小学繁分数化简专题
- 格式:doc
- 大小:1.11 MB
- 文档页数:26
分数与繁分数化简【分数化简】讲析:容易看出,分子中含有因数37,分母中含有因数71。
所以可得(长沙地区小学数学奥林匹克选拔赛试题)讲析:注意到,4×6=24,2+4=6,由此产生的一连串算式:16×4=64166×4=6641666×4=6664……(全国“育苗杯”小学数学竞赛试题)讲析:容易看出分子中含有因数3。
把48531分解为48531=3×16177,然后可试着用16177去除分母:【繁分数化简】(1990年马鞍山市小学数学竞赛试题)讲析:如果分别计算出分子与分母的值,则难度较大。
观察式子,可发现分子中含有326×274,分母中含有275×326。
于是可想办法化成相同的数:(全国第三届“华杯赛”复赛试题)讲析:可把小数化成分数,把带分数都化成假分数,并注意将分子分母同乘以一个数,以消除各自中的分母。
于是可得例3 化简(全国第三届“华杯赛”复赛试题)讲析:由于分子与分母部分都比较复杂,所以只能分别计算。
计算时,哪一步中能简算的,就采用简算的办法去计算。
所以,原繁分数等于1。
(北京市第一届“迎春杯”小学数学竞赛试题)讲析:连分数化简,通常要从最下层的分母开始,自下而上逐步化简。
依此法计算,题目的得数是2。
(计算过程略)55、对称变换【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点?海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O点,延长AO至A',使A'O=AO。
连结A'B,交L于C,则C点就是所要求的饮马地点。
再连结AC,则路程(AC+CB)为最短的路程。
为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。
而A'B 是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。
小学奥数知识点汇编第一章计算1.1四则混合运算1.1.1繁分数的化简技巧繁分数的定义如果分数形式中,分子或分母含有四则运算或分数, 或分子与分母都含有四则运算或分数的数,叫“繁分数”;其对应于“简分数”。
1.1.1.2繁分数化简的基本方法1.1.1.2.1可利用分数与除法的关系把繁分数写成分子除以分母的形式。
141.1.1.2.2利用分数的基本性质, 去掉分子、分母上分数的分母后化为最简分数。
一般情况下,分子、分母所乘上的适当非零整数为分子、分母部分的两个分数分母的最小公倍数。
1.1.1.3繁分数化简的常用技巧 1.1.1.3.1化带分数为假分数:繁分数中的分子或分母若含有带分数,则把带分数化为假分数 再化简。
,1 6 6 , -1155 - 5 - 5 -18 9 28 8 “ 40 -202— 153331.1.1.3.2化小数为分数:繁分数中的分子或分母若含有小数,则一般可把小数化成分数再化 简。
3 3200.15 20 — 20 31 3 _ 3 3155—20 4 4 46例: 76 5 • - 6 14 X 57 14 7 5125 例:67 5 14 614 7 5 14 1412 51.1.133化分数为小数:繁分数中的分子或分母部分所含有的分数可化为有限小数,则可把 分子或分母中的分数化为小数再化简。
0.15 0.15 15 1■ - --- — _3 一 0.75 一 75 一 541.1.1.3.4化小数为整数:若分子、分母都是小数还可以利用分数的基本性质,分子与分母同 时扩大相同的倍数,把小数化成整数再化简。
-2.4 _ 24 _ 2 3.6 _ _ 31.1.1.3.5化复杂为简单:繁分数的分子或分母部分若含有加减运算,则先加减运算再按繁分 数化简方法进行化简。
繁分数的分子、分母都是连乘运算可以分子、分母直接约分化简。
1 3 1 30.26(2)厘 4 1 0.52 1.5 72走进奥数繁分数1_ 1 _ 1_ 1 _ 1_ 1 _ 12 丄1-亠11-丄1-丄5-292922222 —J \J222 22 2122 1555221.1.1.3.6化多层为单层:化简复杂的繁分数要学会分层化简O12767 17 “ 70——20 =1 _ 6 20 63201.5 3.75 0.26 0.52 1.5 7.51 1 1 12 12 4346 6 2 上20 一 20根据实际问题列出的分数,有时它的分子或分母里又含有分 数,或者分子和分母里都含有分数,我们把这样的分数叫做繁繁分数中,把分子部分和分母部分分开的那条分数线,叫 做繁分数的主分数线(也叫主分线)。
什么叫做繁分数?_计算奥数专题_繁分数问题在一个分数的分子和分母里,至少有一个又含有分数,这样形式的分数,叫做繁分数。
繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其他分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
如:根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。
什么叫做繁分数化简?_计算奥数专题_繁分数问题把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下两种方法:(1)先找出中主分线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
此题也可改写成分数除法的运算式,再进行计算。
(2)繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分、分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
繁分数的分子部分和分母部分,有时也出现是小数的情况,如果分子部分与分母部分都是小数,可依据分数的基本性质,把它们都化成整数,然后再进行计算。
如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。
即:把小数化成分数,或把分数化成小数,再进行化简。
繁分数的运算基本法则_计算奥数专题_繁分数问题繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.繁分数运算典型问题解析1_计算奥数专题_繁分数问题繁分数运算典型问题解析1繁分数运算典型问题解析2繁分数运算典型问题解析3繁分数运算典型问题解析4繁分数运算典型问题解析5繁分数运算典型问题解析6繁分数运算典型问题解析7繁分数运算典型问题解析8繁分数运算典型问题解析9繁分数运算典型问题解析10繁分数运算典型问题解析11繁分数运算典型问题解析12繁分数运算典型问题解析13繁分数运算典型问题解析14繁分数运算典型问题解析15数学计算公式(常用公式)繁分数的计算练习题及答案讲解1_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解1繁分数的计算练习题及答案讲解2_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解2繁分数的计算练习题及答案讲解3_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解3繁分数的计算练习题及答案讲解4_计算奥数专题_繁分数问题繁分数化简技巧(化多层为单层)_计算奥数专题化多层为单层:化简复杂的繁分数要学会分层化简。
繁分数化简技巧
《繁分数化简技巧》
一、经过等量变换:
1、分子分母同乘以同一个数或者乘方,此分数可以化简成原来的分子分母的最简形式,发现能够整除的约分。
2、如果分子分母有共同的因子,可以把最大的因子去除,然后再约分,看是否仍有因子可以整除。
例:
2/3=2÷3÷3÷3=2/27
3、如果分子分母同乘以一个负数,那么分数的正负号就变成了相反;
二、使用指定公示:
1、“特殊乘法性质”,分子分母乘以一个数或指定分数,使分子分母变成一样,然后将分数化简成1。
如:
2/3 x 3/2 = 2/2 x 3/3=1
2、“分母乘一”:乘以一个数或指定分数,使分母变成1,然后分子同时乘以这个数,分数化简成一个数字。
如:
2/3 x 3 = 2 x 3/3 = 6
3、“省略等价”:如果把一个分数省略几个倍数,而留下的分子和分母仍然能够整除,则这个分数可以化简成它的最简分数。
小学繁分数练习题40道小学奥数知识点汇编第一章计算1.1四则混合运算1.1.1繁分数的化简技巧1.1.1.1繁分数的定义如果分数形式中,分子或分母含有四则运算或分数,或分子与分母都含有四则运算或分数的数,叫“繁分数”;其对应于“简分数”。
1.1.1.2繁分数化简的基本方法1.1.1.2.1可利用分数与除法的关系把繁分数写成分子除以分母的形式。
6561412例:?÷?×?571475141.1.1.2.2利用分数的基本性质,去掉分子、分母上分数的分母后化为最简分数。
一般情况下,分子、分母所乘上的适当非零整数为分子、分母部分的两个分数分母的最小公倍数。
6?141277例:??55?1414141.1.1.3繁分数化简的常用技巧1.1.1.3.1化带分数为假分数:繁分数中的分子或分母若含有带分数,则把带分数化为假分数再化简。
?1166151898840202?153331.1.1.3.2化小数为分数:繁分数中的分子或分母若含有小数,则一般可把小数化成分数再化简。
33?200.153133155??204441.1.1.3.3化分数为小数:繁分数中的分子或分母部分所含有的分数可化为有限小数,则可把分子或分母中的分数化为小数再化简。
0.150.151510.75755?41.1.1.3.4化小数为整数:若分子、分母都是小数还可以利用分数的基本性质,分子与分母同时扩大相同的倍数,把小数化成整数再化简。
?2.4242.63631.1.1.3.5化复杂为简单:繁分数的分子或分母部分若含有加减运算,则先加减运算再按繁分数化简方法进行化简。
繁分数的分子、分母都是连乘运算可以分子、分母直接约分化简。
12347??71770??20?23?66?6?? 1154162063??45202020131?3?0.261.5?3.75?0.261?1?11 10.52?1.5?7.52?1?240.52?1.5?721.1.1.3.6化多层为单层:化简复杂的繁分数要学会分层化简。
什么叫做繁分数?_计算奥数专题_繁分数问题在一个分数的分子和分母里,至少有一个又含有分数,这样形式的分数,叫做繁分数。
繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其他分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
如:根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。
什么叫做繁分数化简?_计算奥数专题_繁分数问题把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下两种方法:(1)先找出中主分线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
此题也可改写成分数除法的运算式,再进行计算。
(2)繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分、分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
繁分数的分子部分和分母部分,有时也出现是小数的情况,如果分子部分与分母部分都是小数,可依据分数的基本性质,把它们都化成整数,然后再进行计算。
如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。
即:把小数化成分数,或把分数化成小数,再进行化简。
繁分数的运算基本法则_计算奥数专题_繁分数问题繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.繁分数运算典型问题解析1_计算奥数专题_繁分数问题繁分数运算典型问题解析1繁分数运算典型问题解析2繁分数运算典型问题解析3繁分数运算典型问题解析4繁分数运算典型问题解析5繁分数运算典型问题解析6繁分数运算典型问题解析7繁分数运算典型问题解析8繁分数运算典型问题解析9繁分数运算典型问题解析10繁分数运算典型问题解析11繁分数运算典型问题解析12繁分数运算典型问题解析13繁分数运算典型问题解析14繁分数运算典型问题解析15数学计算公式(常用公式)繁分数的计算练习题及答案讲解1_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解1繁分数的计算练习题及答案讲解2_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解2繁分数的计算练习题及答案讲解3_计算奥数专题_繁分数问题繁分数的计算练习题及答案讲解3繁分数的计算练习题及答案讲解4_计算奥数专题_繁分数问题繁分数化简技巧(化多层为单层)_计算奥数专题化多层为单层:化简复杂的繁分数要学会分层化简。
小学数学数的分数化简练习题题目:小学数学-分数化简练习题一、简化分数1. 将 $\frac{16}{24}$ 化简为最简分数。
2. 化简 $\frac{25}{60}$ 至最简分数。
3. 把 $\frac{36}{48}$ 化成最简分数。
4. $\frac{8}{10}$ 可以化简成什么样的分数?5. 将 $\frac{42}{56}$ 化简为最简分数。
二、分数比较大小1. 比较 $\frac{5}{6}$ 和 $\frac{4}{5}$ 的大小,用“>”、“=”或“<”填空。
2. 比较 $\frac{3}{4}$ 和 $\frac{9}{12}$ 的大小,填写“>”、“=”或“<”。
3. 判断 $\frac{1}{2}$ 和 $\frac{4}{7}$ 的大小关系,用“>”、“=”或“<”填空。
4. 比较 $\frac{2}{3}$ 和 $\frac{8}{12}$ 的大小,填“>”、“=”或“<”。
5. 比较 $\frac{7}{8}$ 和 $\frac{10}{12}$ 的大小,填“>”、“=”或“<”。
三、加减法计算(化简)1. 计算 $\frac{2}{5} + \frac{3}{10}$ ,并将结果化简为最简分数。
2. 将 $\frac{5}{6} - \frac{1}{4}$ 化简为最简分数。
3. 计算 $\frac{3}{7} + \frac{4}{7}$ 并以最简分数形式给出结果。
4. $\frac{1}{2} - \frac{3}{8}$ 等于多少?将结果化简为最简分数。
5. 将 $\frac{3}{4} + \frac{1}{6}$ 化简为最简分数。
四、乘法和除法计算(化简)1. 将 $\frac{2}{5}$ 和 $\frac{3}{4}$ 相乘,并将结果化简为最简分数。
2. 将$\frac{5}{6}$ 除以$\frac{2}{3}$ ,并将结果化简为最简分数。
3. $\frac{4}{9}$ 乘以 $\frac{5}{8}$ 得到了什么结果?将结果化简为最简分数。
第23讲繁分数分子和分母中还含有分数或四则混合运算的分数叫做繁分数。
繁分数的运算过程就是化简的过程,要分别对分子和分母逐步进行计算,这需要扎实的基本功:概念清楚,运算迅速正确,而且还需要探索和掌握一些灵活的解题方法,化“繁”为“简”。
例1 计算分析:象这样迭塔式繁分数是繁分数计算的基本类型,这样的题目处理的方式可以从最下面的分母开始逐层进行计算,另外,在计算中可以利用倒数的概念直接将分子、分母根据算出结果。
解答:原式=例2 已知:,则a=()分析:这类题可以通过倒推的方法进行解答。
将分母中的繁分数通过层层设为X,然后根据法则进行解答。
解答:设=,解得1+=,=又设=,解2+=,=即:=,解a =例3 若1-=,那么四个()中的数的和是多少?分析:观察题目左右两边,左边可以计算出结果,然后连续利用倒数关系逐个求出()中的数。
解答:原式左边=原式右边=所以:四个()中的数的和是:1+1+2+2=6说明:繁分数计算中,经常运用倒数关系进行计算。
例4计算:分析:仔细观察,可以发现,分子和分母能够变成相同的一个算式。
将分母1998×1999-1可以变形为1997×1999+(1999-1)=1997×1999+1998,与分子的式子完全相同,可以通过约分,算出最后的值。
解答:原式==1说明:这道题表面看来数字非常大,计算很复杂,但通过观察不难发现可以将分子或分母变形后,简便计算。
看来,拿到一道计算题后,也要认真观察,仔细审题,运用技巧进行计算。
这样,使计算变得简单多了。
例5分析:在这道题目中,分母都含有算式,我们不妨先将分母进行计算整理,看一看能不能发现规律。
然后考虑运用一些计算的法则、技巧算出结果。
解答:原式===2×()=2×()=2×()=说明:有些题目一开始虽然看不出能利用简便方法进行计算,我们可以先按照计算的顺序进行计算整理,在计算过程中,随时发现可以简便计算时再进行简便计算。
小学数学分数化简练习题一、选择题1. 将3/6化简为最简形式的分数是:A. 1/2B. 1/3C. 1/6D. 3/62. 将5/15化简为最简形式的分数是:A. 1/3B. 1/5C. 3/5D. 5/153. 将8/12化简为最简形式的分数是:A. 2/3B. 4/6C. 2/4D. 8/124. 将10/20化简为最简形式的分数是:A. 1/5B. 1/2C. 1/10D. 10/205. 将16/24化简为最简形式的分数是:A. 2/3B. 3/4C. 16/24D. 8/12二、填空题1. 将2/4化简为最简形式的分数是:_____2. 将7/14化简为最简形式的分数是:_____3. 将9/18化简为最简形式的分数是:_____4. 将12/16化简为最简形式的分数是:_____5. 将20/30化简为最简形式的分数是:_____三、计算题1. 将1 2/3化简为最简形式的分数。
2. 将3 5/6化简为最简形式的分数。
3. 将4 7/8化简为最简形式的分数。
4. 将2 4/5化简为最简形式的分数。
5. 将6 3/4化简为最简形式的分数。
四、应用题小明剩下了1/3的篮球,小明又将剩下的篮球平均分给了他的4位朋友,每人得到了几分之几的篮球?答案:1/3 ÷ 4 = 1/12所以,每位朋友得到了1/12的篮球。
小结:通过这些练习题,我们可以理解并掌握如何将分数化简为最简形式,以及在实际问题中如何运用分数的化简。
这不仅能提高我们的数学能力,还可以帮助我们解决生活中的实际问题。
希望同学们能够认真完成每道题目,加强对分数化简的理解和掌握。
小学繁分数化简专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.1.1繁分数的化简技巧1.1.1.1繁分数的定义如果分数形式中,分子或分母含有四则运算或分数,或分子与分母都含有四则运算或分数的数,叫“繁分数”;其对应于“简分数”。
1.1.1.2繁分数化简的基本方法1.1.1.2.1可利用分数与除法的关系把繁分数写成分子除以分母的形式。
例:7614576=÷76145=×512514=1.1.1.2.2利用分数的基本性质,去掉分子、分母上分数的分母后化为最简分数。
一般情况下,分子、分母所乘上的适当非零整数为分子、分母部分的两个分数分母的最小公倍数。
例:51214145147614576=⨯⨯= 1.1.1.3繁分数化简的常用技巧1.1.1.3.1化带分数为假分数:繁分数中的分子或分母若含有带分数,则把带分数化为假分数再化简。
2094018153815563856322511-=-=⨯⨯-=-=-1.1.1.3.2化小数为分数:繁分数中的分子或分母若含有小数,则一般可把小数化成分数再化简。
51153204320203432034315.0-=-=⨯⨯-=-=-1.1.1.3.3化分数为小数:繁分数中的分子或分母部分所含有的分数可化为有限小数,则可把分子或分母中的分数化为小数再化简。
51751575.015.04315.0-=-=-=-1.1.1.3.4化小数为整数:若分子、分母都是小数还可以利用分数的基本性质,分子与分母同时扩大相同的倍数,把小数化成整数再化简。
3236246.34.2-=-=- 1.1.1.3.5化复杂为简单:繁分数的分子或分母部分若含有加减运算,则先加减运算再按繁分数化简方法进行化简。
繁分数的分子、分母都是连乘运算可以分子、分母直接约分化简。
(1)37020672016720167204205646351413221=⨯=÷==-+=-+(2)412121115.75.152.026.075.35.12175.152.026.0433211=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯ 1.1.1.3.6化多层为单层:化简复杂的繁分数要学会分层化简。
小学奥数知识点汇编第一章 计算1.1四则混合运算1.1.1繁分数的化简技巧1.1.1.1繁分数的定义如果分数形式中,分子或分母含有四则运算或分数,或分子与分母都含有四则运算或分数的数,叫“繁分数”;其对应于“简分数”。
1.1.1.2繁分数化简的基本方法1.1.1.2.1可利用分数与除法的关系把繁分数写成分子除以分母的形式。
例:7614576=÷76145=×512514=1.1.1.2.2利用分数的基本性质,去掉分子、分母上分数的分母后化为最简分数。
一般情况下,分子、分母所乘上的适当非零整数为分子、分母部分的两个分数分母的最小公倍数。
例:51214145147614576=⨯⨯= 1.1.1.3繁分数化简的常用技巧1.1.1.3.1化带分数为假分数:繁分数中的分子或分母若含有带分数,则把带分数化为假分数再化简。
2094018153815563856322511-=-=⨯⨯-=-=-1.1.1.3.2化小数为分数:繁分数中的分子或分母若含有小数,则一般可把小数化成分数再化简。
51153204320203432034315.0-=-=⨯⨯-=-=-1.1.1.3.3化分数为小数:繁分数中的分子或分母部分所含有的分数可化为有限小数,则可把分子或分母中的分数化为小数再化简。
51751575.015.04315.0-=-=-=- 1.1.1.3.4化小数为整数:若分子、分母都是小数还可以利用分数的基本性质,分子与分母同时扩大相同的倍数,把小数化成整数再化简。
3236246.34.2-=-=- 1.1.1.3.5化复杂为简单:繁分数的分子或分母部分若含有加减运算,则先加减运算再按繁分数化简方法进行化简。
繁分数的分子、分母都是连乘运算可以分子、分母直接约分化简。
(1)37020672016720167204205646351413221=⨯=÷==-+=-+(2)412121115.75.152.026.075.35.12175.152.026.0433211=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯ 1.1.1.3.6化多层为单层:化简复杂的繁分数要学会分层化简。
29121229112521512121522121251212121212121==+=+=++=++=+++走进奥数繁分数根据实际问题列出的分数,有时它的分子或分母里又含有分数,或者分子和分母里都含有分数,我们把这样的分数叫做繁分数。
25 7512312+383-57×2繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其它分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
如:5根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。
如:(3+78 )÷(2-134 )=3+782-134把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下两种方法:把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下两种方法:(1) 先找出中主分线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
例1 、14 +581-34 ×25 =78710 =78 ÷710 = 78 ×107 = 54此题也可改写成分数除法的表达式,再进行计算。
即:(14 +58 )÷(1-34 ×25 )=78 ÷710 =78 ×107 =54(2) 繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分、分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
例2、423 -334212 +456 =(423 -334)×12(212 +456 )×12 =56-4530+58 =1188 =18繁分数的分子部分和分母部分,有时也出现是小数的情况,如果分子部分与分母部分都是小数,可依据分数的基本性质,把它们都化成整数,然后再进行计算。
如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。
即:把小数化成分数,或把分数化成小数,再进行化简。
有一种繁分数,形式如 1+ 14+13+12+12+…这种繁分数叫连分数。
连分数是繁分数的特殊形式,二者之间是一般与特殊的关系。
计算连分数,采取自下而上的方法,先将连分数中最下面的分数化简,然后逐步向上计算。
例如:1 1+1 2+1 3+14 =1 1+1 2+1 3+14=11+12+4 13=1 1+1 30 13 =1 4330=3043例1:1998+1997×19991998×1999-1=1998+1997×19991997×1999+1999-1=1998+1997×1999 1998+1997×1999=1 3.已知1 1+1 2+1 x+14=811,求x.解:用倒推法。
又设12+x 2=38 , 解得x 2=23再设1x 3 =23 , 解得 x 3= 32x+14 =23 , 解得x =512拓展演练1. 用简便方法计算下面各题:⑴567+345×566567×345+222 ⑵987×655-321666+987×654 ⑶252525×252252525525×525252 ⑷213639×264528792132396×213426639 (5)967273 +362425 322473 +12825 (6)1+2+3+4+5+6++5+4+3+2+1666666×666666(7)123 +234 +345 +…+272829 +282930313 +524 +735 +…+552729 +5928302.计算3.875×15 +38.75×0.09-0.155÷0.4216 ×[(4.32-1.68-1825 )×511 -27 ]÷1935 +111243.计算下面各题。
(1)1 2+1 3+1 4+15 (2)1 5+14+1 3+12(3)16-2 7-3 8-45 (4)1+12-131-12+134.已知 1 1+1 2+13+1 4+1 x=67965.求下列式子的整数部分。
111991 +11992 +…+12000星级擂台1-12 + 13 - 14 + … + 19911+101 +12+102 +…+150+150拓展演练答案参考1.(1)原式=567+345×566566×345+345+222 =1 (2)1 (方法同1)(3)原式=25×10101×252×1001525×1001×52×10101 =313(4)2 (5)3 (方法同7)(6)112345654321(7)原式=53+114+195+…+81129+86930 103+224+385+…+162229+173830=53+114+195+…+81129+869302(53+114+195+…+81129+86930)=122. 23.(1)68157(2)30157(3)79450(4)2454.x=25.9提示:11 1990×10>111991+11992+…+12000>112000×10星级擂台答案参考: 2提示:分子=(1+12+13+14+ …+199+1100)-2×(12+14+ …+1100)=(1+12+13+14+ …+199+1100)-(1+12+13+14+ …+150 )=151 + 152 +… + 1100 分母=12 (151 + 152 +… + 1100)参考部分(一) 分数与繁分数化简1.讲析:容易看出,分子中含有因数37,分母中含有因数71。
所以可得2.(长沙地区小学数学奥林匹克选拔赛试题)讲析:注意到,4×6=24,2+4=6,由此产生的一连串算式: 16×4=64 166×4=664 1666×4=6664 ……3.(1990年马鞍山市小学数学竞赛试题)讲析:如果分别计算出分子与分母的值,则难度较大。
观察式子,可发现分子中含有326×274,分母中含有275×326。
于是可想办法化成相同的数:4.(全国第三届“华杯赛”复赛试题)讲析:可把小数化成分数,把带分数都化成假分数,并注意将分子分母同乘以一个数,以消除各自中的分母。
于是可得5. 化简 (全国第三届“华杯赛”复赛试题)讲析:由于分子与分母部分都比较复杂,所以只能分别计算。
计算时,哪一步中能简算的,就采用简算的办法去计算。
所以,原繁分数等于1。
什么叫做繁分数?_计算奥数专题_繁分数问题在一个分数的分子和分母里,至少有一个又含有分数,这样形式的分数,叫做繁分数。
繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其他分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
如:根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。
什么叫做繁分数化简?_计算奥数专题_繁分数问题把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下两种方法:(1)先找出中主分线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
此题也可改写成分数除法的运算式,再进行计算。
(2)繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分、分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。