椭圆基本练习1
- 格式:doc
- 大小:105.00 KB
- 文档页数:3
椭圆基础训练题____________分数______________一、选择题1 .方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值*围是( )A .-16<m<25B .-16<m<29 C .29<m<25 D .m>29 2 .已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2B .3C .5D .73 .椭圆2241x y +=的焦距是( )A B .1C D .24 .对于椭圆22525922=+y x ,下列说法正确的是( )A .焦点坐标是()40±,B .长轴长是5C .准线方程是425±=yD .离心率是54 5 .椭圆2212x y +=的焦距是 ( )A .1B .2C .3D .46 .如果方程222=+ky x 表示焦点在y 轴的椭圆,则实数k 的取值*围是( )A .),0(+∞B .)2,0(C .),1(+∞D .)1,0(7 .若椭圆221169x y +=上一点P 到它的右焦点是3,则点P 到左焦点的距离是( )A .5B .1C .15D .88 .设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于 ( )A .4B .5C .8D .109 .已知F 1、F 2是椭圆192522=+y x 的两个焦点,AB 是过F 2的弦,则△ABF 1 的周长等于 ( )A .100B .50C .20D .1010.椭圆4*2+2y 2=1的准线方程是( )A .*=±1B .*=±21 C .y=±1 D .y=±2111.已知椭圆1162522=+y x 上一点P 到椭圆一个点的距离为3,则P 点到另一个焦点距离为 ( ) A .2B .3C .5D .712.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于12B .22C .2D .3213.椭圆2216x y m +=的焦距为2,则m 的取值是 ( )A .7B .5C .5或7D .1014.椭圆161522=+y x 的两条准线方程是 ( )A .2175-=y ,2175=y B .2175-=x ,2175=x C .y=-5,y=5 D .*=-5,*=515.椭圆2214x y +=的长轴长为 ( )A .16B .2C .8D .416.若椭圆x a 22+y b22=1的两焦点F 1、F 2三等分它两准线间的距离,则此椭圆的离心率为 ( )A .3B .33C .63D .以上均不对17.若椭圆x y b 222161+=过点()-23,,则其焦距为 ( )A .23B .25C .43D .4518.已知焦点在x 轴上的椭圆的离心率为,21它的长轴等于圆0152:22=--+x y x C 的半径,则椭圆的标准方程为( )A .13422=+y x B .1121622=+y x C .1422=+y x D .141622=+y x 19.若椭圆两准线间的距离是焦距的4倍,则该椭圆的离心率为( )A .21. B .31. C .33. D .41. 20.若椭圆116222=+b y x 过点(-2,3),则其焦距为 ( )A .25B .23C .45D .4321.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m= ( )A .3B .23 C .38 D .32 22.椭圆(1-m )*2-my 2=1的长轴长是( )A .mm--112B .mm--2 C .mm2 D .mm--1123.椭圆的两个焦点和中心将两准线间的距离四等分,则一焦点与短轴两端点连线的夹角等于( )A .4πB .3π C .2πD .π3224.若焦点在x 轴上的椭圆2212x y m +=的离心率为12, 则m 等于 ( )A B .32C .83D .2325.椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 ( )A .3倍B .2倍C .2倍D .32倍 26.离心率35=e ,一条准线为*=3的椭圆的标准方程是 ( )A .2291520x y += B .1520922=+y x C .14522=+y x D .15422=+y x 27.椭圆191622=+y x 的焦点坐标为( ) A .(0,5)和(0,—5) B .(5,0)和(—5,0) C .(0,7)和(0,—7)D .(7,0)和(—7,0)28.从椭圆短轴的一个端点看两焦点的视角是1200,则这个椭圆的离心率e=( )A .23B .21C .33D .31 29.椭圆16y 9x 22+=1上的一点M 到一条准线的距离与M 到相应焦点的距离之比为 ( )A .74)D (47)C (45)B (5430.如果椭圆221169x y +=上一点P 到它的右焦点是3,则点P 到左焦点的距离为 ( )A .5B .1C .15D .8二、填空题31.中心在原点,焦点在坐标轴上,长轴是短轴的3倍,且过点)0,3(P 的椭圆方程为_____.32.椭圆1162522=+y x 上一点P 到左焦点F 的距离为6,则P 点到左准线的距离为 33.设椭圆14522=+y x 的两个焦点分别为F 1和F 2,短轴的一个端点为B ,则△BF 1F 2的周长是____。
椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1(C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15(D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )334.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。
(A )59(B )516(C )441(D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( ) (A )焦点坐标(B )准线方程(C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( ) (A )3-1(B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值X 围是。
9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是。
10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。
11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。
12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是()。
(A )36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C )9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是()。
椭圆基础练习题一、选择题1. 椭圆的长轴和短轴长度分别为2a和2b,其中a和b的关系是()。
A. a > bB. a < bC. a = bD. 无法确定2. 椭圆的焦点到椭圆上任意一点的距离之和等于()。
A. 2aB. 2bC. a + bD. a - b3. 如果椭圆的方程是 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中a和b是常数,那么a和b的单位是什么?A. 米B. 秒C. 无单位D. 角度4. 椭圆的离心率e的取值范围是()。
A. 0 ≤ e < 1B. 0 ≤ e ≤ 1C. 0 < e < 1D. 1 < e ≤ 25. 椭圆的面积公式是()。
A. πabB. π(a + b)C. π(a - b)D. π(a^2 + b^2)二、填空题6. 椭圆的中心点坐标是(____,____)。
7. 椭圆的离心率e定义为____,其中c是焦点到中心的距离。
8. 如果一个椭圆的长轴是10,短轴是6,那么它的面积是____。
9. 椭圆的焦点坐标可以表示为(____,0)和(____,0)。
10. 椭圆的方程 \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \) 中,a 和b的值分别是____和____。
三、简答题11. 描述椭圆的基本性质,并给出一个实际生活中椭圆的应用例子。
12. 解释为什么椭圆的离心率总是小于1。
13. 如果一个椭圆的长轴是20,短轴是10,求出它的焦点坐标。
四、计算题14. 给定一个椭圆的方程 \( \frac{x^2}{25} + \frac{y^2}{16} = 1 \),求出它的离心率e。
15. 已知一个椭圆的长轴是26,短轴是15,求出它的面积和离心率。
五、证明题16. 证明椭圆上任意一点到两个焦点的距离之和是一个常数。
17. 证明椭圆的中心点到长轴和短轴的距离相等。
椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。
椭圆的范围为-a≤x≤a,-b≤y≤b。
椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。
椭圆的长轴长为2a,短轴长为2b。
椭圆的顶点坐标为(±a,0),(0,±b)。
椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。
a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。
对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。
当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。
椭圆方程常用三角换元为x=acosθ,y=bsinθ。
弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。
判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。
2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。
椭圆基础练习题一、选择题2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .20 3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是()A .(±a -b ,0)B .(±b -a ,0)C .(0,±a -b )D .(0,±b -a ) 4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1 C.x 281+y 272=1 D .x 281+y 236=15.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A .(-233,233)B .(233,+∞)∪(-∞,-233)C .(43,+∞)D .(-∞,-43)6.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1 C.x 220+y 25=1 D .x 25+y 220=1 7.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B .55 C.12D .5-2 8.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <329.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B .y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0) 10.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线 二、填空题11.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.12.已知椭圆的短半轴长为1,离心率0<e ≤32.则长轴长的取值范围为________. 13.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.14.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________________________.椭圆基础练习题答案2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .20[答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故选C.3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( ) A .(±a -b ,0) B .(±b -a ,0) C .(0,±a -b ) D .(0,±b -a ) [答案] D [解析]ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1C.x 281+y 272=1 D .x 281+y 236=1[答案] C[解析] 由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .977D .94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.且b =3>7=c . ∴F 1或F 2为直角三角形的直角顶点, ∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.6.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( c )A.x 216+y 2=1 B .x 2+y 216=1 C.x 220+y 25=1 D .x 25+y 220=17.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B .55C.12 D .5-2[答案] B[解析] ∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得(a -c )(a +c )=4c 2,即a 2=5c 2,所以离心率e =55. [答案] C[解析] 由椭圆过点(2,2),排除A 、B 、D ,选C.8.已知方程x 2|m |-1+y22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <32[答案] D[解析] 由题意得⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.9.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B .y 225+x 29=1(y ≠0)C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0)[答案] D[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.10.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线[答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a , ∴|PQ |+|PF 1|=2a , 又∵F 1、P 、Q 三点共线, ∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a . 即Q 在以F 1为圆心,以2a 为半径的圆上.二、填空题11.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. 12.已知椭圆的短半轴长为1,离心率0<e ≤32.则长轴长的取值范围为________. [答案] (2,4][解析] ∵b =1,∴c 2=a 2-1,又c 2a 2=a 2-1a 2=1-1a 2≤34,∴1a 2≥14,∴a 2≤4, 又∵a 2-1>0,∴a 2>1, ∴1<a ≤2,故长轴长2<2a ≤4.13.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.14.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________________________.[答案] x +2y -4=0[解析] 设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12,∴所求直线方程为y -1=-12(x -2),即x +2y -4=0.。
椭圆练习题职高椭圆是数学中的一种二次曲线,是由平面上到两定点A、B的距离之和等于常数2a的点P的轨迹。
在职业高中的数学教学中,椭圆是一个重要的概念,学生们需要通过练习题来加深对椭圆的理解与运用。
本文将介绍一些椭圆练习题,帮助职高学生更好地掌握椭圆的相关知识。
练习题1:已知椭圆的长轴长为12,短轴长为8,求其离心率。
解答:离心率(e)定义为离心距(c)与长轴长(2a)的比值,即e=c/2a。
根据给定的信息可知,椭圆的长轴长为12,短轴长为8,因此半焦距(c)为√(a^2-b^2),代入数值计算得c=√(12^2-8^2)=√(144-64)=√80=4√5。
代入公式计算离心率,e=4√5/(2*12)=√5/6。
练习题2:已知椭圆的长轴长为10,离心率为1/2,求其短轴长。
解答:离心率(e)定义为离心距(c)与长轴长(2a)的比值,即e=c/2a。
根据给定的信息可知,椭圆的长轴长为10,离心率为1/2,因此离心距(c)为1/2*10=5。
由离心距和长轴长的关系可得c=√(a^2-b^2),代入已知数值计算其短轴长,√(a^2-b^2)=5,a=10/2=5,代入计算得√(5^2-b^2)=5,解得b=√(5^2-5^2)=√(25-25)=√0=0。
因此,椭圆的短轴长为0。
练习题3:已知一条弦的长度为6,其所在的直径与椭圆的其他直径都不平行于y轴,求椭圆的方程。
解答:设椭圆的中心为原点O,半长轴为a,半短轴为b。
因为给定的弦不平行于y轴,所以直径AC与直径BD的交点不同于O。
根据椭圆的性质,连接OA、OB,分别垂直于x轴,交弦AB于点E、F。
根据题意可知,弦AB的长度为6,因此AE=EF=FB=3。
考虑∠EOA和∠FOB,根据正弦定理可得sin(∠EOA)/3=sin(∠FOB)/b,即sin(∠EOA)*b=sin(∠FOB)*3。
根据sin(∠EOA)=sin(π-∠FOB)的性质,得到sin(∠EOA)*b=sin(∠EOA)*3,即b=3。
椭圆专题训练(一)题型1、给出曲线方程,求相应量的值1、求椭圆400251622=+y x 的长轴长为 、短半轴长为 、离心率为 、焦点坐标为 、顶点坐标为 。
2、(练习)求下列各椭圆的长轴和短轴的长,离心率、焦点坐标、顶点坐标、准线方程: ①=+3610022y x 1 ②8222=+y x方法提练:①转化为相应的标准方程;②直接求出a 、b 、c 。
③判断焦点在哪一坐标轴上④将a 、b 、c 的值代入相应量公式(接第2题)③16422=+y x ④81922=+y x3、椭圆)0(022<<=++n m mn ny mx 的焦点为 。
4、曲线=+92522y x 1与=+--ky kx 925221(k<0)有相同的( )A 、长轴长;B 、离心率;C 、准线;D 、焦点题型2、给出相应量的值,求曲线方程1、焦点在x 轴上,焦距等于4,并且经过点P (3,-62)的椭圆方程为: 。
解:依题设椭圆的方程为)0(12222>>=+b a b y a x2、准线方程为x=±4,离心率为1/2的椭圆方程为: 3、两焦点为(±3,0),椭圆上一点P 到两焦点距离的和为10,椭圆方程为:3、两焦点为(±2,0)且过点(2325,-)的椭圆方程为: 方法提练:①判断焦点在哪一坐标轴上;②设出相应的椭圆方程③联立方程组求出a 、b 、c 。
(注意别忘记隐藏的公式)④将a 、b 、c 的值代入相应量公式4、写出适合下列条件的椭圆的标准方程: ①a=4,b=1,焦点在x 轴上。
②a=4,c=15,焦点在y 轴上③a+b=10 c=25.④a=6,c=1/3, 焦点在x 轴上。
⑤过点(-22,0)(0,5)⑥长轴是短轴的3倍,且过点(3,0)⑦离心率e=0.8,焦距为8的椭圆⑧若椭圆的焦点在x 轴上,焦点到短轴顶点的距离为2,到相应准线的距离为3,则椭圆的方程为:椭圆专题训练(二)题型3、给出某曲线方程,表达的是椭圆求所给方程中含的字母的范围。
圆锥曲线基本题型公式练习在椭圆 τ:x 2a 2+y 2b 2=1中,F 1、F 2为 τ 的左右两焦点,过 F 2 作直线 l 交 τ 与A 、B 两点,A 关于原点O 的对称点为A ′ ,已知:|AB |min =3,K A ′B ·K AB =−34。
(1) 求 τ 的方程;(2) 求 max (S ∆F 1AF 2);(3) 若有一点M (2,4),求(|MA | +|AF 2|)max ;(4) 若N(x 0,y 0)为弦AB 上的中点,求K AB (用x 0,y 0表示);(5) 若3AF 2⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ 求直线 l 的解析式;解答:(1) 椭圆中过焦点的弦最短距离为通径,通径公式:2b 2a ,∴2b 2a =3 ①; 我们学过,在椭圆中K PA ·K PB =e 2−1=−b 2a 2 (ps :此公式中A 、B 为椭圆左右两顶点,P 为椭圆上任意一点,双曲线加没有负号),由此我们可以拓展推得:如果 A 、B 两点关于原点 O 对称,P 为椭圆上任意一点,此时上式成立。
(ps :双曲线上也成立,推导方法靠中点(O )和做一个中点,根据中位线推导可得。
)∴K A ′B ·K AB =−34=−b 2a 2 ②;由①②可解得:x 24+y 23=1(a =2 ,b =√3 ,c =1)(2) 椭圆中焦点三角形面积公式:S ∆=b 2tan θ2 (双曲线为:S ∆=b 2cot θ2),做图可得:θ最大时A 在椭圆上下顶点位置,由几何关系得:θmax =π3,所以,max(S ∆F 1AF 2)=√3 Ps :此类问题也不要被公式所限制住,也可以用S =|F 1F 2|·h A 可更快解出。
(3) 此类题目要记得运用椭圆的基本性质来转化问题,即r 1+r 2=2a 。
|MA | +|AF 2|=2a +|MA |−|AF 1|=2a +|PF 1|=9Ps :有些时候题目会让我们求所截弦长度,弦长公式:|AB |=√(x 1−x 2)2+(y 1−y 2)2=√1+k 2√(x 1+x 2)2−4x 1x 2=√1+1K 2√(y 1+y 2)2−4y 1y 2 (4) 中点弦问题,有:K =(e 2−1)x0y 0 ;所以K AB =−3x 04y 0 (5) 对于此类问题,有公式 e ·cos α=|1−λ1+λ|,当有AF 1⃗⃗⃗⃗⃗⃗⃗ =λF 2B ⃗⃗⃗⃗⃗⃗⃗⃗ (ps :必须为过焦点的弦)。
高中椭圆经典练习题【编著】黄勇权一、填空题:1、已知椭圆的焦点为(3,0),长轴是短轴的2倍,则椭圆的方程是 。
2、已知椭圆22221(0)x y a b a b +=>>的短轴为4,且过点( 132 , 233 ),则椭圆的离心率是 。
3、直线y=21x+1于椭圆12y 3x 22=+相交于A 、B 两点。
则线段AB 的长度是 。
4、如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. 则椭圆的离心率 。
5、F1、F2分别为椭圆1by a 2222=+x 的左右两个焦点,过左焦点F1作x 轴垂线交椭圆于P ,若∠21PF F =45°,则椭圆的离心率为 。
6、F1、F2分别为椭圆15y 922=+x 的左右两个焦点,P 为椭圆上的一点, 若∠21PF F =60°,则△21PF F 的面积为 。
7、椭圆16y 822=+x ,点M 不与C 的焦点重合,A 、B 是M 关于焦点对称的点,若另外一点N ,使得N 与点M 连线的中点落在椭圆上,则=+BN AN 。
1by 22=(a >b >0),过点M(4,1)作斜率k= -2的直线,与椭圆相交9、F 为椭圆15y 922=+x 的右焦点,P 为椭圆上的一点,并在第一象限,且PF=2,点M 在FP 上,若2PM=MF,O 为椭圆的中心,那么线段OM 的长度= 。
120y 2=+有一动点P (x ,y ),点M 地坐标为(4,0),有另一动点N ,若MN =1,且0=•PN MN,则丨PN 丨的最大值= 。
二、选择题1、椭圆1by a x 2222=+(a >b >0)的长轴是短轴的3倍,且过(3,2),则椭圆其中一个焦点的坐标是( )A 、(0102,)B 、(010,)C 、(053,)D 、(05,) 2、已知椭圆C :18y a x 222=+(a >b >0)的离心率为31,则椭圆的焦距为( ) A 、6 B 、3 C 、2 D 、1 过点( 3, 2),则椭圆的右准线方程是( ) A 、 x=3 62 B 、 x= 2 63 C 、x= 3 32 D41b y 22=+(a >b >0)的左右两个焦点为F1、F2,过F2的直线交椭圆于M 、N 两点,若MN F 1∠=60°,MN M F =1,则椭圆的离心率为( )1by 22=+(a >b >0)的左焦点到右顶点的距离是8,右焦点到左准线的距离是20,,则椭圆的方程:( )A 、116y 2022=+xB 、112y 1622=+xC 、136y 4022=+xD 、132y 3622=+x7、已知椭圆12m y 1m x 222=++的焦距为4,则椭圆的离心率为( )A 、51 B 、 510 C 、 131 D 、1326213y 2=,直线过P (1,-1)交椭圆于A 、B ,若P 为线段AB 的中点,那么直线AB 的方程为( )A 、 3x-4y-7=0B 、 3x-4y+7=0C 、 3x-4y+1=0D 、3x-4y-1=01by 22=+(a >b >0)与直线y+x=1相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长度是( )10、过P (-2,0)的直线斜率为k1(k1≠0),与椭圆1222=+y x 交于A 、B ,线段AB 的中点为M ,直线OM 的斜率为k2,则k1k2的值为( )A 、 - 12B 、 12C - 13D 、 13三、解答题16y 2=+的左右焦点是F1,F2,P 是第一象限内该椭圆上的点, 且F 1P ⊥F 2P ,则P 的横坐标为 。
1.椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为( )
2、下列方程所表示的曲线中,关于x 轴和y 轴 都对称的是( )
A 、X 2=4Y
B 、X 2+2XY+Y=0
C 、X 2-4Y 2=X
D 、9X 2+Y 2=4
4、在下列每组椭圆中,哪一个更接近于圆?
①9x 2+y 2=36与x 2/16+y 2/12=1;②x 2+9y 2=36与x 2/6+y 2/10=1
5;求椭圆9x 2+16y 2
=144的长半轴、短半轴长、离心率、焦点、顶点坐标,并画出草图
6.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P (3,0),求椭圆的方程。
125
16..1251611625..11625..1169.2
2
2
2
2
2
2
2
2
2
=+=+=+=+=+y x D y x y x C y x B y x A
或22
2231(0)(,0),(0,).x y
a b F A a B b a b +=>>------------------------、椭圆的左焦点到顶点的直线的距离为则椭圆的离心率e=
7.
8.椭圆的中心为原点,它的一个焦点为 F(-3,0),且椭圆的离心率e=5
52,
求这个椭圆的方程.
9.已知椭圆C 的焦点F 1(22-,0)和F 2(22,0),长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.
10.已知椭圆459522=+y x 的右焦点为F ,求过点F 且斜率为1的直线被椭圆截得的弦长.
1.椭圆
136
100
2
2
=+
y
x
上的点P 到它的左焦点的距离是12,那么点P 到它的右焦点
的距离是
A .15
B .12
C .10
D . 8
12.已知椭圆
)5(125
2
2
2>=+
a y
a
x 的两个焦点为1F 、2F ,且821=F F ,弦AB 过点1F ,
则△2ABF 的周长为( ).
A .10
B .20
C .241
D . 441
22
12516
.
x y
+=----------------------------以椭圆的两个焦点及短轴的两个端点为四个顶点的椭圆
方程为
13.椭圆
19
25
2
2
=+
y
x
的焦点1F 、2F ,
P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ).
A .9
B .12
C .10
D .8 14.椭圆
14
16
2
2
=+
y
x
上的点到直线x+2y-2=0的最大距离是( ).
A .3
B .11
C .22
D .10 15.如果椭圆
19
36
2
2
=+
y
x 的弦被点
(4,2)平分,则这条弦所在的直线方程是( ). A .x-2y=0 B .x+2y-4=0 C .2x+3y-12=0 D .x+2y-8=0 16.与椭圆
13
42
2
=+y x 具有相同的离心率且过点(2,-3)的椭圆的标准方程
是_________.
17.离心率3
5=e ,一个焦点的坐标为⎪⎭
⎫
⎝
⎛-0,3
5的椭圆的标准方程是_________.
18.已知椭圆
14
9
2
2
=+
y
x
上的点P 到其右焦点的距离是长轴两端点到右焦点的距
离的等差中项,求P 点坐标.
19.过椭圆14
9
2
2
=+
y
x
内一点D (1,0)引动弦AB ,求弦AB 的中点M 的轨迹方程.。