k=±55∈(-63,63).所以直线PQ的方程为x-5y-3=0 或 x+5y-3=0.(3)证明 A P=(x1-3,y1),A Q=(x2-3,y2).由已知得方程组x1-3= (x2-3),y1= y2,x21 6+y212=1,x22 6+y222= 1.注意 >1,解得x2=5 -12.因F(2,0),M(x1,-y1),故FM=(x1-2,-y1)=( (x2-3)+1,-y1)=(1-2,-y1)=- (-12,y2).而 F Q=(x2-2,y2)=( -12,y2),所以F M=- FQ.(57)[上海卷理(20)]已知二次函数y=f1(x)的图像以原点为顶点且过点(1,1),反比例函数y=f2(x)的图像与直线y=x的两个交点间距离为8,f(x)=f1(x)+f2(x).(1)求函数f(x)的表达式;第57题图(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解.(1)解 由已知,设f1(x)=ax2,由f1(1)=1,得a=1,∴ f1(x)=x2.设f2(x)=kx (k>0),它的图像与直线y=x的交点分别为A(k,k),B(-k,-k).由 A B =8,得k=8, ∴ f2(x)=8x.故f(x)=x2+8x.(2)证明 f(x)=f(a),得x2+8x=a2+8a,即8x=-x2+a2+8a.在同一坐标系内作出f2(x) =8x和f3(x)=-x2+a2+8a的大致图像,其中f2(x)的图像是以坐标轴为渐近线,且位于第一、三象限的双曲线,f3(x)的图像是以(0,a2+8a)为顶点,开口向下的抛物线.因此,f2(x)与f3(x)的图像在第三像限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)=4,f3(2)=-4+a2+8a,当a>3时,f3(2)-f2(2)=a2+8a-8>0,∴ 当a>3时,在第一象限f3(x)的图像上存在一点(2,f(2))在f2(x)图像的上方.因此,方程f(x)=f(a)有三个实数解.(58)[上海卷理(22)]设P1(x1,y1),P2(x2,y2),…,P n(x n,y n)(n≥3,n∈N)是二次曲线C上的点,且a1= OP1 2,a2= OP2 2,…,a n= OP n 2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记S n=a1+a2+…+a n.(1)若C的方程为 x2100+y225=1,n= 3.点P1(3,0)及S3=255,求点P3的坐标;(只需写出一个)(2)若C的方程为x2a2+y2b2=1 (a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求S n的最小值;(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1, P2,…,P n存在的充要条件,并说明理由.解 (1)a1= O P1 2=100,由S3=32(a1+a3) =255,得a3= OP3 3=70.由 x2100+y225=1,x23+y23=70. 得 x23=60,y23=10.∴ 点P3的坐标可以为(215,10).(2)解法1 原点O到二次曲线C:x2a2+y2b2= 1 (a>b>0)上各点的最小距离为b,最大距离为a. ∵ a1= OP1 2=a2, ∴ d<0,且 a n= OP n 2=a2+(n-1)d≥b2,∴ b 2-a 2n -1≤d <0.又n ≥3,n (n -1)2>0,∴ S n =na 2+n (n -1)2d 在[b 2-a 2n -1,0)上递增,故S n 的最小值为na 2+n (n -1)2 b 2-a 2n -1=n (a 2+b 2)2.解法2 对每个自然数k (2≤k ≤n ),由 x 2k +y 2k =a 2+(k -1)d ,x 2k a 2+y 2kb 2=1,解得y 2k =-b 2(k -1)da 2-b 2.∵ 0<y 2k ≤b 2,得 b 2-a 2k -1≤d <0,∴ b 2-a 2n -1≤d <0.以下与解法1相同.(3)解法1 若双曲线C : x 2a 2-y 2b2=1,点P 1(a ,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.由于原点O 到双曲线C 上各点的距离h ∈[ a ,+∞),且 OP 1 =a 21,故点P 1,P 2,…,P n 存在当且仅当 OP n 2> OP 1 2,即d >0.解法2 若抛物线C :y 2=2x ,点P 1(0,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.理由同上.解法3 若圆C :(x -a )2+y 2=a 2 (a ≠0),P 1(0,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是0<d ≤4a 2n -1.∵ 原点O 到圆C 上各点的最小距离为0,最大距离为2 a ,且 OP 1 =0,∴ d >0,且 OP n 2=(n -1)d ≤4a 2.即0<d ≤4a 2n -1.第59题图(59)[上海卷文(20)]如图,直线y =12x 与抛物线y=18x 2-4交于A 、B 两点,线段A B 的垂直平分线与直线y =-5交于Q 点.(1)求点Q 的坐标;(2)当P 为抛物线上位于线段A B 下方(含A 、B )的动点时,求△O PQ 面积的最大值.解 (1)解方程组y =12x ,y =18x 2- 4.得x 1=-4,y 1=- 2. x 2=8,y 2= 4.即A (-4,-2),B (8,4),从而A B 的中点为M (2,1).由k A B =12,直线A B 的垂直平分线方程y -1=12(x -2),令y =-5,得x =5,∴ Q (5,-5).(2)直线OQ 的方程为 x +y =0,设P (x ,18x 2-4).由于点P 到直线OQ 的距离d = x +18x 2-42=182 x 2+8x -32 ,O Q =52,∴ S △OP Q =12 OQ d =516x 2+8x -32 .又P 为抛物线上位于线段A B 下方的点,且P 不在直线OQ 上,得-4≤x <43-4或43-4<x ≤8.∵ 函数y =x 2+8x -32在区间[-4,8]上单调递增,∴ 当x =8时,△OP Q 的面积取到最大值30.(60)[江苏卷(21)]已知椭圆的中心在原点,离心率为12,一个焦点是F (-m ,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若 M Q =2 QF ,求直线l 的斜率.解 (Ⅰ)设所求椭圆方程是x 2a 2+y 2b 2=1 (a>b >0).由已知,得c =m ,c a =12,所以a =2m ,b =3m .故所求的椭圆方程是 x 24m 2+y 23m 2= 1.(Ⅱ)设Q (x Q ,y Q ),直线l :y =k (x +m ),则点M (0,k m ).当M Q =2Q F 时,由于F (-m ,0),M (0,k m ),由定比分点坐标公式,得x Q =0-2m 1+2=-2m 3, y Q =k m +01+2=13km .又点Q (-2m 3,k m 3)在椭圆上,所以4m 294m 2+k 2m 293m 2= 1.解得 k =±26. 当M Q =-2QF 时,x Q =0+(-2)×(-m )1-2=-2m ,y Q =km1-2=-k m .于是 4m 24m 2+k 2m23m 2=1,解得 k =0.故直线l 的斜率是0,±26.第61题图(61)[浙江卷理(21)]已知双曲线的中心在原点,右顶点为A (1,0),点P 、Q 在双曲线的右支上,点M (m ,0)到直线A P 的距离为1.(Ⅰ)若直线A P 的斜率为k ,且 k ∈[33,3],求实数m 的取值范围;(Ⅱ)当m =2+1时,△A PQ 的内心恰好是点M ,求此双曲线的方程.解 (Ⅰ)由条件得直线A P 的方程y =k (x -1),即kx -y -k =0.因为点M 到直线A P 的距离为1,∴ mk -k k 2+1=1,即 m -1 =k 2+1k =1+1k 2.由 k ∈[33,3],得233≤ m -1 ≤2,解得233+1≤m ≤3或-1≤m ≤1-233.故m 的取值范围是[-1,1-233]∪[1+233,3].(Ⅱ)可设双曲线方程为x 2-y 2b 2=1 (b ≠0),由M (2+1,0),A (1,0),得 A M =2.又因为M 是△A P Q 的内心,M 到A P 的距离为1,所以∠M A P =45°,直线A M 是∠PA Q 的角平分线,且M 到A Q 、PQ 的距离均为1.因此,k AP =1,k A Q =-1,(不妨设P 在第一象限)直线P Q 的方程为x =2+2,直线A P 的方程为y =x -1,解得P 点的坐标是(2+2,1+2),将P 点坐标代入x 2-y 2b 2=1得 b 2=2+12+3.故所求双曲线方程为x 2-2+32+1y 2=1,即x 2-(22-1)y 2= 1.第62题图(62)[福建卷理(22)]如图,P 是抛物线C :y =12x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q .(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 STSP+STSQ的取值范围.解 (Ⅰ)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由 y =12x 2, 得 y ′=x .∴ 过点P 的切线的斜率k 切=x 1,∵ x 1=0不合题意, ∴ x 1≠0.∴ 直线l 的斜率 k 1=-1k 切=-1x 1,直线l 的方程为 联立 消去y ,得 x 2+2x 1x -x 21-2=0.∵ M 为PQ 的中点,∴ x 0=x 1+x 22=-1x 1,y 0=12x 21-1x 1(x 0-x 1).消去x 1,得 y 0=x 20+12x 20+1 (x 0≠0),故P Q 中点M 的轨迹方程为y =x 2+12x 2+1 (x ≠0).(Ⅱ)设直线l :y =kx +b ,依题意k ≠0,b ≠0,则T (0,b ).分别过P 、Q 作PP ′⊥x 轴,QQ ′⊥y 轴,垂足分别为P ′、Q ′,则 ST SP + ST SQ = OT P ′P + O T Q ′Q = b y 1 + by 2.由y =12x 2,y =kx +b .消去x ,得y 2-2(k 2+b )y +b 2=0.则y 1+y 2=2(k 2+b ),y 1y 2=b 2.解法1 ∴ ST SP + ST S Q = b (1y 1+1y 2)≥2 b 1y 1y 2=2 b 1b 2= 2.∵ y 1、y 2可取一切不相等的正数,∴ S T S P + S T S Q 的取值范围是(2,+∞).解法2ST SP + ST SQ = b y 1+y 2y 1y 2= b 2(k 2+b )b 2.当b >0时, ST SP + ST SQ =b2(k 2+b )b 2=2(k 2+b )b =2k 2b+2>2;当b <0时, ST SP + ST SQ =-b2(k 2+b )b 2=2(k 2+b )-b.又由方程 有两个相异实根,得=4(k 2+b )2-4b 2=4k 2(k 2+2b )>0,于是k 2+2b >0,即k 2>-2b .所以 S T S P + S T SQ >2(-2b +b )-b= 2.∵ 当b >0时,2k 2b可取一切正数,∴ S T S P + S T S Q 的取值范围是(2,+∞).(63)[湖北卷理(20)](见本刊2004年第7期P 42)(64)[湖南卷理(21)]如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m >0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点.分有向线段A 所成的比为 ,证明:B );(Ⅱ)设直线A B 的方程是x -2y +12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.解 (Ⅰ)依题意,可设直线A B 的方程为y =k x +m ,代入抛物线方程x 2=4y 得x 2-4k x -4m =0, 设A 、B 两点的坐标分别是(x 1,y 1)、(x 2,y 2),则x 1、x 2是方程 的两根.所以x 1x 2=-4m .由点P (0,m )分有向线段A B 所成的比为 ,第64题图得 x 1+ x 21+=0,即 =-x1x 2.又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而 Q P =(0,2m ).QA - Q B =(x 1,y 1+m )- (x 2,y 2+m )=(x 1- x 2,y 1- y 2+(1- )m ).QP (QA - QB )=2m [y 1- y 2+(1- )m ]=2m [x 214+x 1x 2 x 224+(1+x 1x 2)m ]=2m (x 1+x 2) x 1x 2+4m2=2m (x 1+x 2) -4m +4m4x 2=0.所以QP ⊥(QA - Q B ).(Ⅱ)由x -2y +12=0,x 2=4y .得点A 、B 的坐标分别是(6,9)、(-4,4).由x 2=4y 得y =14x 2,y ′=12x ,所以抛物线x 2=4y 在点A 处切线的斜率为y ′ x =6= 3.设圆C 的方程是(x -a )2+(y -b )2=r 2,则b -9a -6=-13,(a -6)2+(b -9)2=(a +4)2+(b -4)2.解之得 a =-32,b =232,r 2=(a +4)2+(b -4)2=1252.所以圆C 的方程是 (x +32)2+(y -232)2=1252,即 x 2+y 2+3x -23y +72=0.(65)[湖南卷理(22)]如图,直线l 1:y =kx +1-k (k ≠0,k ≠±12)与l 2:y =12x +12相交于点第65题图P .直线l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…,这样一直作下去,可得到一系列点P 1,Q 1,P 2,Q 2,….点P n (n =1,2,…)的横坐标构成数列{x n }.(Ⅰ)证明:x n +1-1=12k (x n-1),n ∈N *;(Ⅱ)求数列{x n }的通项公式;(Ⅲ)比较2 P P n 2与4k 2 P P 1 2+5的大小.(Ⅰ)证明 设点P n 的坐标是(x n ,y n ),由已知条件得点Q n 、P n +1的坐标分别是:(x n ,12x n +12), (x n +1,12x n +12).由P n +1在直线l 1上,得12x n +12=kx n +1+1-k .所以 12(x n-1)=k (x n +1-1),即 x n +1-1=12k (x n-1), n ∈N *.(Ⅱ)解 由题设知x 1=1-1k ,x 1-1=-1k ≠0,又由(Ⅰ)知x n +1-1=12k (x n-1),所以数列{x n -1}是首项为x 1-1,公比为12k的等比数列.从而 x n -1=-1k (12k )n -1,即 x n =1-2 (12k)n , n ∈N *.(Ⅲ)解 由y =k x +1-k ,y =12x +12.得点P 的坐标为(1,1).所以 2 PP n 2=2(x n -1)2+2(k x n +1-k -1)2=8 (12k )2n +2 (12k )2n -2, 4k 2 P P 1 2+5=4k 2[(1-1k-1)2+(0-1)2]+5=4k 2+9.(i)当 k >12,即k <-12或k >12时,4k 2 P P 1 2+5>1+9=10.而此时0< 12k<1,所以 2 P P n 2<8×1+2=10.故 2 P P n 2<4k 2 P P 1 2+ 5.(ii)当0< k <12,即k ∈(-12,0)∪(0,12)时,4k 2 PP 1 2+5<1+9=10.而此时 12k>1,所以 2 P P n 2>8×1+2=10.故 2 P P n 2>4k 2 P P 1 2+ 5.(66)[重庆卷理(21)]设p >0是一常数,过点Q (2p ,0)的直线与抛物线y 2=2p x 交于相异两点A 、B ,以线段A B 为直径作圆H (H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线A B 的方程.解 由题意,直线A B 不能是水平线,故可设直线方程为:ky =x -2p .又设A (x ,y ),B (x B ,y B ),则其坐标满足k y =x -2p ,y 2=2p x .消去x 得 y 22p k y -4p 2=0.由此得 y A +y B =2p k ,y A y B =-4p 2.x A +x B 4p +k (y A +y B )=(4+2k 2)p ,x A x B =(y A y B )2(2p )2=4p 2.因此 O A OB =x A x B +y A y B =0即OA ⊥OB .故O 必在圆H 的圆周上.又由题意圆心H (x H ,y H )是A B 的中点,故第66题图x H =x A +x B2=(2+k 2)p ,y H =y A +y B2=k p .由前已证,OH 应是圆H 的半径,且 OH =x 2H +y 2H=p k 4+5k 2+ 4.从而当k =0时,圆H 的半径最小,亦使圆H 的面积最小.此时,直线A B 的方程为:x =2p .(67)[广东卷(20)]某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到该巨响的时间比其他两观测点晚4s .已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s;相关各点均在同一平面上)第67题图解 如图以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系,设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020).设P (x ,y )为巨响发生点,由A 、C 同时听到巨响声,得 P A =P C ,故P 在A C 的垂直平分线PO 上,PO 的方程为y =-x .因B 点比A 点晚4s 听到爆炸声,故 P B - P A =340×4=1360.由双曲线定义知P 点在以A 、B 为焦点的双曲线x 2a 2-y2b 2=1上,依题意a =680,c =1020,∴ b 2=c 2-a 2=10202-6802=5×3402.故双曲线方程为 x 26802-y 25×3402= 1.用y =-x 代入上式,得 x =±6805.由 PB > PA ,得x =-6805,y =6805,即P (-6805,6805).故 PO =68010(m).答 巨响发生在接报中心的西偏北45°距中心68010m.(68)[广东卷(22)]设直线相交于A 、B 两点,l 又与双曲线x 2-y 2=1相交于C 、D 两点,C 、D 三等分线段A B .求直线l 的方程.解 首先讨论l 不与x 轴垂直时的情况.第68题图设直线l 的方程为 y =kx +b ,如图所示,l 与椭圆、双曲线的交点为:A (x 1,y 1)、B (x 2,y 2)、C (y 3,y 3)、D (x 4,y 4)依题意有A C =D B ,A B =3CD .由 y =kx +b ,x 225+y 2= 1. 得(16+25k 2)x 2+50bk x +(25b 2-400)=0(1)所以 x 1+x 2=-50bk16+25k 2.由 y =kx +b ,x 2-y 2= 1.得 (1-k 2)x 2-2bkx -(b 2+1)=0.(2)若k =±1,则l 与双曲线最多只有一个交点,不合题意,故k ≠±1.所以x 3+x 4=2bk1-k 2.由A C =D B x 3-x 1=x 2-x 4 x 1+x 2=x 3+x 4. -50bk 16+25k 2=2bk1-k 2 bk =0 k =0 或 b =0.当k =0时,由(1)得 x 1、2=±5416-b 2.由(2)得 x 3、4=±b 2+ 1.由 A B =3CD x 2-x 1=3(x 4-x 3).即 10416-b 2=6b 2+1 b =±1613.故l 的方程为 y =±1613.当b =0时,由(1)得 x 1、2=±2016+25k 2,由(2)得 x 3、4=±11-k 2.由A B =3CD x 2-x 1=3(x 4-x 3).即 4016+25k 2=61-k 2k =±1625.故l 的方程为 y =±1625x .再讨论l 与x 轴垂直时的情况.设直线l 的方程为x =c ,分别代入椭圆和双曲线方程可解得y 1、2=±4525-c 2,y 3、4=±c 2- 1.由 A B =3 CD y 2-y 1 =3 y 4-y 3 ,即8525-c 2=6c 2-1 c =±25241.故l 的方程为 x =±25241.综上所述,直线l 的方程是:=±1625x , y =±1613 和 x。
!""#年普通高等学校招生全国统一考试(全国卷!)数学本试卷分第"卷(选择题)和第#卷(非选择题)两部分$满分%&"分$考试时间%!"分钟$第"卷(选择题共’"分)参考公式:三角函数的和差化积公式:()*!+()*",!()*!+"!・-.(!/"!()*!/()*",!-.(!+"!・()*!/"!-.(!+-.(",!-.(!+"!・-.(!/"!-.(!/-.(",/!()*!+"!・()*!/"!正棱台、圆台的侧面积公式!台侧,%!("0+")#其中"0,"分别表示上、下底面周长,#表示斜高或母线长球体的表面积公式:!球,#$$!其中$表示球的半径一、选择题:本大题共%!小题,每小题&分,共’"分$在每小题给出的四个选项中,只有一项是符合题目要求的$%1设集合%,{(&,’)2&!+’!,%,&!!,’!!},(,{(&,’)2&!/’,",&!!,’!!},则集合%"(中元素的个数为31%41!51671#!1函数’,()*&!的最小正周期是31$!41$ 51!$71#$61(理)设数列{)*}是等差数列,且)!,/’,)8,’,!*是数列{)*}的前*项和,则31!#9!&41!#,!&51!’9!&71!&,!’(文)等比数列{)*}中,)!,:,)&,!#6,则{)*}的前#项和为318%41%!"51%’871%:!#1圆&!+’!/#&,"在点+(%,#6)处的切线方程为31&#+6’/!,"41&#+6’/#,"51&#/6’+#,"71&#/6’+!,"&1(理)函数’,;.<%!(&!/%#)的定义域是31[#/!,/%)$(%,#!]41(#/!,/%)$(%,#!)51[/!,/%)$(%,!]71(/!,/%)$(%,!)(文)记函数’,%+6/&的反函数为’,,(&),则,(%"),31!41/!51671/%’1设复数-的辐角的主值为!$6,虚部为#6,则-!,##31/!/!6)41/!6/!)##51!+!6)71!6+!)=1设双曲线的焦点在&轴上,两条渐近线为’,>%!&,则该双曲线的离心率.为#31&41&51#&!71Q不等式%92&+%296的解集为31(",!)41(/!,")$(!,#)51(/#,")71(/#,/!)$(",!):1正三棱锥的底面边长为!,侧面均为直角三角形,则此三棱锥的体积为!"#$!!#%"#&"!#$’"($!#)*"在"!"#中,!"+$,"#!+)$,!#+(,则边!#上的高为!"$#!#%"$#!$&"$#!’"$$))"(理)设函数$(%)+(%,))#,%-)(.%!.),%#{),则使得$(%)#)的自变量%的取值范围为!"(./,.#]$[*,)*]%"(./,.#]$[*,)]&"(./,.#]$[),)*]’"[.#,*]$[),)*](文)(!%.)%)0的展开式中的常数项为!")1%".)1&"#*’".#*)#"将(名教师分配到$所中学任教,每所中学至少)名教师,则不同的分配方案共有!")#种%"#(种&"$0种’"(2种第!卷(非选择题共3*分)二、填空题:本大题共(小题,每小题(分,共)0分4把答案填写在题中的横线上4)$"用平面!截半径为&的球,如果球心到平面!的距离为&#,那么截得小圆的面积与球的表面积的比值为4)("(理)函数’+567%!,$895%在区间[*,"#]上的最小值为4(文)函数’+567%.)#895%(%%!)的最大值为4)1"(理)已知函数’+$(%)是奇函数,当%#*时,$(%)+$%.)4设$(%)的反函数是’+((%),则((.2)+4(文)函数’+:9;)#(%.)!)的定义域是4)0"(理)设)是曲线’#+((%.))上的一个动点,则点)到点(*,))的距离与点)到’轴的距离之和的最小值是4(文)设)为圆%#,’#+)上的动点,则点)到直线$%.(’.)*+*的距离的最小值为4三、解答题:本大题共0小题,共<(分4解答应写出文字说明、证明过程或演算步骤4)<"(本小题满分)#分)已知!为锐角,且=>7!+)#,求567#!895!.567!567#!895#!的值4)2"(本小题满分)#分)(理)解方程(%,?).#%?+))4(文)解方程(%.#%,#.)#+*4某村计划建造一个室内面积为%&&’$的矩形蔬菜温室(在温室内,沿左、右两侧与后侧内墙各保留!’宽的通道,沿前侧内墙保留)’宽的空地(当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?三棱锥!—"#$中,侧面!"$与底面"#$垂直,!"*!#*!$*)((!)求证"#!#$;($)(理)设"#*#$"*$),求"$与平面!#$所成角的大小((文)如果"#*#$"*$),求侧面!#$与侧面!"$所成二面角的大小(设椭圆!!"%"%#!&"的两个焦点是$"(’%,()与$!(%,()(%)(),且椭圆上存在点&,使得直线&$"与直线&$!垂直*(")求实数"的取值范围;(!)设’是相应于焦点$!的准线,直线&$!与’相交于点(*若+($!++&$!+!&!’,,求直线&$!的方程*(理)已知数列{)*}的前*项和+*满足+*&!)*%(’")*,*""*(")写出数列{)*}的前,项)",)!,),;(!)求数列{)*}的通项公式;(,)证明:对任意的整数")$,有")$%")-%…%")"./*(文)设数列{)*}是公差不为零的等差数列,+*是数列{)*}的前*项和,且+!,&1+!,+$&$+!,求数列{)*}的通项公式*。
2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年普通高等学校招生全国统一考试全国卷(Ⅰ)文科数学适用:河南、河北、山东、山西、安徽、江西等地一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,5}B =,则()U A C B =A .{2}B .{2,3}C .{3}D .{1,3}2.已知函数1()lg1x f x x-=+,若()f a b =,则()f a -= A .b B .b - C .1b D .1b - 3.已知a 、b 均为单位向量,它们的夹角为60,那么3a b += A.7 B .10 C .13 D .44.函数1y =(1x ≥)的反函数是A .222y x x =-+(1x <)B .222y x x =-+(1x ≥)C .22y x x =-(1x <)D .22y x x =-(1x ≥)5.73)12(x x -的展开式中常数项是A .14B .14-C .42D .426.设(0,)2πα∈,若3sin 5α=)4πα+= A .75 B .15 C .72D .4 7.椭圆1422=+y x 的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23B .3C .27 D .4 8.设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .11[,]22- B .[2,2]- C .[1,1]- D .[4,4]- 9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度 10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H .设四面体EFGH 的表面积为T ,则ST 等于 A .91 B .94 C .41 D .31 11.从数字1,2,3,4,5,6,7,8,9这九个数字中,随机抽取3个不同的数字,则这三个数字之和为偶数的概率为A .59B .49C .1121D .102112.已知221a b +=,222b c +=,222c a +=,则ab bc ca ++的最小值为A 12B .12.12--.12+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式30x x +≥的解集是 .14.已知等比数列{}n a 中,满足33a =,10384a =,则{}n a 的通项n a = .15.由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠= ,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线③同一条直线 ④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{}n a的前n项和记为n S,已知满足1030a=,2050a=.(Ⅰ)求通项na;(Ⅱ)若242nS=,求n.18.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值. 19.(本小题满分12分)已知函数32()31f x ax x x=+-+在R上是减函数,求a的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测试,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35.试求:(Ⅰ)选出的3位同学中,至少有一位男同学的概率;(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. 21.(本小题满分12分)如图,已知四棱锥P ABCD-,PB AD⊥,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120.(Ⅰ)求点P到平面ABCD的距离,(Ⅱ)求面APB与面CPB所成二面角的大小.22.(本小题满分14分)设双曲线C:2221(0)xy aa-=>与直线l:1x y+=相交于两个不同的点A、B.(Ⅰ)求双曲线C的离心率e的取值范围:(Ⅱ)设直线l与y轴的交点为P,且512PA PB=,求a的值.PA BCD。
2004年普通高等学校招生全国统一考试数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 192正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径(5) 圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C .20D . 20-(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .2 D . 54(9) 不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解方程.012242=--+x x(18) (本小题满分12分)已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。
2004年普通高等学校招生全国统一考试 文科数学(必修+选修I )(全国Ⅰ卷)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,5}B =,则()u A C B =A .{2}B .{2,3}C .{3}D .{1,3}2.已知函数1()lg 1x f x x -=+,若1()2f a =,则()f a -=A .21B .-21C .2D .-23.已知a,b 均为单位向量,它们的夹角为60°,那么|3|b a +=A .7B .10C .13D .44.函数)1(11>+-=x x y 的反函数是A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是A .14B .-14C .42D .-42 6.设)2,0(πα∈,若3sin 5α=,则 )4cos(2πα+=A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为12,F F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF =A .23 B .3 C .27 D .4 8.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为,,,E F G H ,设四面体EFGH 的表面积为T ,则ST等于A .91B .94C .41D .3111.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A .95 B .94 C .2111 D .211012.已知22221,2a b b c +=+=,22c a + 2=,则ab bc ca ++的最小值为A .213-B .321-C .321-- D .321+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式03≥+x x 的解集是 . 14.已知等比数列{}n a 中,33a = ,10384a =,则该数列的通项n a = .15.由动点P 向圆122=+y x 引两条切线,PA PB ,切点分别为,A B ,=60APB ∠︒,DCB A P 则动点P 的轨迹方程为 .16.已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是 . ①两条平行直线②两条互相垂直的直线 ③同一条直线④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的前n 项和记为n S .已知102030,50a a ==.(Ⅰ)求通项n a ; (Ⅱ)若242=n S ,求n . 18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值. 19.(本小题满分12分) 已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. 21.(本小题满分12分)如图,已知四棱锥P ABCD -,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离;(II )求面PAB 与面PBC 所成二面角的大小.22.(本小题满分14分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点,A B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值.2004年普通高等学校招生全国统一考试(四川、吉林、黑龙江、云南等地)文科数学(全国Ⅱ卷) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|4}M x x =<,2{|230}N x x x =--<,则M N =A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,1)-处的切线方程为 A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 A .22(1)1x y ++= B .221x y += C .22(1)1x y ++= D .22(1)1x y +-= 5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是A .6π-B .6πC .12π-D .12π6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A .75°B .60°C .45°D .30° 7.函数xe y -=的图象A .与xe y =的图象关于y 轴对称 B .与x e y =的图象关于坐标原点对称 C .与x e y -=的图象关于y 轴对称 D .与x ey -=的图象关于坐标原点对称8.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a ,b 满足:1||=a ,2||=b ,2||=-b a ,则=+||b aA .1B .2C .5D .6 10.已知球O 的半径为1,,,A B C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为A .31B .33C .32D .3611.函数x x y 24cos sin +=的最小正周期为 A .4π B .2πC .πD .2π 12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 A .56个 B .57个 C .58个 D .60个第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线12222=-y x 有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该DC 1B 1A 1M CBA四棱柱为直四棱柱.其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列}{n a ,259,21a a ==. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令n an b 2=,求数列}{n b 的前n 项和n S .18.(本小题满分12分)已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (Ⅰ)求证B A tan 2tan =;(Ⅱ)设3=AB ,求AB 边上的高. 19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为,A B 两组,每组4支.求:(Ⅰ),A B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. 20.(本小题满分12分)如图,直三棱柱111ABC A B C -中, ∠ACB =90°,1,AC BC ==11AA =,侧面11AA B B 的两条对角线交点为D ,11B C 的中点为M .(Ⅰ)求证CD ⊥平面BDM ; (Ⅱ)求面1B BD 与面BCD 所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间),6(+∞上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :x y 42=,F 是C 的焦点,过点F 的直线l 与C 相交于,A B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 的夹角的大小;(Ⅱ)设AF FB λ=,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试 (内蒙古、海南、西藏、陕西、广西等地)数学 (文史类) (全国Ⅲ卷) 第Ⅰ卷(选择题 共60分)一、选择题 1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为 A.1 B.2 C.3 D.4 2.函数sin2xy =的最小正周期是 A .2πB . πC .π2D .π43.记函数13xy -=+的反函数为()y g x =,则(10)g =A .2B .2-C .3D .1-4.等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为A .81B .120C .168D .192 5.圆0422=-+x y x 在点)3,1(P 处的切线方程为 A .023=-+y x B .043=-+y xC .043=+-y xD .023=+-y x6.61x ⎫⎪⎭展开式中的常数项为 A .15 B .15- C .20 D .20-7.设复数z 的辐角的主值为32π,虚部为3,则2z =A .i 322--B .i 232--C .i 32+D .i 232+8.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =A .5 B.549.不等式113x <+<的解集为 A .()0,2 B .()()2,02,4-C .()4,0-D .()()4,20,2--10.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为ABC.3 D11.在△ABC中,3,AB BC ==,4AC =,则边AC 上的高为 A .223 B .233 C .23 D .3312.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有 A .12种 B .24种 C 36种 D .48种第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 13.函数)1(log 21-=x y 的定义域是 .14.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 . 15.函数)(cos 21sin R x x x y ∈-=的最大值为 .16.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 . 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解方程242120xx +--=. 18.(本小题满分12分) 已知α为锐角,且21tan =α,求 ααααα2cos 2sin sin cos 2sin -的值.C B A P 19.(本上题满分12分)设数列}{n a 是公差不为零的等差数列,nS 是数列}{n a 的前n 项和,且2129S S =,424S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少? 21.(本小题满分12分)三棱锥P ABC -中,侧面PAC 与底面ABC 垂直,3PA PB PC ===. (Ⅰ)求证:AB BC ⊥;(Ⅱ)设AB BC ==,求侧面PBC 与侧面PAC 所成二面角的大小.22.(本小题满分14分)设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0(),0,(2>c c F ,且椭圆上存在一点P ,使得直线1PF 与2PF 垂直. (Ⅰ)求实数m 的取值范围;(Ⅱ)设L 是相应于焦点2F 的准线,直线2PF 与L 相交于点Q ,若3222-=PF QF ,求直线2PF 的方程.2004年普通高等学校招生全国统一考试 (甘肃、青海、宁夏、贵州、新疆等地) 文科数学(必修+选修Ⅰ)(全国Ⅳ卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为 A .)0(ln 2>=x x y B .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于 A .1 B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数13xy ⎛⎫= ⎪⎝⎭的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .220 7.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y x C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数2sin()cos()36y x x ππ=--+ ()x ∈R 的最小值等于A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===则球心到平ABC 的距离为 A .1 B .2 C .3 D .2 12.△ABC 中,,,a b c 分别为∠A ,∠B ,∠C 的对边.如果,,a b c 成等差数列,∠B =30°,△ABC 的面积为23,那么=bA .231+B .31+C .232+ D .32+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.8(x 展开式中5x 的系数为 . 14.已知函数)0(sin21>+=A Ax y π的最小正周期为3π,则A = .15.向量a ,b 满足4)2()(-=+⋅-b a b a ,且2||=a ,4||=b ,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知α为第二象限角,且415sin =α,求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分)已知数列}{n a 为等比数列,256,a a ==162.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设n S 是数列}{n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点 (1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率.21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD为矩形,8,3AB AD ==侧面PAD 为等边三角形,并且与底面所成二面角为 60°.(Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA ⊥BD . 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l的距离之和45S c ≥,求双曲线的离心率e的取值范围.。
2004年普通高等学校招生全国统一考试数学(文史类 湖南卷)一、选择题:本大题 共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的. 1.函数)11lg(xy -= 的定义域为( )A .{}0|<x xB .{}1|>x xC .{}10|<<x xD .{}10|><或x x2.设直线 ax+by+c=0的倾斜角为α,且sin α+cos α=0,则a,b 满足 ( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.设)(1x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是( )A .12)(1-≤-x x f B .12)(1+≤-x x fC .12)(1-≥-x x fD .12)(1+≥-x x f4.如果双曲线1121322=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的距离是( )A .513B .13C .5D .135 5.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .90°B .60°C .45°D .30°6.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法7.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是 ( )A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(8.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0=x 2+b x +c/) 10.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为 ( )A .56B .52C .48D .4011.农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。
2004年普通高等学校招生全国统一考试文 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂= ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x } 2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x yB .)(5R x x y ∈+=C .)0(51≠+=x xyD .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 ( )A .1)1(22=++y x B .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 ( )A .75°B .60°C .45°D .30° 7.函数xe y -=的图象( )A .与x e y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x ey -=的图象关于y 轴对称D .与xey -=的图象关于坐标原点对称8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 ( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |= ( )A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( )A .56个B .57个C .58个D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{n a },.21,952==a a (Ⅰ)求{n a }的通项公式; (Ⅱ)令na nb 2=,求数列}{n b 的前n 项和S n .18.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高.19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支. 求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.20.(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间 (6,+∞)上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若,求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)参考答案一、选择题C A B C A CD B D B B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.21- 14.5 15.1222=+y x 16.②④ 三、解答题17.本小题主要考查等差、等比数列的概念和性质,考查运算能力,满分12分. 解:(Ⅰ)设数列}{n a 的公差为d ,依题意得方程组⎩⎨⎧=+=+,214,911d a d a 解得.4,51==d a所以}{n a 的通项公式为.14+=n a n(Ⅱ)由,21414+=+=n n n b n a 得所以}{n b 是首项512=b ,公式42=q 的等比数列. 于是得}{n b 的前n 项和 .15)12(3212)12(24445-⨯=--⨯=n n n S 18.本小题主要考查三角函数概念,两角和、差的三角函数值以及应用、分析和计算能力,满分12分. (Ⅰ)证明:,51)sin(,53)sin(=-=+B A B A Θ .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 所以.tan 2tan B A =(Ⅱ)解:ππ<+<B A 2Θ,,43)tan(,53)sin(-=+∴=+B A B A 即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得 .01tan 4tan 22=--B B解得262tan ±=B ,舍去负值得262tan +=B , .62tan 2tan +==∴B A 设AB 边上的高为CD. 则AB=AD+DB=.622tan tan +=+CDB CD A CD 由AB=3,得CD=2+6. 所以AB 边上的高等于2+6.19.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分.(Ⅰ)解法一:三支弱队在同一组的概率为 .7148354815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 21481533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.2120.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.满分12分.解法一:(Ⅰ)如图,连结CA 1、AC 1、CM ,则CA 1=.2∵CB=CA 1=2,∴△CBA 1为等腰三角形,又知D 为其底边A 1B 的中点,∴CD ⊥A 1B. ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3又BB 1=1,A 1B=2. ∵△A 1CB 为直角三角形,D 为A 1B 的中点, ∴CD=21A 1B=1,CD=CC 1,又DM=21AC 1=22,DM=C 1M.∴△CDM ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM.因为A 1B 、DM 为平在BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG//CD ,FG=21CD. ∴FG=1,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D 知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形. 于是B 1G ⊥BD ,B 1G=.23∴∠B 1GF 是所求二面角的平面角, 又 B 1F 2=B 1B 2+BF 2=1+(2)22=23, ∴ .332123223)21()23(2cos 221212211-=⋅⋅-+=⋅-+=∠FGC B FB FG G B GF B即所求二面角的大小为.33arccos -π 解法二:如图,以C 为原点建立坐标系.(Ⅰ)B (2,0,0),B 1(2,1,0),A 1(0,1,1),D ()21,21,22,M (22,1,0),),21,21,0(),1,1,2(),21,21,22(1-=--==DM B A CD 则,0,01=⋅=⋅DM CD B A CD ∴CD ⊥A 1B ,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设BD 中点为G ,连结B 1G ,则G (41,41,423),22(-=BD 、21、21),),41,43,42(1--=G B .,.,0111面角等于所求的二面角的平的夹角与又θG B BD BD CD G B BD G B BD ∴⊥⊥∴=⋅∴.33||||cos 11-=⋅=∴G B CD θ 所以所求的二面角等于.33arccos-π 21.本小题主要考查导数的概念的计算,应用导数研究函数单调性的基本方法,考查综合运解:函数)(x f 的导数 .1)(2-+-='a ax x x f 令0)(='x f ,解得),1(,)1,1(,)1,()(,211,),1()(,211.11+∞---∞>>-+∞≤≤--==a a x f a a x f a a a x x 在内为减函数在上为增函数在函数时即当不合题意上是增函数在函数时即当或为增函数.依题意应有 当.0)(,),6(,0)(,)4,1(>'+∞∈<'∈x f x x f x 时当时所以 .614≤-≤a 解得.75≤≤a所以a 的取值范围是[5,7].22.本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和综合解题能力。
2004年高考试题全国卷4文科数学(必修+选修Ⅰ)(甘肃、青海、宁夏、贵州、新疆等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象 ( )A .向左平移3个单位长度B .向右平移3个单位长度球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为 ( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a a(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.C20.(本小题满分12分) 某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响. (Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)(甘肃、青海、宁夏、贵州、新疆等地区)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41c o s ,0c o s s i n-=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=n n n S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x y (II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S 20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率 P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6 =0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析y图1图2C 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅ 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。