统计学基础知识要点
- 格式:docx
- 大小:26.07 KB
- 文档页数:3
统计基础必学知识点1. 数据的分类:数据可以分为定性数据和定量数据。
定性数据是描述性的,如性别、颜色等;定量数据是可量化的,如年龄、身高等。
2. 数据的度量尺度:数据的度量尺度分为四种类型,分别是名义尺度、顺序尺度、间隔尺度和比例尺度。
名义尺度是无序的分类数据,顺序尺度是具有次序关系的数据,间隔尺度是具有固定间隔的数据,比例尺度是具有固定比例关系的数据。
3. 频数与频率:频数是指某个数值出现的次数,频率是指某个数值出现的次数与总数的比值。
4. 数据的中心趋势度量:数据的中心趋势度量包括平均数、中位数和众数。
平均数是一组数据的总和除以数据个数,中位数是将数据按照大小排列后的中间值,众数是一组数据中出现次数最多的数值。
5. 数据的离散程度度量:数据的离散程度度量包括范围、方差和标准差。
范围是一组数据的最大值与最小值之差,方差是数据与其均值之差的平方和的平均值,标准差是方差的平方根。
6. 直方图和箱线图:直方图是将数据按照一定的区间划分,并统计每个区间内数据的频数或频率,在坐标系上绘制柱状图。
箱线图是通过四分位数和异常值来描绘一组数据的分布情况。
7. 相关系数:相关系数是用来描述两组数据之间的相关性强度和方向的指标。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 概率与统计分布:概率是事件发生的可能性,统计分布是对数据的概率分布进行描述的函数。
常见的统计分布包括正态分布、泊松分布、二项分布等。
9. 抽样与统计推断:抽样是从总体中选取一部分样本进行研究,统计推断是通过样本数据对总体进行推断。
常用的统计推断方法包括点估计和区间估计。
10. 假设检验:假设检验是对统计推断的一种方法,通过构建假设、选择显著性水平和计算检验统计量,判断样本数据是否能够拒绝原假设。
常见的假设检验方法有单样本t检验、双样本t检验、方差分析等。
统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。
统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。
下面将全面准确地归纳统计学的基本知识点。
1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。
抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。
2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。
-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。
3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。
-随机变量:随机变量是随机试验结果的数值表示。
可以分为离散随机变量和连续随机变量。
4.概率分布-离散分布:包括二项分布、泊松分布等。
二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。
-连续分布:包括正态分布、指数分布等。
正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。
-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。
5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。
-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。
-假设检验:用来检验一个关于总体参数的假设是否成立。
根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。
6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。
可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。
-回归分析:用来研究一个或多个自变量与因变量之间的关系。
统计初步知识点总结一、统计学的基本概念1. 统计学的定义统计学是一门研究数据收集、处理、分析、解释和推断的学科。
它通过收集大量的数据,并利用数理统计方法对数据进行分析,从而得出有关总体特征的结论。
2. 统计学的发展与应用统计学起源于古代的人口普查和财产统计,随着科学技术的进步,统计学逐渐发展成为一门独立的学科。
它在经济学、医学、社会学、政治学等领域都有着广泛的应用,成为这些领域中不可或缺的工具。
3. 统计学的基本概念(1) 总体和样本:总体是指研究对象的全体,样本是从总体中抽取出来的一部分。
通过对样本的研究,可以对总体做出推断。
(2) 参数和统计量:参数是总体特征的数值度量,统计量是样本特征的数值度量。
通过统计量对参数进行估计。
(3) 变量和数据:变量是统计研究的对象,数据是对变量进行观测和测量的结果。
(4) 随机变量和概率分布:随机变量是随机现象的数学模型,概率分布描述了随机变量的取值规律。
二、统计方法1. 数据的收集数据的收集是统计学研究的基础,它包括实地调查、实验观察、问卷调查、文献资料收集等方式。
合理、科学的数据收集是统计研究的前提和基础,对于数据的真实性和可靠性至关重要。
2. 数据的描述数据的描述包括数据的整理、汇总和展示,通过频数分布表、统计图表等方式对数据进行直观展示,从而揭示数据的分布特征和规律。
3. 统计推断统计推断是利用样本数据对总体特征进行推断的过程,包括参数估计和假设检验两个方面。
(1) 参数估计:通过样本数据对总体参数进行估计,得到对总体的估计值和置信区间估计。
(2) 假设检验:根据样本数据对总体参数提出假设,并通过统计方法对假设进行检验,判断原假设是否成立。
4. 相关性分析和回归分析相关性分析是研究变量之间相关关系的方法,通过相关系数来度量两个变量之间的相关程度。
而回归分析则是研究变量之间的因果关系,并用回归方程来描述变量之间的函数关系。
5. 方差分析和协方差分析方差分析是比较多组样本均值之间差异的一种统计方法,协方差分析则是研究两个或多个变量之间的协方差关系。
统计学复习知识点一、统计学的基本概念统计学是一门研究数据收集、整理、分析和解释的学科。
它帮助我们从数据中获取有用的信息,做出合理的决策,并对现象进行描述和预测。
首先要了解总体和样本的概念。
总体是我们所研究的全部对象的集合,而样本则是从总体中抽取的一部分用于观察和分析的对象。
例如,要研究全国所有大学生的身高情况,全国大学生就是总体,而从其中抽取的部分大学生则构成了样本。
变量是统计学中的重要概念,它可以分为定性变量和定量变量。
定性变量是指不能用数值表示的变量,如性别(男、女)、职业(教师、医生等);定量变量则是可以用数值表示的变量,又分为离散型变量(如班级人数)和连续型变量(如身高、体重)。
数据可以分为观测数据和实验数据。
观测数据是通过观察、测量等方式收集到的数据,而实验数据则是通过控制实验条件得到的数据。
二、数据收集数据收集是统计学的第一步。
常见的数据收集方法有普查和抽样调查。
普查是对总体中的每一个个体进行调查,能得到全面准确的信息,但成本高、耗时费力。
抽样调查则是从总体中抽取一部分样本进行调查,具有省时省力、成本低的优点,但需要注意抽样的科学性和代表性。
抽样方法包括简单随机抽样、分层抽样、系统抽样和整群抽样等。
简单随机抽样是完全随机地抽取样本;分层抽样是将总体按照某些特征分成若干层,然后从每层中分别抽样;系统抽样是按照一定的规则抽取样本;整群抽样是将总体分成若干群,然后抽取若干群作为样本。
在收集数据时,要确保数据的准确性和完整性,避免误差和缺失值。
三、数据整理收集到的数据往往是杂乱无章的,需要进行整理。
整理数据的第一步是对数据进行审核,检查数据的准确性和完整性。
然后对数据进行分类和编码,以便于后续的分析。
数据的分组是整理数据的重要环节。
可以按照变量的类型和取值进行分组。
对于定量变量,可以采用等距分组或不等距分组的方法。
等距分组是将数据按照相等的区间进行分组,不等距分组则是根据数据的特点和研究目的,采用不同的区间长度进行分组。
统计学初步知识点归纳总结一、概率1.1 概率的定义概率是描述事件发生可能性的数值,通常表示为介于0和1之间的一个数。
概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小。
1.2 概率的计算概率的计算可以通过经典概率、几何概率和统计概率等方法来实现。
其中,经典概率是指基于事件出现的可能性来计算概率;几何概率是指基于事件的空间形状和大小来计算概率;统计概率是指基于样本观察得出的事件发生频率来估计概率。
二、随机变量和概率分布2.1 随机变量随机变量是指在一次实验中可能取得一系列数值的变量,其取值是由随机性决定的。
随机变量可以分为离散随机变量和连续随机变量两种类型。
2.2 概率分布概率分布是描述随机变量在取值范围内各个取值的概率的分布规律。
常见的概率分布包括离散型概率分布(如二项分布、泊松分布)和连续型概率分布(如正态分布、指数分布)等。
三、统计量3.1 样本均值和总体均值样本均值是指从一个样本中计算得到的平均值,用来估计总体的平均值。
总体均值是指对整个总体的平均值进行估计。
3.2 方差和标准差方差是一组数据与其均值之间的离差的平方和的平均值,用来衡量数据的离散程度。
标准差是方差的平方根,用来度量数据的波动程度。
3.3 相关系数相关系数是用来衡量两个变量之间关联程度的指标,取值范围为-1到1。
当相关系数接近1时,表示两个变量呈正相关关系;当相关系数接近-1时,表示两个变量呈负相关关系;当相关系数接近0时,表示两个变量之间没有线性相关关系。
四、抽样与估计4.1 简单随机抽样简单随机抽样是指从总体中以相同的概率随机选择样本的方法,从而确保样本的代表性和可比性。
4.2 抽样分布抽样分布是指在随机抽样下统计量的分布。
当样本量足够大时,抽样分布可以近似服从正态分布。
4.3 参数估计参数估计是指利用抽样数据估计总体参数的方法。
常见的参数估计方法包括点估计和区间估计。
五、假设检验5.1 假设检验的基本步骤假设检验是指通过统计推断的方法,对总体参数提出假设并进行检验的过程。
统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。
它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。
基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。
- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。
- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。
- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。
描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。
- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。
- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。
推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。
- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。
相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。
- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。
统计学软件- 常用统计软件:如SPSS、R、Excel等。
- 数据可视化工具:如Tableau、Power BI等。
这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。
它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。
统计学基础知识统计学是一门研究收集、分析、解释和展示数据的学科。
它提供了一种方法,能够更好地理解和应用各种数据。
统计学在各个领域都有重要的应用,不论是在科学研究、商业决策还是社会科学中,都离不开统计学的支持。
本文将介绍统计学的基础知识,包括统计学的定义、常见的统计术语以及常用的统计方法。
一、统计学的定义统计学是一门研究如何收集、整理、分析和解释数据以及从数据中得出结论的学科。
它包括描述性统计和推论统计两个方面。
描述性统计用来总结和描述数据的特征,如平均数、中位数、频率分布等;推论统计则用来根据样本数据推断总体的特征,如置信区间、假设检验等。
二、常见的统计术语1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分。
通过对样本进行统计分析,可以得到对总体的推断。
2. 变量:研究对象的属性或特征,可以是数量型(如身高、年龄)或质量型(如性别、颜色)。
3. 数据类型:数据可以分为定性和定量两种类型。
定性数据用来描述特征或分类,如性别、颜色;定量数据用来表示数量或程度,如身高、温度。
4. 频数和频率:频数是指数据中某个取值出现的次数,频率是指某个取值出现的频率,即频数除以总数。
5. 中心趋势:用来描述数据的集中程度,包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排序后的中间值,众数是出现次数最多的值。
6. 离散程度:用来描述数据的离散程度,包括极差、方差和标准差。
极差是最大观测值与最小观测值之差,方差是观测值与平均数之差的平方和的平均数,标准差是方差的平方根。
三、常用的统计方法1. 描述性统计:描述性统计用来总结和描述数据的特征。
常见的描述性统计方法包括计数、百分比、平均数、中位数、众数、极差、方差和标准差。
2. 概率分布:概率分布描述了随机变量的取值及其对应的概率。
常见的概率分布包括正态分布、泊松分布和二项分布等。
3. 推论统计:推论统计用来从样本数据中推断总体的特征,并进行统计推断。
统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
《统计》知识点归纳一、统计的基本概念统计,简单来说,就是对数据的收集、整理、分析和解释。
它帮助我们从大量的数据中获取有用的信息,从而做出决策或者得出结论。
数据是统计的基础,它可以是数字、文字、图像等各种形式。
数据根据其来源可以分为观测数据和实验数据。
观测数据是通过观察、测量等方式得到的,比如对一个城市的气温记录;实验数据则是通过控制实验条件得到的,例如在实验室中研究某种药物的效果。
总体是我们研究对象的全体,个体则是总体中的单个单位。
比如研究一个班级学生的数学成绩,这个班级的所有学生就是总体,每个学生就是个体。
样本是从总体中抽取的一部分个体,用于代表总体。
抽样的方法有很多种,比如简单随机抽样、分层抽样、系统抽样等。
二、数据的收集在进行统计研究时,首先要收集数据。
数据收集的方法主要有普查和抽样调查。
普查是对总体中的所有个体进行调查,优点是能够得到全面、准确的信息,但缺点是耗费大量的人力、物力和时间,而且有时可能不太可行。
抽样调查则是从总体中抽取一部分个体进行调查,通过对样本的分析来推断总体的情况。
抽样调查的关键在于抽样方法的选择和样本的代表性。
在收集数据时,还需要注意数据的准确性和可靠性。
要确保测量工具的精度、调查人员的专业素养以及被调查者的配合度等。
三、数据的整理收集到的数据往往是杂乱无章的,需要进行整理。
整理数据的常用方法包括分类、排序、分组等。
分类是将数据按照一定的标准分成不同的类别,比如将学生的成绩分为优秀、良好、中等、及格和不及格。
排序是将数据按照大小、先后等顺序排列,以便更直观地观察数据的分布情况。
分组则是将数据分成若干个组,比如将学生的身高分成若干个身高段。
整理数据后,可以通过制作统计表和统计图来展示数据。
常见的统计表有单式统计表和复式统计表,统计图有条形统计图、折线统计图和扇形统计图等。
条形统计图能够清晰地显示不同类别数据的数量;折线统计图适合展示数据的变化趋势;扇形统计图则可以直观地反映各部分数据在总体中所占的比例。
统计学重点知识归纳总结统计学是一门研究数据收集、分析、解释和呈现的学科。
它在各个领域都有广泛的应用,包括经济学、医学、社会科学等。
本文将对统计学的重点知识进行归纳总结,帮助读者更好地理解和应用统计学。
一、概率论基础概率论是统计学的基础,它研究的是随机现象发生的概率。
在概率论中,我们常用到以下几个重要的概念和定理:1. 事件与概率:事件是指试验的某种结果,概率是该事件发生的可能性大小。
概率的基本性质包括非负性、规范性和可列可加性。
2. 条件概率与独立性:条件概率是指事件A在另一事件B已经发生的条件下发生的概率。
两个事件A和B是独立的,当且仅当它们的联合概率等于各自的概率的乘积。
3. 随机变量与概率分布:随机变量是指随机试验结果的数值表示。
离散随机变量的概率分布通过概率质量函数来描述,连续随机变量的概率分布则通过概率密度函数来描述。
4. 期望和方差:随机变量的期望是其取值与其概率的乘积的总和。
方差衡量了随机变量离其期望值的偏离程度。
二、抽样与估计抽样是指从总体中选择一部分个体进行观察和测量的过程。
统计学中,我们常使用的抽样方法包括简单随机抽样、系统抽样和分层抽样等。
1. 抽样分布和抽样误差:当样本容量足够大时,样本的统计量(如均值和比例)的分布接近正态分布。
抽样误差是样本统计量与总体参数之间的差异。
2. 置信区间:置信区间是对总体参数的一个范围估计。
一般情况下,置信区间使用样本统计量和抽样分布来计算。
3. 抽样分布的中心极限定理:中心极限定理指出,当样本容量足够大时,样本均值的分布接近正态分布,且均值的期望等于总体均值。
4. 参数估计:利用样本数据来估计总体参数的值。
常用的参数估计方法包括最大似然估计和最小二乘估计。
三、假设检验与推断假设检验是统计学中的一种方法,用于判断总体参数是否符合某个特定的假设。
推断统计学是基于样本数据对总体特征进行推断的过程。
1. 假设检验的步骤:假设检验的步骤包括建立原假设和备择假设、选择显著性水平、计算检验统计量和进行决策。
第—章:导论1、什么是统计学?统计方法可以分为哪两大类?统计学是搜集、分析、表述和解释数据的科学。
统计方法可分为描述统计方法和推断统计方法。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采纳的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的搜集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。
按计量尺度分时:分数数据中各类别之间是公平的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比拟顺序的;数值型数据其结果表现为具体的数值。
按搜集方法分时:观测数据是在没有对事物进行人为操纵的条件下等到的;实验数据的在实验中操纵实验对象而搜集到的数据。
按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。
3、举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含研究的全部个体的集合。
比方要检验一批灯泡的使用寿命,这一批灯泡构成的集合就是总体。
样本是从总体中抽取的一局部元素的集合。
比方从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数是用来描述总体特征的概括性数字度量。
比方要调查一个地区全部人口的平均年龄,“平均年龄〞即为一个参数。
统计量是用来描述样本特征的概括性数字度量。
比方要抽样调查一个地区全部人口的平均年龄,样本中的“平均年龄〞即为一个统计量。
变量是说明现象某种特征的概念。
比方商品的销售额是不确定的,这销售额就是变量。
第二章:数据的搜集1、调查方案包含哪几个方面的内容?调查目的,是调查所要到达的具体目标。
调查对象和调查单位,是依据调查目确实定的调查研究的总体或调查范围。
调查工程和调查表,要解决的是调查的内容。
2、数据的间接X〔二手数据〕主要是公开出版或公开报道的数据;数据的直接X一是调查或观察,二是实验。
3、统计调查方法:抽样调查、普查、统计报表等。
抽样调查是从调查对象的总体中随机抽取一局部单位作为样本进行调查,并依据样本调查结果来推断总体数量特征的一种数据搜集方法。
特点:经济性,时效性强,适应面广,精确性高。
普查是为某一特定目的而特意组织一次性全面调查。
我国进行的普查主要有人中普查、工业普查、农业普查等。
统计报表是按照国家有关法规的规定,自上而下地统一安排、自下而上地逐级提供根本统计数据的一种调查方法。
除此之外,还有重点调查和典型调查。
4、统计数据的误差通常是指统计数据与客观现实之间的差距,误差的主要类型有抽样误差和非抽样误差两类。
抽样误差主要是指在样本数据进行推断时所产生的随机误差〔无法排除〕;非抽样误差是人为因素造成的〔理论上可以排除〕5、统计数据的质量评价标准:精度,即X的抽样误差或随机误差;精确性,即最小的非抽样误差或偏差;关联性,即满足用户决策、治理和研究的需要;及时性,即在最短的时间里取得并公布数据;一致性,即保持时间序列的可比性;X本钱,即在满足以上标准的前提下,以最经济的方法取得数据。
6、数据的搜集方法分为询问调查与观察实验。
7、统计调查方案包含哪些内容?调查目的即调查所要到达的具体目标;调查对象和调查单位,调查对象是依据调查目确实定的调查研究的总体或调查范围,调查单位是构成调查对象中的每一个单位;调查工程和调查表,就是调查的具体内容;其它问题,即明确调查所采纳的方法和方法、调查时间及调查组织和实施细则。
第三章:数据整理与展示1、对于通过调查取得的原始数据,应主要从完整性和精确性两个方面去审核。
2、对分类数据和顺序数据主要是做分类整理,对数值型数据则主要是做分组整理。
3、数据分组的步骤:确定组数、组距,最后制成频数分布表统计分组时“上组限不在内〞,相邻两组组限间断,上限值采纳小数点。
组中值=〔下限值+上限值〕/24、频数:落在各类别中的数据个数;频数分布指把各个类别及落在其中的相应频数全部列出,并用表格形式表现出来;比例:某一类别数据占全部数据的比值;百分比:将比照的基数作为100而计算的比值;比率:不同类别数值的比值;分类数据的图示包含条形图和饼图。
5、直方图与条形图的差异:条形图是用条形的长度表示各类别频数的多少,宽度则是固定的,直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。
其次,直方图的各矩形通常是连续排列,而条形图则是分开排列。
最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。
第四章:数据分布特征的测度1、一组数据的分布特征可以从哪几个方面进行测度?一是分布的集中趋势反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据据远离其中心值的趋势;三是分布的形状,反映数据分布偏斜程度和峰度。
2、简述众数、中位数和均值的特点和应用场合及关系。
众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯—性。
众数主要作为分类数据的集中趋势测度值。
中位数是一组数据中间位置上的代表值,不受数据极端值的影响。
中位数以及其他分位数主要合适于作为顺序数据的集中趋势测度值。
均值是就数值型数据计算的,具有优良的数学性质,缺点是易受数据极端值的影响。
均值主要合适于作为数值型数据的集中趋势测度值。
关系:如果数据的分布是对称的,众数、中位数和均值必定相等,即Mo=Me=xbar ;如果数据是左偏分布,说明数据存在极小值,三者之间的关系表现为:xbar <Me <Mo ;如果数据是右偏公布,说明数据存在极大值,必定拉动均值向极大值一方靠,则Mo <Me <xbar 〔图〕3、为什么要计算离散系数?第—,极差、平均差、方差和标准差等都是反映数据分散程度的绝对值,其数值的大小取决于原变量值本身水平上下的影响。
第二,它们与原变量值的计量单位相同,采纳不同计量单位计量的变量值,其离散程度的测度值也就不同。
因此,为排除变量值水平上下和计量单位不同对离散程度的测度值的影响,需要计算离散系数。
4、均值是集中趋势的最主要测度值,它主要适用于数值型数据,而不适用于分类数据和顺序数据。
5、四分位差主要用于测度顺序数据的离散程度,数值型数据也可以计算四分位差,但不合适于分类数据。
6、方差是各变量值与其均值离差平方的平均数。
方差的平方根是标准差。
方差、标准差计算公式〔分组数据、未分组数据两种,自己写〕样本方差和标准差计算公式〔同上〕7、对于分类数据,主要用异众比率来测度其离散程度;对于顺序数据,主要用四分位差来测度其离散程度;对于数值型数据,主要用方差或标准差来测度其离散程度。
8、经验法则:68%-1;95%-2;99%-3第五章:抽样与参数估量1、常用的概率抽样方法主要有:简单随机抽样,分层抽样,系统抽样,整群抽样2、置信水平〔P115〕第七章:相关与回归分析1、解释相关关系的含义,并说明其特点。
相关关系是变量与变量之间存在的不确定的数量关系。
特点是:一个变量的取值不能由另一个变量唯—确定,当变量x 取某个值时,变量y 的取值可能有几个。
2、简述相关系数的取值及其意义,并说明相关程度的几种情况。
相关系数-1≤r ≤1 。
假设0≤r ≤1 ,说明x 与y 之间存在正线性相关关系;假设-1≤r <0 ,说明x 与y 之间存在负线性相关关系;假设r =1,说明x 与y 之间为完全正线性相关关系;假设r =-1 ,说明x 与y 之间为完全负线性相关关系。
|r |≥0.8时,可视为高度相关;0.5≤|r |<0.8时,可视为中度相关;0.3≤|r |<0.5时,视为低度相关;当|r |<0.3时,说明两个变量之间的相关程度极弱。
3、解释回归模型、回归方程、估量的回归方程的含义回归模型是描述因变量y 如何依赖于自变量x 和误差项的方程。
回归方程是描述因变量y 的期望值如何依赖于自变量x 的方程。
估量的回归方程是利用最小二乘法,依据样本数据求出的回归方程的估量。
4、简述参数最小二乘估量的根本原理。
x y 10ˆˆˆββ+= 这一公式的x 和y 的n 对观察值,用于描述其关系的直线有多条,用距离观测点最近的一条直线,用它来表示x 与y 之间的关系与实际数据的误差比其它任何直线都小。
依据这一思想确定直线中未知常数0ˆβ和1ˆβ的方法称为最小二乘法,即:最小=--=-∑∑==n i i i n i i x y y y121012)ˆˆ()ˆ(ββ5、简述判定系数的含义和作用回归平方和占总平方和的比例,称为判定系数。
它测度了回归直线对观测数据的拟合程度,它反映了在因变量y 的总变量差中由于x 与y 之间的线性关系所解释的比例。
第八章:时间序列分析和预测1、利用增长率分析时间序列时应注意哪些问题?首先,当时间序列中的观察值出现0或负数时,不宜计算增长率;其次,在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的结合分析。
第九章:指数1、什么是指数?它有哪些性质?反映复杂现象在不同场合下综合变动的一种特别相对数,称为指数。
性质:相对性;综合性;平均性;动态和静态兼有的特性。
2、指数有哪些类型?依据比照场合不同,分为动态指数和静态指数;依据指数研究对象的范围不同,分为个体指数和总指数。
;依据编制方法的不同,总指数分为综合指数和平均指数;依据指数反映的性质不同,分为质量指数、数量指数;依据比拟时所采纳的基期不同,分为定基指数和环比指数;依据计算采纳权数与否,分为简单指数和加权指数。