高温合金可细分为镍基合金
- 格式:docx
- 大小:177.15 KB
- 文档页数:4
涡轮叶片材料涡轮叶片是涡轮机械中的重要部件,其性能直接影响着整个涡轮机械的工作效率和可靠性。
涡轮叶片材料需要具备一定的耐高温、抗氧化、耐磨损和高强度等特性,以适应高温高压、高速旋转和复杂工况的要求。
目前,涡轮叶片常见的材料主要包括高温合金、镍基合金和钛合金等。
高温合金是通用的涡轮叶片材料,具有良好的耐高温、抗氧化和耐热蠕变能力。
高温合金主要由金属基体和强化相组成,可以在高温环境下保持稳定的力学性能。
高温合金分为镍基高温合金和钴基高温合金两大类,常用的有IN738、IN713和CMSX系列等。
镍基高温合金在航空、航天和能源等领域得到广泛应用,能够满足复杂工况下的高温、高速和高压要求。
镍基合金是一种非常优良的涡轮叶片材料,具有良好的耐高温和抗氧化性能。
镍基合金在高温下具有较高的强度和良好的塑性,能够在极端工况下保持叶片的整体性能。
镍基合金具有良好的可焊性和可加工性,便于加工成复杂形状的叶片结构。
常见的镍基合金有IN718、IN625和IN738等,广泛应用于航空、航天、石油化工和电力等领域。
钛合金是一种轻质高强度的涡轮叶片材料,具有较高的强度和刚度,可以有效减轻叶片的重量,提高其动力性能。
钛合金耐腐蚀性能好,可以适应复杂的工作环境。
钛合金具有良好的可塑性和可加工性,可以制造出复杂形状的叶片结构。
常见的钛合金有Ti-6Al-4V和Ti-6Al-2Sn-4Zr-6Mo等,广泛应用于航空、航天和船舶等领域。
综上所述,涡轮叶片材料需要具备耐高温、抗氧化、耐磨损和高强度等特性。
高温合金、镍基合金和钛合金是常见的涡轮叶片材料,各自具有优点和适用范围。
随着科技的不断发展,将会有更多新的材料应用于涡轮叶片制造中,提高涡轮机械的工作效率和可靠性。
上海商虎/张工:158 –0185 -9914材料牌号:Inconel718镍基合金美国牌号:NO7718德国牌号:W.Nr.2.4668/NiCr19Fe19Nb5法国牌号:Nc19FeNb一、Inconel718(N07718)镍基合金概述:Inconel718合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。
供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。
可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。
1、Inconel718材料牌号:Inconel718。
2、Inconel718相近牌号:Inconel718(美国),NC19FeNb(法国)。
3、Inconel718材料的技术标准4、Inconel718化学成分:该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。
优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。
同时减少有害杂质和气体含量。
高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。
核能应用的Inconel718合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。
当ω(B)≤0.002%时,为与宇航工业用的Inconel718合金加以区别,合金牌号为Inconel718A。
高温合金分类高温合金,即能在高温环境下具有出色耐热性和抗氧化性的合金,分为三类:镍基、铁基和钴基高温合金。
这三种类型的高温合金分别针对不同的化学环境和工作条件,在工业领域中有广泛应用。
1.镍基高温合金镍基高温合金是最为常见的一种高温合金,具有很好的高温力学性能和高温稳定性。
这些合金通常用于高温条件下的氧化、腐蚀和高压应用。
镍基高温合金按其含钼量、铬量分类,主要包括两大类,即低钼高铬合金和高钼高铬合金。
低钼高铬合金:低钼高铬合金如Inconel 600、Inconel 601、Haynes 230等,主要由铬、镍、铁、钼和铝等成分组成。
这种合金在高温环境下表现出色,可承受高度氧化、腐蚀和应力腐蚀等化学破坏。
该类合金在钢铁制造、石油和石化行业中广泛应用。
高钼高铬合金:高钼高铬合金如Alloy 718、Hastelloy X、Incoloy 800等,是一种性能更优秀的高温合金。
这种合金通常包含25%至30%的铬,由于其优异的高温稳定性能,在航空航天、核电站、船舶、化工和医疗设备制造等众多领域中广泛应用。
2.铁基高温合金铁基高温合金主要由铁、铬、铝、钴和钼等元素组成,可以在700℃至800℃的高温环境下使用。
铁基高温合金形态多样,适用于各种工业应用。
铁铝合金:铁铝合金如Rene 41、NASA R-255、MAR-M-432和Rene 142等,由铁、铝、铬和钴等元素组成。
这种合金通常被用作航空和航天发动机以及零部件制造的材料。
其耐腐蚀性强,且延展性好,可以承受大量的热切割和加工。
贵金属铁基合金:贵金属铁基合金如Invar、Incolloy 903、Incolloy 907等,是一种由铁、镍、铬和钴等元素组成的铁基高温合金。
该类合金具有很好的高温强度和高温稳定性能,被广泛应用于航空和汽车发动机部件、核反应堆和气轮机叶轮辐射盘等。
3.钴基高温合金钴基高温合金由钴、铬和镍等元素组成,用于制造耐高温和耐腐蚀部件。
镍基高温合金的研究和应用王睿【摘要】镍基高温合金是通常以镍铬为合金基体,并根据具体需求加入不同的合金元素,从而形成的单一奥氏体基体组织.由于镍元素在化学稳定性、合金化能力和想稳定性上的优势,镍基高温合金相对于铁基和钴基高温合金具有更优异的高温强度、抗疲劳性能、抗热腐蚀性、组织稳定性等性能.经过几十年发展和完善,我国高温合金领域在合金设计方法、合金种类、冶炼和热处理工艺、工业化管理等方面均取得了较大的进展,而凭借其独特的优势,镍基高温合金已经成为当代航空航天和燃气轮机工业中地位最重要的高温结构材料.本文主要从常见镍基高温合金分类、冶炼工艺和处理方式、强化机理以及合金化等方面,简要介绍了镍基高温合金的主要研究进展和实际应用.%Nickel-base high-temperature alloys are usually made of nickel-chromium alloy and different alloy elements are added according to specific requirements, thus forming a single austenitic matrix. Because of the advantages of chemical stability, alloying ability and relative stability of nickel element, Nickel-base high-temperature alloys has more excellent high temperature strength, fatigue resistance, thermal properties, such as corrosion resistance, stability of the organization. After decades of development and improvement, the high temperature alloys in China have made great progress in the aspects of alloy design methods, alloy types, smelting and heat treatment processes, industrialization management, etc. With their unique advantages, Ni-based superalloys have become themost important high temperature structural materials in the aerospace and gas turbine industries. In this paper, the main research progress andpractical application of nickel-based superalloy are briefly introduced from the aspects of classification, smelting process and treatment, strengthening mechanism and alloying of common Ni-based superalloys.【期刊名称】《化工中间体》【年(卷),期】2017(000)007【总页数】2页(P50-51)【关键词】镍基高温合金;航空航天【作者】王睿【作者单位】江苏省常州市武进区前黄高级中学国际分校江苏 213000【正文语种】中文【中图分类】T高温合金特指以镍、钴、铁或三者与铬的合金为基体,能够承受苛刻的机械应力和600℃以上高温环境的一类高温结构材料.它一般具有较高的室温和高温强度、良好的抗蠕变性能和疲劳性能、优良的抗氧化性和抗热腐蚀性能、优异的组织稳定性和使用可靠性.上个世纪50年代初,我国通过仿照前苏联,自主研制并生产了出第一款高温合金GH3030,从而拉开了我国对于高温合金研究和应用的序幕.20世纪60年代初,我国投入大量人力和物力研究高温合金等军工领域用材料,许多高温合金的研究和生产中心在此时得以建立,并且引进了大量的科研和检测设备.这一阶段,考虑到我国本身存在quot;缺钴少镍quot;的情况,因此我国在高温合金领域特别是铁基高温合金上取得了前所未有的突破,研究和生产均出具规模,生产了诸如GH4037、K417等多个牌号的高温合金.但是由于基体本身化学和物理性质的原因,铁基高温合金在多方面均远逊色与同成分的镍基高温合金,因此在改革开放后,镍基高温合金逐渐成为我国高温合金研究和生产的主体,通过全面紧扣镍原矿,引进欧美技术,我国在粉末镍基高温合金,单晶镍基高温合金和定向凝固柱晶高温合金等尖端领域均取得了重大突破,先后推出了FGH 系列粉末涡轮盘材料,第一、二代单晶镍基高温合金DD402、DD26等.本文主要从镍基高温合金常见分类、冶炼和制备工艺、强化机理和合金化、实际应用等几个方面来简要介绍了镍基高温合金的研究发展.镍基高温合金具有许多种类,通常按照成型工艺的不同,将其分为铸造高温合金和变形高温合金.铸造高温合金由铸造工艺制备,通常分为等轴晶、定向柱晶和单晶三种.而变形高温合金普遍由粉末工艺制备,分为粉末高温合金和弥散强化型高温合金,通常具有良好的冷热加工性能和力学性能.(1)粉末高温合金利用粉末冶金工艺制造而成的高温合金称为粉末高温合金.传统铸造-锻造工艺制成的高合金化高温合金,存在宏观偏析严重、难于成型、疲劳性低等缺点,因此在工艺生产中并未大规模使用.随着粉末工艺的推广,通过在真空或惰性气体气氛下,以制粉工艺将高合金化难变形高温合金制成细小粉末,再通过不同的成形法制成目标合金.由于晶粒细小、成分均匀、微观偏析轻微,故相对于传统铸造合金,粉末高温合金往往在热加工性能,屈服强度和疲劳强度等力学性能上均得到较大提升.目前我国常用的粉末高温合金主要有FGH系列等,其中80年代研制的FGH95是目前强度最高的粉末高温合金.(2)定向柱晶高温合金通过定向凝固技术,使得合金内的横向晶界被消除,制备出只保留了平行于主应力轴的单一晶界的合金称为定向柱晶高温合金.定向凝固柱晶工艺通过螺旋选晶器或籽晶法,只允许一个柱状晶生长,可制成消除一切晶界的单晶涡轮叶片或导向叶片.定向柱晶高温合金具有优异的高温强度和屈服强度,并且相较于单晶高温合金,工艺更为简单、制作成本和检验成本也更低,因此定向柱晶高温合金被广泛应用于涡轮叶片的制造.(3)单晶高温合金采用定向凝固工艺消除所有晶界的高温合金称为单晶高温合金.单晶高温合金同样采用定向凝固技术,但是在型壳设计上增加了单晶选择通道.由于合金内一切晶界被消除,合金化程度很高,其高温强度、疲劳性能等力学性能相对于等轴晶和定向柱晶高温合金有了大幅度的提高,因此在尖端航空领域,单晶高温合金得到广泛应用,比如美国F35战斗机涡轮叶片所采用的的即使第三代镍基单晶高温合金CMSX-10.但是单晶高温合计由于制造成本相对较高、工艺复杂,因此使用受到局限.不同种类的镍基高温合金采用的制备方式截然不同,定向柱晶高温合金和单晶高温合金均采用定向凝固技术,粉末高温合金采用粉末冶金工艺方法生产,而传统的铸造高温合金采用铸-锻工艺生产.粉末高温合金和单晶高温合金是时下应用最前沿的两类镍基高温合金,因此对于其制备方法的研究是具有直接代表意义的.(1)定向凝固技术制备单晶高温合金和定向柱晶高温合金通常采用定向凝固技术,二者差别在于单晶高温合金往往会增设单晶选择通道.现在常用的定向凝固技术有,高速凝固法(HRS)、液态金属冷却法(LMC)、发热剂法(EP)和功率降低法(PD)等,这其中高速凝固法和液态金属凝固冷却法是目前应用最广的制造工艺.高速凝固法(HRS)通过在加热区底部增设了隔热挡板,并且在水冷底盘添加水冷套,使浇注后型壳与加热器之间发生了相对移动,增大了挡板附近的温度梯度,从而实现细化组织,消除晶界各异性的目的.液态金属冷却法(LMC)则是通过加入一个冷却剂槽,通常以锡为冷却剂.当合金熔体浇注成型后,将其从加热器中移出并逐渐匀速浸入到液态锡冷却剂中,这样在合金凝固表面和内部形成了较大的温度梯度,促使晶粒以单一方向生长.通过控制诸如冷却剂温度、浸入速率等参数可以调整合金的晶粒尺寸.(2)粉末冶金工艺粉末冶金工艺通常分为粉末制备和粉末固结两个阶段.目前在实际生产中的粉末制备工艺主要采用气体雾化法和旋转电极法.气体雾化法又被称为AA法,首先将真空熔炼过的母合金加入到雾化设备中,在真空环境下进行重熔,熔解的合金经由漏嘴流出后,在高压气体流的冲击下被雾化成粉末,其中氩气是最常用的气体.旋转电极法则是将合金料在高速旋转,利用固定的钨电极产生等离子弧来连续熔化合金料,这样在离心力的作用下,形成的液滴飞出形成了细小的粉末.粉末制备成功后,需要进行固结以便成形.由于传统的高温合金粉末中往往含有难烧结且易氧化元素,因此在传统的直接烧结工艺下成形相当困难,必须引入高温高压气氛.目前常见的粉末固结方式有真空热压成形、热等静压成形、热挤压和锻造、电火花烧结等成型方法,其中热等静压和热挤压是国内常用的两个工艺.镍基高温合金的强化效应通常组织强化和工艺强化两种.第一种是因为高温合金中的合金元素和基体元素相互作用,引起组织的变化而产生的强化效应.工艺强化是通过改良生产工艺、处理方式、锻造工艺等来实现对高温合金性能的提升.众多强化方式中,合金化对于高温合金性能的改变尤为重要.镍可以通过固溶、形成第二相等方式与加入的合金元素相互作用,其中常见的合金元素有Cr,W,Mo,Re,Al,Ti,Ta,C,B,Zr和稀土元素等十余种合金元素,这些元素在合金中起着不同的作用.Cr是镍基高温合金中含量相对较高的一个元素,它以固溶态存在于基体中,从而改善镍基高温合金的抗氧化性和抗热腐蚀性.W和Mo通过提高扩散激活能,降低合金中的扩散,从而增强原子间结合力,提高合金的硬度和高温强度.Al 是最主要的γ'相形成元素,且在高温下能形成保护性的氧化膜,提高合金的抗氧化性能,因此Al也常被用于表面化处理.其他如C,B,Zr和稀土元素等微量元素,在镍基高温合金中的含量均在1%以下,但是也起着很强的作用.经过几十年的研究和发展,镍基高温合金虽已经在多个方面均取得较大的突破,但为了满足航空、航天领域对于高性能高温合金材料不断增加的需求,也为了应对相关领域的国际竞争,增加我国的制空竞争力,在以后得研究中仍得从以下几个方面加强:(1)建立和完善更有效的合金设计方法,通过调整合金元素的比例,改善制造工艺来得到强度更高,质量更轻,成本更低的镍基高温合金;(2)应该对尖端高温合金诸如第三代单晶高温合金、第五代粉末高温合金的研制,改善制备工艺,使得这类合金的性能和质量更加稳记录并完善合金的性能和数据;(3)要扩大应用范围,扩展对于民用燃气轮机中高温合金的研制和开发.总之,镍基高温合金是航空航天领域发展的核心关键,高温材料的强度决定了飞机发动机的推重比和性能,因此研究镍基高温合金是认识材料领域,了解我国乃至世界航空航天领域发展,探索我国国防事业的一块敲门砖.王睿,男,江苏省常州市武进区前黄高级中学国际分校;研究方向:材料类.【相关文献】[1]郭建亭.高温材料学[J].北京:科学出版社,2010.06.[2]张义文.粉末高温合金研究进展[J].中国材料进展,2013年第1期.[3]孙晓峰.镍基单晶高温合金研究进展[J].中国材料进展,2012年第12期.[4]王斌,Al对高温合金高温抗氧化性能的影响[J].材料热处理技术,2012年5月.。
镍基合金是什么?按照主要主要性能又细分为镍基耐热合金镍基耐蚀合金镍基耐磨合金镍基精密合金与镍基形状记忆合金等:镍基合金的代表材料有1incoloy合金如incoloy800主要成分为;32ni-21cr-tial;属于耐热合金;2inconel合金如inconel600主要成分是;73ni-15cr-tial;属于耐热合金;3hastelloy合金即哈氏合金如哈氏c-276主要成分为;56ni-16cr-16mo-4w;属于耐蚀合金;4monel合金即蒙乃尔合金比如说蒙乃尔400主要成分是;65ni-34cu;属于耐蚀合金;主要合金元素主要合金元素有铬、钨、钼、钴、铝、钛、硼、锆等。
其中crai等主要起抗氧化作用其他元素有固溶强化沉淀强化与晶界强化等作用。
在650~1000℃高温下有较高的强度与一定的抗氧化腐蚀能力由于足够高的高温强度与抗氧化腐蚀能力所以常用于制造航空发动机叶片和火箭发动机、核反应堆、能源转换设备上的高温零部件。
发展历史镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。
英国于1941年首先生产出镍基合金nimonic75(ni-20cr-0.4ti);为了提高蠕变强度又添加铝研制出nimonic80(ni-20cr-2.5ti-1.3al)。
美国于40年代中期苏联于40年代后期中国于50年代中期也研制出镍基合金。
镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。
50年代初真空熔炼技术的发展为炼制含高铝和钛的镍基合金创造了条件。
初期的镍基合金大都是变形合金。
50年代后期由于涡轮叶片工作温度的提高要求合金有更高的高温强度但是合金的强度高了就难以变形甚至不能变形于是采用熔模精密铸造工艺发展出一系列具有良好高温强度的铸造合金。
60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。
为了满足舰船和工业燃气轮机的需要60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。
核电高温合金
核电站中的高温合金在核反应堆中扮演着重要的角色,因为这些合金需要能够在极端的温度、辐射和腐蚀环境中保持稳定性和可靠性。
以下是一些在核电站中常见的高温合金:
1.铬基合金(Chromium-Based Alloys):
•Inconel 600 和Inconel 690:这些镍基合金在高温和腐蚀环境下表现出色,常用于核反应堆的燃料元件和燃料棒
外壳。
2.镍基合金(Nickel-Based Alloys):
•Hastelloy X:镍基高温合金,具有极好的高温强度和抗腐蚀性,常用于核电站的高温部件,如燃料元件支撑。
3.钛合金(Titanium Alloys):
•Ti-6Al-4V:钛合金在核电站中用于制造一些组件,因为它们具有相对较低的密度和良好的耐腐蚀性能。
4.铀合金(Uranium Alloys):
•Uranium-Zirconium Alloy:用于制造核燃料的铀合金,通常在核反应堆燃料棒中使用。
5.钼合金(Molybdenum Alloys):
•TZM合金:钼的合金,具有优异的高温强度和抗辐射性能,常用于核反应堆中的结构件。
这些高温合金在核电站中使用的特定应用和性能要求可能因设计和反应堆类型而异。
在选择合金时,需要考虑其在高温、辐射和化学
环境下的稳定性、机械性能和抗腐蚀性能。
对于具体应用,通常需要遵循相关的核工程和材料科学标准。
常用金属焊接性之高温合金的钎焊高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。
这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。
镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。
固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。
沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。
这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。
TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。
一:钎焊性高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。
铝和钛对氧的亲和力比铬大得多,加热时极易氧化。
因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。
镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。
对薄的工件来说是很不利的。
所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。
母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。
对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。
无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。
高温合金牌号(GB/T14992—1994)2007-4—24 16:21:20高温合金:凡在应力及高温(一般指600~650摄氏度以上)同时作用下,具有长时间抗蠕变能力与高的持久强度和高的抗蚀性的金属材料,称为耐热合金或高温合金。
常用的有铁基合金、镍基合金、钴基合金,还有铬基合金、钼基合金及其他合金等。
高温合金是制造燃汽轮机、喷气式发动机等高温下工作零部件的重要材料。
表8—28高温合金的牌号及化学成分注:1。
GH1035合金中的Ti和Nb为任选其一,不是同时加入的.2。
GH3039合金中允许有铈(Ce)存在.3。
表中B、Zr、Ce的含量为计算加入量,可不分析测定(除非产品标准或协议、合同中另有规定)。
表8-30高温合金的特性和应用注:各成分含量皆指质量分数。
表5-6—7 中国与国外变形高温合金牌号近似对照①W—Wr。
是德国DIN17007系统的数字材料号(Wdrkstoff—Nummer);L—Nr.是德国航空标准数字牌号(Luftfahrtstoff—Nr)的缩写,在表中加括号,以示区别。
②英国牌号中带“”的为商业牌号,与美国牌号通用。
镍基高温合金锻件的热处理固溶强化的镍基高温合金(如GH3030,GH3039,GH3044,GH141等)锻件一般采用固溶时效处理.固溶处理的目的,不但是为了溶解基体内的碳化物和r′相,以获得均匀的固溶体,为时效作组织准备,而且也是为了获得适当的晶粒度。
一般固溶处理温度在1040~1230℃范围内,需确定恰当的固溶处理加热温度和保温时间,以防止r相晶粒不均匀长大、过热和过烧。
有些合金,除了固溶时效处理外,还采用中间热处理,以获得较高的持久强度、高温塑性和较小的缺口敏感性。
高温合金的热处理制度见表12。
高温合金可细分为镍基合金、铁基合金和钴基合金。
高温合金在780℃以上的高温环境中仍具有良好的机械强度和保持表面性能不下降的能力。
这是因为高温合金具有很高的抗拉伸强度、抗蠕变破裂强度,以及良好的延展性和韧性,其抗氧化能力和耐热腐蚀性能也十分优异。
镍基和钴基高温合金主要用于航空航天、石油天然气开采、石油化工等行业,其用量大约占到高温合金的90%,正确加工镍基合金的方法包括高刚性的机床设备、高压冷却方式、正前角刀片、适当的主偏角和最佳切屑厚度。
只要很好地把握这五个关键要素,镍基高温合金的加工就成功在望。
镍基高温合金切削特点:
1.切削阻力大(含有大量的合金元素、加工硬化现象严重、塑性变形大),是钢材的1.5-2倍。
2.切削温度高,在相同条件下切削温度为45钢的1.5-2倍。
3.刀具磨损严重,机械磨损、粘结磨损、扩散磨损和氧化磨损均比较严重,使刀具寿命明显降低。
4.加工硬化现象严重,已加工表面硬化程度可达基体硬度的1.5-2倍。
5.切削硬而韧,不易折断,造成切屑过程巾切削处理困难。
镍基高温合金切削加工工具:
镍基高温合金车削加工时,刀具既要锋利还要保证足够的刀尖强度,刃口必须经过仔细刃磨,保持刀具较好的表面粗糙度,保证刃口光滑,不允许有任何崩刃、缺口、裂纹和毛刺,防止在加工时刀片崩刃损坏。
刀片的耐磨性要好,才能保证加工高温合金时的表面质量。
在车削加工时,会出现多种刀具磨损机制,如积屑瘤,沟槽磨损,切屑锤击等,其中会对切屑造成不利影响的两种主要磨损机制是积屑痛和因为工件表面容易冷作硬化而造成的沟槽磨损(也称为切深处磨损或刻划磨损)。
刀具的沟槽磨损发生在主切削刃和副切削刃上。
在主切削刃上,沟槽磨损表现为在切深处发生崩刃,并且主要为机械磨损。
副切削刃上出现的沟槽主要是由化学磨损造成的,对工件表面光洁度产生不利影响。
为了尽可能减小这种磨损,建议采用Al2O3和PVD刀具涂层。
切屑锤击是机械磨损的一种形式,由切屑对切削区外侧刃口的撞击造成,主要发生于加工硬度较低、韧性较好的镍基合金时。
切屑锤击可能出现在刀片的顶部和底部,通过改变进给率和切深量,使切屑改变流向,可能有助于减小磨损。
建议优先选用PVD涂层刀片来加工镍基合金(尤其在粗加工时),因为PVD涂层刀片的刃口韧性更好。
我公司的YBG105/YBG202系列PVD涂层牌号,在镍基合金加工中均能取得优异的表面质量。
YBG105牌号,新型的TiALN基多元涂层,具有更高的耐磨性能和抗高温氧化性能,适合于各类高温合金,耐热合金等难加工材料的精、半精加工。
采用具有正切削角、强化几何形状、合理的刀片槽型和刀具结构,可以最大限度地减小发生在主切削刃和副切削刃上的积屑瘤和沟槽磨损。
在车削加工时应尽量避免使用典型的CNMG刀片来加工高温合金,因为这种刀片会形成95°的主偏角,从而加剧刀片的沟槽磨损。
我公司的-NF槽型切削刃锋利、-NM槽型切削刃强度高,-NF/-NM槽型表面光滑、导屑顺畅,刃口经过特殊处理具有耐磨性高的特点,在加工镍基高温合金时,能取得较好的表面质量和加工精度。
铣削的基本要求是精度和表面质量。
因此必须有锋利的刀具,刚性好的机床和夹具,镍基高温合金的铣削是断续切削,在加工时要求铣刀刀齿有足够的强度,使其能承受高温合金切削的变形抗力和切屑负载。
在铣削高温合金时,向下的切削有助于提高刚性减少振动。
铣削和车削中的切削问题相同,因此,标准铣刀要提供足够的容屑槽。
我公司-APF槽型铣削刀片经过精密磨削,拥有全新的PVD涂层牌号YB9320,原子重排技术实现涂层硬度、韧性及热稳定性的完美匹配。
优化结构,大幅提升加工表面质量,抗崩性能优异。
适合耐热合金材料等的加工。
SMP三面刃系列铣刀,在对钢、合金钢、不锈钢、耐热合金的材料加工中,切削轻快,加工表面质量优异,应用领域广泛。
一般的普通铣刀切削参数很低,而且刀具寿命很低,频繁换刀,机床占用时间,使用高性能整体硬质合金立铣刀具,能获得较高的效率,平稳切屑,较少振动。
我公司的UM/VSM 系列整体硬质合金立铣刀在加工镍基高温合金时都能取得较好的效果。
UM系列不等齿距,变刃倾角设计,大幅提高抗振性,切削更稳定,变槽深设计,兼顾刀具刚性和容屑空间,能实现更大进给,排屑更顺畅。
VSM系列不等齿距变刃倾角立铣刀在不锈钢、耐热合金等难加工材料切削中能取得优
异成效。
高温合金的钻孔及铰削,十分困难,一般采用硬质合金钻头,如浅孔钻、整体或镶焊的硬质合金钻头。
在高温合金的钻削加工中,除了采用正确的进给率以外,还应采用具有锋利切削刃和正前角刀具,以实现对镍基合金的剪切加工。
几何槽型设计也有助于减少颤振。
螺旋角也对其切屑摔制起着至关再要的作用。
除了可采用45°螺旋角以外,为了减小切削力,通过形成较小的切屑来改进切屑控制,还可以采用20°的双重螺旋角(复合螺旋角)。
我公司新一代的通用系列GD麻花钻,具有稳定持久的刀具寿命。
优异的加工精度,良好的断屑性能。
直线切削刃,强度高,优化的钻尖结构,切削性能更佳。
双刃带设计,提高了加工稳定性,专业的涂层后处理技术,保证低阻高效加工。
镍基高温合金加工方式:
采用摆线铣削和摆线车削方式加工镍基合金相当有效,可以大大减少刀片与工件的接触,并防止刀具卷刃。
摆线刀轨与摆动刀轨非常相似。
刀片不是猛然插入工件,而是以经过优化的平滑刀轨进行切削,避免了对刀具造成突然冲击。
尤其是当采用较小的切深量时,摆线切削可以提高进
给速度,并有利于断屑。
为了控制磨损,在一艘隋况下,建议采用45°的主偏角(最大不超过60°)。
镍基高温合金加工冷却:
由于镍基合金耐高温,因此传入工件材料的切削热并不多,而且传入工件材料的热量也会在切屑形成时被带走。
因此,使用冷却液是为了防止切削刃过热并导致刀具过早失效,同时也是为了帮助排屑。
切削镍基合金时,最好采用能精确对准刀具/工件界面的高压冷却技术。
通过将冷却液喷嘴调整到正确位置,可以形成高速平行层冷却液射流,从而有效地分断镍基合金的切屑。
该技术采用优化的冷却液喷嘴,可产生高速平行层冷却液射流。
采用高压冷却技术的好处包括延长刀具寿命、可提高切削速度,以及通过在刀具与切屑之间形成水楔,起到抬升切屑的作用,从而优化断屑控制。