第21章 二次根式单元复习(1)
- 格式:ppt
- 大小:424.00 KB
- 文档页数:16
第二十一章二次根式单元测试卷(一)一、选择题1不是同类二次根式的是()A. B.D.C.2x应满足()A. x≠1B. x≥1C. x≤1D. x<13、下列计算正确的是()A. 5== B. 2C. =D. =4、下列式子不是二次根式的是()A. B.C. D.5、下列计算错误的是()A. =B. =C. =D. =6可化简为()C. D. 67是同类二次根式的是()A. B.C. D.+⋅=,若b是整数,则a的值可能是()8、已知(3a bA. B. 3C. 3+D. 29、下列计算,正确的是()A. =B. 13222 -=-C. =D.112 2-⎛⎫= ⎪⎝⎭10、若|m+1|0,则2m+n的值为()A. -1B. 0C. 1D. 311=a b,用含有a,b,下列表示正确的是()A. 20.1ab B. 30.1a bC. 20.2ab D. 2ab12)A. 5和6B. 6和7C. 7和8D. 8和9二、填空题13、函数124yx=-的自变量x的取值范围是______.14、当x>2150,0)a b>的结果是______.16是同类二次根式,则a=______.三、解答题1718、先观察下列等式,再回答问题:=1+1=2;②2212+2+()2=2+ 12=2 12; ③2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.19、化简:(1)00=,22=______,2(2)-=______.,2a =______.; (2)30=0,333=______,33(3)-=______,33a =______;(3)根据以上信息,观察a b 、所在位置,完成化简:()()2323a b a a b +--+20、小明解答“先化简,再求值:21211x x ++-21211x x ++-,其中31x =+.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.21、计算:5-31562;(2)2×(12855-31)2;(4)( 352352).参考答案1、【答案】B【分析】根据最简二次根式的定义选择即可.【解答】A=A不正确;B不是同类二次根式,故B正确;C=是同类二次根式,故C不正确;D=是同类二次根式,故D不正确;故选:B.2、【答案】C【分析】根据二次根式有意义的条件可得1-x≥0,再解即可.【解答】解:由题意得:1−x⩾0,解得:x⩽1,故选C.3、【答案】B【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、与A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式2,所以D选项错误.故选:B.4、【答案】Da≥0)是二次根式,可得答案.【解答】A.是二次根式,故A不符合题意;B.是二次根式,故B不符合题意;C.是二次根式,故C不符合题意;D.被开方数小于零,故D符合题意.答案第1页,共7页故选D.5、【答案】D【分析】根据二次根式的分母有理化对进行判断;根据二次根式的乘法对进行判断;根据二次根式的加减法对、进行判断.【解答】、1333=,故此计算正确;、361832⨯==,故此计算正确;、271233233-=-=,故此计算正确;23.故选:D.6、【答案】A12化简即可.1223=A7、【答案】D【分析】先将各选项化简,再找到被开方数为a的选项即可.【解答】A. 2a a233a=a42a a=aD.2a a故选:D.8、【答案】B【分析】利用平方差公式找出括号中式子的有理化因式即可.【解答】(3535954-=-=则a的值可能是35,故选:B.9、【答案】D【分析】A、先化简二次根式,再合并同类项即可求解;B、根据有理数减法法则计算、再求绝对值即可求解;C、根据二次根式的性质化简即可求解;D、根据负整数指数幂的计算法则计算即可求解.【解答】A=B、|12-2|=|-32|=32,故选项错误;C,故选项错误;D、112-⎛⎫⎪⎝⎭=2,故选项正确.故选:D.10、【答案】B【分析】先根据非负数的性质列出关于m、n的一元一次方程组,求出m、n的值,把m、n的值代入代数式进行计算即可.【解答】∵|m+1|∴m+1=0;n-2=0解得m=-1,n=2.∴2m+n=0.所以本题答案是B. 11、【答案】B330.10.10.1a b a b=⨯=故答案选:B.12、【答案】A【分析】先把各二次根式化为最简二次根式,再进行计算,再利用估算无理数的方法得出答案.=∵5<6,的运算结果应在5和6两个连续自然数之间.故选:A.答案第3页,共7页13、【答案】1x ≥且2x ≠【分析】根据二次根式及分式有意义的条件解答即可.【解答】由题意可得,x -1≥0且2x -4≠0,解得,1x ≥且2x ≠.故答案为:1x ≥且2x ≠.14、【答案】x -2【分析】根据二次根式的性质解答.【解答】∵x >2=|x -2|=x -2.故答案为:x -2. 15、【答案】3ab 【分析】直接利用二次根式的性质化简得出答案.(0,0)b a b a >故答案为: 16、【答案】4【分析】,故只需根式中的代数式相等即可确定a 的值.是同类二次根式,可得3a -1=11解得a=4 故答案为:4.17、【答案】【分析】直接化简二次根式,进而合并得出答案.【解答】原式=-答案第5页,共7页 18、【答案】(1=144+=144;(2=211n n n n ++=,证明见解答.【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”=414+=414; (2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【解答】(1=1+1=2=212+=212;③=313+=313;里面的数字分别为1、2、3,= 144+= 144. (2=1+1=2=212+=212=313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 19、【答案】(1)2、2、|a|;(2)3、-3、a ;(3)-3a .【分析】(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a 、b 的大小与正负,从而可以化简题目中的式子.【解答】解:(1=2=2.;故答案为:2、2、|a|;(2=3-3a ;故答案为:3、-3、a ;(3)由图可得,a <0<b ,|a|<|b|,=-a+b -a -(a+b )=-a+b -a -a -b=-3a .20、【答案】步骤①、②有误 【分析】异分母分式的的加减应通分,而不是去分母,据此可找出小明错误的步骤;然后按照异分母分式的运算法则计算即可. 【解答】步骤①、②有误.原式:1211(1)(1)(1)(1)(1)(1)1x x x x x x x x x -+=+==+-+-+--.当1x =时,原式3==.21、【答案】(1)-1;(2)2;4【分析】根据二次根式的混合运算法则先去括号,再进行乘除后加减依次进行计算即可.【解答】解:(1)1=-1.(2)2×(1=2- =2.-1)2=32-2-)2-=9-5--1=(9-5-3-+))]2-2=3-(7-4.答案第7页,共7页。
二次根式复习课(1)
课型: 上课时间:课时:
学习目标:
1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.
学习重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.
学习过程
一、自主学习
(一)复习
1.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.
(1)(2)(3)
2.二次根式的乘法及除法的法则是什么?用式子表示出来.
乘法法则: . 除法法则:
反过来: .
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、复习练习课本知识
重点题目:习题21.1、 1、2、7.
习题21.2、 1、2、3、6、7、10.
习题21.3、 1、3、4、5、8.
复习题:1、2、3、5、6、9、11.。
第21章 二次根式1.二次根式概念理解:一个数可以进行平方运算,3的平方=9;反过来可以进行开平方运算,9开平方得±3,我们用式子表示为39±=±,它表示9的平方根是±3,这里我们引用了一个符号根号。
a 这个式子我们称为二次根式,a 叫被开方数。
因为只有非负数才有平方根,即非负数才能开方,所以0≥a 。
注意:被开方数既可以是单项式,也可以是多项式...。
a 表示非负数的算术平方根,则有0≥a若3)3(2-=-a a ,则a 的取值范围是3-a ≥0,解得a ≥3 2.二次根式的性质(用来对式子进行化简):①一个非负数...先开方,再平方得本身()a a =2 ②一个数.先平方,再开方取绝对值a a =2 3.二次根式的乘法:①根号不变,被开方数相乘,再化简...。
不能被平方数整除,则不能化简。
如:22能分成2×11 但2和11都不是平方数。
6。
32分成16×2,不能分成4×8平方数的开方: 981416,39,24==== 非平方数的开方:5220,2318,3212===,被开方数能分成4的多少倍,结果2倍根号多少。
以此类推,如45,45分成9的5倍,得534.二次根式的除法:如5315315==,也可以5335315=⨯=(1)分母是平方数,分子分母分别开方,再化简。
3294=,5112511=,22422168== (2)分母不是平方数,先约分,再把分母变成最小平方数.....。
分子分母分别开方。
642666767=⨯⨯=,410282585=⨯⨯=,2747814== ③分母中有根号的化简:先约分...,把分母根号里的数变成最小平方数.....,再开方。
335333535=⨯⨯=,10625023503=⨯⨯=, 363332322416=⨯⨯== ()()()()()2532532525253253+=+=+-+=-6.二次根式的加减。
清水中学九年级数学人教版 第二十一章 二次根式 复习提纲一、知识结构二、知识点归纳(一)二次根式的概念:(1)二次根式:式子a (a ≥0)叫做二次根式.(2)最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.把满足这两个条件的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,如果被开方数相同。
,这几个二次根式就叫做同类二次根式.(4)分母有理化:把分母中的根号化去,叫做分母有理化。
(5)有理化因式:两个含有二次根式的代数式相乘,如果它们的积为有理式,我们说这两个代数式互为有理化因式.(6)代数式:用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫代数式。
(二)二次根式的性质.20)(0);,(0)0,(0),(0)0,0)____(0,0);a a a a a a a a a a b a b ≥=≥>⎧⎪===⎨⎪-<⎩=≥≥=≥>是一个非负数;(*)(三)二次根式的运算:(1)二次根式的加减:先将二次根式化成最简二次根式,然后合并同类二次根式。
(20,0,0)a b a b =≥≥=≥>注意:做乘法时要灵活运用乘法分式;做除法时,有时要写为分数形式,然后分母有理化; 化简时要注意a 的正负性,尤其是隐含的正负性.三、典型习题(一)二次根式的概念1.(06泸州)要使二次根式1-x 有意义,字母x 的取值必须满足的条件是( ) (A)x≥1(B)x≤1(C)x>1(D)x<12.(06眉山) 若 2-x 有意义,则X 的取值范围( ) A 、x > 2 B 、x ≥ 2 C、x < 2 D 、x ≤ 23.(05x 的取值范围是( ) A 、2x ≠ B 、2x ≥ C 、2x > D 、2x ≤ 4.(05福州)如果代数式1-x x有意义,那么x 的取值范围是( ) A 、0≥x B 、1≠x C 、0>x D 、10≠≥x x 且5.(05 A、a<1 B、a ≤1 C、a ≥1 D、a>16.(04x 必须满足的条件是 A .x ≥1 B .x >-1 C .x ≥-1 D .x >1 7.(05荆门)如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 8.(02哈尔滨)如果式子x341-在实数范围内有意义,那么x 的取值范围是 。
九年级数学 第21章 二次根式单元复习(1)知识结构图(略)1.二次根式的定义:形如 √a (a ≥ 0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?3.二次根式的性质 (1).(2).(题型1:确定二次根式中被开方数所含字母的取值X 围.1.2. 当__________3. 11m +有意义,则m 的取值X 围是。
4. 当__________x 是二次根式。
说明:二次根式被开方数不小于0,所以求二次根式中字母的取值X 围常转化为不等式(组)题型2:二次根式的非负性的应用2440y y -+=,求xy 的值。
,a b (10b -=,求20052006a b -的值。
抢答:判断下列二次根式是否是最简二次根式,并说明理由。
1.已知: + =0,求 x-y 的值.4-x 4-x 00≥≥ (a)2a=,0,0{a a a a a ≥-<==说明:满足下列两个条件的二次根式,叫做最简二次根式 (1)被开方数的因数是整数,因式是整式 (2)被开方数中不含能开得尽方的因数或因式化简二次根式的方法: (1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。
(2)如果被开方数是分数或分式时,先利用商的算术平方根的性质,将其变为二次根式相除的形式,然后利用分母有理化,将式子化简。
练习与反馈:1.要是下列式子有意义求字母的取值X 围(1)(3)如果X 围是。
抢621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++例1:把下列各式化成最简二次根式22164)2(54)1(a a +例2:把下列各式化成最简二次根式xy x 2)2(2114)1(x____=1x >____=2x =-(4)如果X 围是。
(5)若1<x <4,(6)设a,b,c 为△ABC 的三边,化简= (7)若则a 的取值X 围是。