光强
(3) 基于磁致伸缩和布拉格光纤光栅的电流传感器
反射光谱
λB
布拉格波长 B 2neff
传感器头
磁致伸缩材 料
螺线管内磁场 B 0nI
光纤光栅电流传感器结构 1
宽光谱光源 波长测量
环形器
信号 处理
施加磁场改变光栅的周 期,使其反射波长产生 变化。
电流传感器结构 2
GMM--磁致伸缩材料
弱而伸缩,使得通过光纤的光
程发生变化。信号光与参考光
干涉后,得到与磁场成比例的
输出信号。这种磁场传感器灵
敏度高,分辨率可达10-12T, 可
用于测量磁场、探矿等。
光纤 干涉仪测量
a)光纤马赫—泽德尔磁场传感器
光源
3dB
磁场
磁致伸缩材料被覆 光纤作为测量臂
测量臂
3dB
耦合器
耦合致伸缩效应的物理解释
在铁磁质中,相邻铁原子中的电子间存在着非常强的 交换耦合作用,这个相互作用促使相邻原子中电子的 自旋磁矩平行排列起来,形成一个自发磁化达到饱和 状态的微小区域,这些自发磁化的微小区域称为磁畴。
磁畴
单晶磁畴结构示意图
多晶磁畴结构示意图
磁场增强 H
在外磁场作用下,磁矩与外磁场同方向排列时的磁 能将低于磁矩与外磁反向排列时的磁能,结果是自 发磁化磁矩和外磁场成小角度的磁畴处于有利地位, 这些磁畴体积逐渐扩大,而自发磁化磁矩与外磁场 成较大角度的磁畴体积逐渐缩小。随着外磁场的不 断增强,取向与外磁场成较大角度的磁畴全部消失, 留存的磁畴将向外磁场的方向旋转。
沉积镍薄膜
裸光纤
几种敏感元件的基本结构
a) 被覆式 b) 心轴式 c) 带式
被覆材料