四川省中考数学复习题及答案 (12)
- 格式:doc
- 大小:15.50 KB
- 文档页数:1
2022年四川省成都市中考数学试卷1.−37的相反数是( )A. 37B. −37C. 73D. −732.2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为( )A. 1.6×102B. 1.6×105C. 1.6×106D. 1.6×1073.下列计算正确的是( )A. m+m=m2B. 2(m−n)=2m−nC. (m+2n)2=m2+4n2D. (m+3)(m−3)=m2−94.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC//DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A. BC=DEB. AE=DBC. ∠A=∠DEFD. ∠ABC=∠D5.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是( )A. 56B. 60C. 63D. 726.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. √3B. √6C. 3D. 2√37. 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x 个,甜果有y 个,则可列方程组为( )A. {x +y =1000,47x +119y =999B. {x +y =1000,74x +911y =999C. {x +y =1000,7x +9y =999D. {x +y =1000,4x +11y =9998. 如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于A(−1,0),B 两点,对称轴是直线x =1,下列说法正确的是( )A. a >0B. 当x >−1时,y 的值随x 值的增大而增大C. 点B 的坐标为(4,0)D. 4a +2b +c >09. 计算:(−a 3)2= ______ .10. 在平面直角坐标系xOy 中,若反比例函数y =k−2x的图象位于第二、四象限,则k 的取值范围是______.11. 如图,△ABC 和△DEF 是以点O 为位似中心的位似图形.若OA :AD =2:3,则△ABC 与△DEF 的周长比是______.12. 分式方程3−xx−4+14−x =1的解为______.13. 如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E.若AC =5,BE =4,∠B =45°,则AB 的长为______.14.(1)计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x+2)≥2x+5,①x2−1<x−23.②15.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<24xB2≤t<420C4≤t<636%D t≥616%根据图表信息,解答下列问题:(1)本次调查的学生总人数为______,表中x的值为______;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)17.如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在CD⏜上取一点E,使BE⏜=CD⏜,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=4,求BF及DE的长.518. 如图,在平面直角坐标系xOy 中,一次函数y =−2x +6的图象与反比例函数y =kx 的图象相交于A(a,4),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,Q 是平面内一点,当四边形ABPQ 是完美筝形时,求P ,Q 两点的坐标.19. 已知2a 2−7=2a ,则代数式(a −2a−1a)÷a−1a 2的值为______.20. 若一个直角三角形两条直角边的长分别是一元二次方程x 2−6x +4=0的两个实数根,则这个直角三角形斜边的长是______. 21. 如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是______.22. 距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度ℎ(米)与物体运动的时间t(秒)之间满足函数关系ℎ=−5t 2+mt +n ,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t秒时ℎ的值的“极差”(即0秒到t秒时ℎ的最大值与最小值的差),则当0≤t≤1时,w的取值范围是______;当2≤t≤3时,w的取值范围是______.23.如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P′,点Q是AC上一动点,连接P′Q,DQ.若AE=14,CE=18,则DQ−P′Q的最大值为______.24.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/ℎ,乙骑行的路程s(km)与骑行的时间t(ℎ)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?25.如图,在平面直角坐标系xOy中,直线y=kx−3(k≠0)与抛物线y=−x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B′.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB′,BB′,若△B′AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB′是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).答案和解析1.【答案】A【解析】解:−37的相反数是37. 故选:A .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】C【解析】解:160万=1600000=1.6×106, 故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】D【解析】解:A.m +m =2m ,故本选项不合题意; B .2(m −n)=2m −2n ,故本选项不合题意;C .(m +2n)2=m 2+4mn +4n 2,故本选项不合题意;D .(m +3)(m −3)=m 2−9,故本选项符合题意; 故选:D .选项A 根据合并同类项法则判断即可;选项B 根据去括号法则判断即可;选项C 根据完全平方公式判断即可;选项D 根据平方差公式判断即可.本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.【答案】B【解析】解:∵AC//DF , ∴∠A =∠D ,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.【答案】B【解析】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B.根据众数的定义求解即可.本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.【答案】C【解析】解:连接OB、OC,如图:∵⊙O的周长等于6π,=3,∴⊙O的半径OB=OC=6π2π∵六边形ABCDEF是正六边形,=60°,∴∠BOC=360°6∴△BOC是等边三角形,∴BC=OB=OC=3,即正六边形的边长为3,故选:C.连接OB、OC,根据⊙O的周长等于6π,可得⊙O的半径OB=OC=3,而六边形ABCDEF是正六边形,即知∠BOC=360°6=60°,△BOC是等边三角形,即可得正六边形的边长为3.本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60°,从而得到△BOC是等边三角形.7.【答案】A【解析】解:∵共买了一千个苦果和甜果,∴x+y=1000;∵共买一千个苦果和甜果共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,∴47x+119y=999.∴可列方程组为{x+y=100047x+119y=999.故选:A.利用总价=单价×数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】D【解析】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;B、∵抛物线对称轴是直线x=1,开口向下,∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;C、由A(−1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,∴4a+2b+c>0,故选项D正确,符合题意;故选:D.由抛物线开口方向可判断A,根据抛物线对称轴可判断B,由抛物线的轴对称性可得点B 的坐标,从而判断C,由(2,4a+2b+c)所在象限可判断D.本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.9.【答案】a6【解析】解:(−a3)2=a6.根据幂的乘方,底数不变指数相乘计算即可.本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.【答案】k<2的图象位于第二、四象限,【解析】解:∵反比例函数y=k−2x∴k−2<0,解得k<2,故答案为:k<2.根据反比例函数的性质列不等式即可解得答案.本题考查反比例函数的性质,解题的关键是掌握当k<0时,y=k的图象过第二、四象x限.11.【答案】2:5【解析】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.【答案】x=3【解析】解:去分母得:3−x−1=x−4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】7【解析】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE=√AC2−CE2=√52−42=3,∴AB=AE+BE=3+4=7,故答案为:7.设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得BE=CE=4,有∠ECB=∠B=45°,从而∠AEC=∠ECB+∠B=90°,由勾股定理得AE=3,故AB= AE+BE=7.本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN是线段BC的垂直平分线.14.【答案】解:(1)原式=2−3+3×√33+2−√3=−1+√3+2−√3=1;(2)解不等式①得,x≥−1,解不等式②得,x<2,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为−1≤x<2.【解析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.【答案】508%【解析】解:(1)本次调查的学生总人数为8÷16%=50(人),所以x=450=8%;故答案为:50;8%;(2)500×2050=200(人),所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率=812=23.(1)用D等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x的值;(2)用500乘以B等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.16.【答案】解:∵∠AOB=150°,∴∠AOC=180°−∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°−∠A′OB=72°,在Rt△A′DO中,A′D=A′O⋅sin72°≈20×0.95=19(cm),∴此时顶部边缘A′处离桌面的高度A′D的长约为19cm.【解析】利用平角定义先求出∠AOC=30°,然后在Rt△ACO中,利用锐角三角函数的定义求出AO的长,从而求出A′O的长,再利用平角定义求出∠A′OD的度数,最后在Rt△A′DO中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.【答案】(1)证明:∵BE⏜=CD⏜,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A =cos∠ACF =45=AC AB ,∵AC =8,∴AB =10,BC =6,∵BC 是直径,∴∠CDB =90°,∴CD ⊥AB ,∵S △ABC =12⋅AC ⋅BC =12⋅AB ⋅CD , ∴CD =6×810=245,∴BD =√BC 2−CD 2=√62−(245)2=185, ∵BF =AF =5,∴DF =BF −BD =5−185=75, ∵∠DEF +∠DEC =180°,∠DEC +∠B =180°,∴∠DEF =∠B =∠BCF ,∴DE//CB ,∴△DEF∽△BCF ,∴DE BC =DF FB , ∴DE 6=755, ∴DE =4225.【解析】(1)利用等角的余角相等证明即可;(2)连接CD.解直角三角形求出AB ,BC ,利用面积法求出CD ,再利用勾股定理求出DB ,证明△DEF∽△BCF ,利用相似三角形的性质求出DE 即可.本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.【答案】解:(1)∵一次函数y =−2x +6的图象过点A ,∴4=−2a +6,∴a =1,∴点A(1,4),∵反比例函数y =k x 的图象过点A(1,4),∴k =1×4=4;∴反比例函数的解析式为:y =4x ,联立方程组可得:{y =4x y =−2x +6, 解得:{x 1=1y 1=4,{x 2=2y 2=2, ∴点B(2,2);(2)如图,过点A 作AE ⊥y 轴于E ,过点C 作CF ⊥y 轴于F ,∴AE//CF ,∴△AEH∽△CFH ,∴AE CF =AH CH =EH FH , 当AH CH =12时,则CF =2AE =2,∴点C(−2,−2),∴BC =√(2+2)2+(2+2)2=4√2,当AH CH =2时,则CF =12AE =12,∴点C(−12,−8),∴BC =√(2+12)2+(2+8)2=5√172, 综上所述:BC 的长为4√2或5√172;(3)如图,当∠AQP =∠ABP =90°时,设直线AB 与y 轴交于点E ,过点B 作BF ⊥y 轴于F ,设BP 与y 轴的交点为N ,连接BQ ,AP 交于点H ,∵直线y =−2x +6与y 轴交于点E ,∴点E(0,6),∵点B(2,2),∴BF =OF =2,∴EF =4,∵∠ABP =90°,∴∠ABF +∠FBN =90°=∠ABF +∠BEF ,∴∠BEF =∠FBN ,又∵∠EFB =∠ABN =90°,∴△EBF∽△BNF ,∴BF EF =FN BF ,∴FN =2×24=1, ∴点N(0,1),∴直线BN 的解析式为:y =12x +1,联立方程组得:{y =4x y =12x +1, 解得:{x 1=−4y 1=−1,{x 2=2y 2=2, ∴点P(−4,−1),∴直线AP 的解析式为:y =x +3,∵AP 垂直平分BQ ,∴设BQ 的解析式为y =−x +4,∴x +3=−x +4,∴x=12,∴点H(12,72 ),∵点H是BQ的中点,点B(2,2),∴点Q(−1,5).【解析】(1)将点A坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP,AP,BQ的解析式,联立方程组可求解.本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.19.【答案】72【解析】解:原式=(a2a −2a−1a)×a2a−1=(a−1)2a ×a2a−1=a(a−1)=a2−a,∵2a2−7=2a,∴2a2−2a=7,∴a2−a=72,∴代数式的值为72,故答案为:72.先将代数式化简为a2−a,再由2a2−7=2a可得a2−a=72,即可求解.本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.【答案】2√7【解析】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2−6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c=√a2+b2=√(a+b)2−2ab=√62−2×4=2√7,故答案为:2√7.设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到a+b=6,ab=4.21.【答案】π−24【解析】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=√22r,∴AE=2r,CF=√2r,∴这个点取在阴影部分的概率是πr2−(√2r)2(2r)2=π−24,故答案为:π−24.作OD⊥CD,OB⊥AB,设⊙O的半径为r,根据⊙O是小正方形的外接圆,是大正方形的内切圆,可得OB=OC=r,△AOB、△COD是等腰直角三角形,即可得AE=2r,CF=√2r,从而求出答案.本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r的代数式表示阴影部分的面积.22.【答案】0≤w≤55≤w≤20【解析】解:∵物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,∴抛物线ℎ=−5t2+mt+n的顶点的纵坐标为20,且经过(3,0)点,∴{4×(−5)n−m24×(−5)=20−5×32+3m+n=0,解得:{m 1=10n 1=15,{m 2=50n 2=−105(不合题意,舍去), ∴抛物线的解析式为ℎ=−5t 2+10t +15,∵ℎ=−5t 2+10t +15=−5(t −1)2+20,∴抛物线的最高点的坐标为(1,20).∵20−15=5,∴当0≤t ≤1时,w 的取值范围是:0≤w ≤5;当t =2时,ℎ=15,当t =3时,ℎ=0,∵20−15=5,20−0=20,∴当2≤t ≤3时,w 的取值范围是:5≤w ≤20.故答案为:0≤w ≤5;5≤w ≤20.利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.本题主要考查了二次函数的应用,待定系数法确定函数的解析式,二次函数的性质,理解“极差”的意义是解题的关键.23.【答案】16√23【解析】解:如图,连接BD 交AC 于点O ,过点D 作DK ⊥BC 于点B ,延长DE 交AB 于点R ,连接EP′交AB 于点J ,作EJ 关于AC 的对称线段EJ′,则DP′的对应点P″在线段EJ′上.当点P 是定点时,DQ −QP′=AD −QP″,当D ,P″,Q 共线时,QD −QP′的值最大,最大值是线段DP″的长,当点P 与B 重合时,点P″与J′重合,此时DQ −QP′的值最大,最大值是线段DJ′的长,也就是线段BJ 的长.∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC ,∵AE =14.EC =18,∴AC =32,AO =OC =16,∴OE =AO −AE =16−14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO⋅EC=36,∴DE=EB=EJ=6,∴CD=√EC2−DE2=√182−62=12√2,∴OD=√DE2−OE2=√62−22=4√2,∴BD=8√2,∵S△DCB=12×OC×BD=BC⋅DK,∴DK=12×16×8√212√2=163,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK=DKCD =16312√2=4√29,∴RB=BE×4√29=8√23,∵EJ=EB,ER⊥BJ,∴JR=BR=8√23,∴JB=DJ′=16√23,∴DQ−P′Q的最大值为16√23.故答案为:16√23.如图,连接BD交AC于点O,过点D作DK⊥BC于点B,延长DE交AB于点R,连接EP′交AB 于点J,作EJ关于AC的对称线段EJ′,则DP′的对应点P″在线段EJ′上.当点P是定点时,DQ−QP′=AD−QP″,当D,P″,Q共线时,QD−QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ−QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.解直角三角形求出BJ,可得结论.本题考查轴对称−最短问题,菱形的性质,解直角三角形等知识,解题的关键是学会利用轴对称解决最值问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.24.【答案】解:(1)当0≤t ≤0.2时,设s =at ,把(0.2,3)代入解析式得,0.2a =3,解得:a =15,∴s =15t ;当t >0.2时,设s =kt +b ,把(0.2,3)和(0.5,9)代入解析式,得{0.5k +b =90.2k +b =3, 解得{k =20b =−1, ∴s =20t −1,∴s 与t 之间的函数表达式为{15t(0≤t ≤0.2)20t −1(t >0.2); (2)设t 小时后乙在甲前面,根据题意得:20t −1≥18t ,解得:t ≥0.5,答:0.5小时后乙骑行在甲的前面.【解析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;(2)设t 小时后乙在甲前面,用乙的路程大于甲的路程列出不等式求解即可. 本题考查一次函数的应用,关键是根据图象用待定系数法分段求函数解析式.25.【答案】解:(1)当k =2时,直线为y =2x −3,由{y =2x −3y =−x2得:{x =−3y =−9或{x =1y =−1, ∴A(−3,−9),B(1,−1);(2)当k >0时,如图:∵△B′AB 的面积与△OAB 的面积相等,∴OB′//AB ,∴∠OB′B =∠B′BC ,∵B 、B′关于y 轴对称,∴OB =OB′,∠ODB =∠ODB′=90°,∴∠OB′B =∠OBB′,∴∠OBB′=∠B′BC ,∵∠ODB =90°=∠CDB ,BD =BD ,∴△BOD≌△BCD(ASA),∴OD =CD ,在y =kx −3中,令x =0得y =−3,∴C(0,−3),OC =3,∴OD =12OC =32,D(0,−32), 在y =−x 2中,令y =−32得−32=−x 2,解得x =√62或x =−√62, ∴B(√62,−32),把B(√62,−32)代入y =kx −3得: −32=√62k −3,解得k =√62; 当k <0时,过B′作B′F//AB 交y 轴于F ,如图:在y =kx −3中,令x =0得y =−3,∴E(0,−3),OE =3,∵△B′AB 的面积与△OAB 的面积相等,∴OE =EF =3,∵B 、B′关于y 轴对称,∴FB =FB′,∠FGB =∠FGB′=90°,∴∠FB′B =∠FBB′,∵B′F//AB ,∴∠EBB′=∠FB′B ,∴∠EBB′=∠FBB′,∵∠BGE =90°=∠BGF ,BG =BG ,∴△BGF≌△BGE(ASA),∴GE =GF =12EF =32,∴OG =OE +GE =92,G(0,−92),在y =−x 2中,令y =−92得−92=−x 2,解得x =3√22或x =−3√22, ∴B(3√22,−92), 把B(3√22,−92)代入y =kx −3得: −92=3√22k −3,解得k =−√22,综上所述,k 的值为√62或−√22; (3)直线AB′经过定点(0,3),理由如下:由{y =−x 2y =kx −3得: {x =−k−√k 2+122y =−k 2−k√k 2+12−62或{x =−k+√k 2+122y =−k 2+k√k 2+12−62, ∴A(−k−√k 2+122,−k 2−k√k 2+12−62),B(−k+√k 2+122,−k 2+k√k 2+12−62),∵B 、B′关于y 轴对称,∴B′(k−√k 2+122,−k 2+k√k 2+12−62),设直线AB′解析式为y =mx +n ,将A(−k−√k2+122,−k 2−k√k 2+12−62),B′(k−√k 2+122,−k 2+k√k 2+12−62)代入得:{−k 2−k√k 2+12−62=−k−√k 2+122m +n −k 2+k√k 2+12−62=k−√k 2+122m +n, 解得{m =√k 2+12n =3, ∴直线AB′解析式为y =√k 2+12⋅x +3,令x =0得y =3,∴直线AB′经过定点(0,3).【解析】(1)当k =2时,直线为y =2x −3,联立解析式解方程组即得A(−3,−9),B(1,−1);(2)分两种情况:当k >0时,根据△B′AB 的面积与△OAB 的面积相等,知OB′//AB ,可证明△BOD≌△BCD(ASA),得OD =12OC =32,D(0,−32),可求B(√62,−32),即可得k =√62; 当k <0时,过B′作B′F//AB 交y 轴于F ,由△B′AB 的面积与△OAB 的面积相等,可得OE =EF =3,证明△BGF≌△BGE(ASA),可得OG =OE +GE =92,G(0,−92),从而B(3√22,−92),即可得k =−√22; (3)由{y =−x 2y =kx −3得A(−k−√k 2+122,−k 2−k√k 2+12−62),B(−k+√k 2+122,−k 2+k√k 2+12−62),可得B′(k−√k 2+122,−k 2+k√k 2+12−62),设直线AB′解析式为y =mx +n ,将A(−k−√k 2+122,−k 2−k√k 2+12−62),B′(k−√k 2+122,−k 2+k√k 2+12−62)可得直线AB′解析式为y =√k 2+12⋅x +3,从而可得直线AB′经过定点(0,3).本题考查二次函数综合应用,涉及待定系数法,对称变换,三角形全等的判定与性质等知识,解题的关键是根据已知求出B点的坐标.26.【答案】解:(1)∵四边形EBFG和四边形ABCD是矩形,∴∠A=∠BEG=∠D=90°,∴∠ABE+∠AEB=∠AEB+∠DEH=90°,∴∠DEH=∠ABE,∴△ABE∽△DEH,∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;(2)如图1,∵H是线段CD中点,∴DH=CH,设DH=x,AE=a,则AB=2x,AD=4x,DE=4x−a,由(1)知:△ABE∽△DEH,∴AEDH =ABDE,即ax=2x4x−a,∴2x2=4ax−a2,∴2x2−4ax+a2=0,∴x=4a±√16a2−4×2×a24=2a±√2a2,∵tan∠ABE=AEAB =a2x,当x=2a+√2a2时,tan∠ABE=2×2a+√2a2=2−√22,当x=2a−√2a2时,tan∠ABE=2×2a−√2a2=2+√22;综上,tan∠ABE的值是2±√22.(3)分两种情况:①如图2,BH=FH,设AB=x,AE=a,∵四边形BEGF是矩形,∴∠AEG=∠G=90°,BE=FG,∴Rt△BEH≌Rt△FGH(HL),∴EH=GH,∵矩形EBFG∽矩形ABCD,∴ADAB =EGBE=n,∴2EHBE=n,∴EHBE =n2,由(1)知:△ABE∽△DEH,∴DEAB =EHBE=n2,∴nx−ax =n2,∴nx=2a,∴ax =n2,∴tan∠ABE=AEAB =ax=n2;②如图3,BF=FH,∵矩形EBFG∽矩形ABCD,∴∠ABC=∠EBF=90°,ABBC =BEBF,∴∠ABE=∠CBF,∴△ABE∽△CBF,∴∠BCF=∠A=90°,∴D,C,F共线,∵BF=FH,∴∠FBH=∠FHB,∵EG//BF,∴∠FBH=∠EHB,∴∠EHB=∠CHB,∵BE⊥EH,BC⊥CH,∴BE=BC,由①可知:AB=x,AE=a,BE=BC=nx,由勾股定理得:AB2+AE2=BE2,∴x2+a2=(nx)2,∴x=√n2−1负值舍),∴tan∠ABE=AEAB =ax=√n2−1,综上,tan∠ABE的值是n2或√n2−1.【解析】(1)根据两角对应相等可证明△ABE∽△DEH;(2)设DH=x,AE=a,则AB=2x,AD=4x,DE=4x−a,由△ABE∽△DEH,列比例式可得x=2a±√2a2,最后根据正切的定义可得结论;(3)分两种情况:FH=BH和FH=BF,先根据三角形相似证明F在射线DC上,再根据三角形相似的性质和勾股定理列等式可得结论.此题是几何变换综合题,考查了相似三角形的判定与性质,矩形的相似的性质,矩形的性质以及直角三角形的性质,三角形全等的性质和判定等知识,注意运用参数表示线段的长,并结合方程解决问题,还要运用分类讨论的思想.。
考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
2022年四川省凉山州中考数学试卷和答案解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.(4分)﹣2022的相反数是()A.2022B.﹣2022C.D.2.(4分)如图所示的几何体的主视图是()A.B.C.D.3.(4分)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917人,将这个数用科学记数法表示为()A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103 4.(4分)如图,直线a∥b,c是截线,若∠1=50°,则∠2=()A.40°B.45°C.50°D.55°5.(4分)化简:=()A.±2B.﹣2C.4D.26.(4分)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠07.(4分)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.5,5,10 8.(4分)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.109.(4分)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米2 10.(4分)一次函数y=3x+b(b≥0)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为()A.9cm B.12cm C.15cm D.18cm 12.(4分)已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是()A.a>0B.a+b=3C.抛物线经过点(﹣1,0)D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根二、填空题(共5个小题,每小题4分,共20分)13.(4分)计算:﹣12+|﹣2023|=.14.(4分)分解因式:ab2﹣a=.15.(4分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.16.(4分)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为.17.(4分)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为.三、参考答案题(共5小题,共32分)参考答案应写出文字说明、证明过程或演算步骤.18.(5分)解方程:x2﹣2x﹣3=0.19.(5分)先化简,再求值:(m+2+)•,其中m为满足﹣1<m<4的整数.20.(7分)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团.如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.21.(7分)去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).22.(8分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.四、填空题(共2小题,每小题5分,满分10分)23.(5分)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是.24.(5分)如图,在边长为1的正方形网格中,⊙O是△ABC的外接圆,点A,B,O在格点上,则cos∠ACB的值是.五、参考答案题(共4小题,共40分)参考答案应写出文字说明、证明过程或演算步骤.25.(8分)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.26.(10分)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.27.(10分)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.(1)判断⊙M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.28.(12分)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.参考答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.【参考答案】解:﹣2022的相反数是2022,故选:A.【解析】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.【参考答案】解:从正面看,底层是三个小正方形,上层的中间是一个小正方形,故选:C.【解析】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的形状是正确判断的前提.3.【参考答案】解:80917=8.0917×104.故选:C.【解析】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【参考答案】解:如图,∵a∥b,∴∠3=∠2,∵∠1=∠3,∴∠2=∠1=50°,故选:C.【解析】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.5.【参考答案】解:==2,故选:D.【解析】本题考查了算术平方根,熟练掌握算术平方根的意义是解题的关键.6.【参考答案】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.【解析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.7.【参考答案】解:A.3+4<8,不能组成三角形,不符合题意;B.5+6=11,不能组成三角形,不符合题意;C.5+6>10,能组成三角形,符合题意;D.5+5=10,不能组成三角形,不符合题意.故选:C.【解析】本题主要考查对三角形三边关系的理解应用,判断是否可以构成三角形,只要判断两个较小的数的和>最大的数就可以.8.【参考答案】解:∵一组数据4、5、6、a、b的平均数为5,∴4+5+6+a+b=5×5,∴a+b=10,∴a、b的平均数为10÷2=5,故选:B.【解析】本题考查了算术平均数的计算方法,牢记公式是解题的关键.9.【参考答案】解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=(米),∴AB==(米),∴扇形部件的面积=π×()2=(米2),故选:C.【解析】本题考查了扇形面积的计算,掌握设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2是解题的关键.10.【参考答案】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图象经过一、三象限,不经过第四象限;当b>0时,此函数的图象经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.【解析】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,函数的图象所在的象限是参考答案此题的关键.11.【参考答案】解:∵=,∴=,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴BC=15(cm),故选:C.【解析】本题考查了相似三角形的判定与性质,得到相似三角形的对应边的比=是解题的关键.12.【参考答案】解:由题意作图如下:由图知,a>0,故A选项说法正确,不符合题意,∵抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),∴a+b+c=0,c=﹣3,∴a+b=3,故B选项说法正确,不符合题意,∵对称轴在y轴的左侧,∴抛物线不经过(﹣1,0),故C选项说法错误,符合题意,由图知,抛物线y=ax2+bx+c与直线y=﹣1有两个交点,故关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,故D选项说法正确,不符合题意,故选:C.【解析】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.二、填空题(共5个小题,每小题4分,共20分)13.【参考答案】解:﹣12+|﹣2023|=﹣1+2023=2022,故答案为:2022.【解析】本题考查了有理数的混合运算,准确熟练地化简各式是解题的关键.14.【参考答案】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【解析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【参考答案】解:由题知,△OAB的面积为3,点A在反比例函数y=(x>0)的图象上,∴OB•AB=3,即OB•AB=6,∴k=6,故答案为:6.【解析】本题主要考查反比例函数系数k的几何意义,熟练掌握反比例函数的图象和性质及反比例函数系数k的性质是解题的关键.16.【参考答案】解:如图,由题意得:OE⊥CD,又∵AC⊥CD,∴AC∥OE,∴∠A=α,同理可得:∠B=β,∵α=β,∴∠A=∠B,在△AOC和△BOD中,∴△AOC∽△BOD,∴,∴,解得:OC=4,∴tanα=tanA==,故答案为:.【解析】本题考查了相似三角形的判定与性质、正切等知识点,掌握相似三角形的判定和性质是解题关键.17.【参考答案】解:连接OD,如图所示∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB==,BD=5,∴DH=4,∴BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OB=OH+BH=3+=;故答案为:.【解析】此题考查了垂径定理、勾股定理以及三角函数.此题难度不大,注意数形结合思想的应用.三、参考答案题(共5小题,共32分)参考答案应写出文字说明、证明过程或演算步骤.18.【参考答案】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0或x+1=0∴x1=3,x2=﹣1.【解析】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.【参考答案】解:(m+2+)•=•=•=•=﹣2(m+3)=﹣2m﹣6,∵m≠2,m≠3,∴当m=0时,原式=﹣6当m=1时,原式=﹣2×1﹣6=﹣2﹣6=﹣8.【解析】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.20.【参考答案】解:(1)该班总人数为12÷24%=50(人),则选择“演讲”人数为50×16%=8(人),补全图形如下:故答案为:50;(2)设美术社团为A,演讲社团为B,声乐社团为C.画树状图为:由树状图知,共有12种等可能的结果数,其中选出的两人中恰好有1人参加美术社团、1人参加演讲社团的有4种结果,所以选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率为=.【解析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【参考答案】解:由已知可得,BD∥EF,AB=16米,∠E=30°,∠BDA=∠BDC=90°,∴∠E=∠DBA=30°,∴AD=8米,∴BD===8(米),∵∠CBD=45°,∠CDB=90°,∴∠C=∠CBD=45°,∴CD=BD=8米,∴BC===8(米),∴AC+CB=AD+CD+CB=(8+8+8)米,答:压折前该输电铁塔的高度是(8+8+8)米.【解析】本题考查解直角三角形的应用—坡度坡角问题,参考答案本题的关键是明确题意,求出AD、CD和BC长.22.【参考答案】(1)证明:∵AF∥BC,∴∠AFC=∠FCD,∠FAE=∠CDE,∵点E是AD的中点,∴AE=DE,∴△FAE≌△CDE(AAS),∴AF=CD,∵点D是BC的中点,∴BD=CD,∴AF=BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BD=BC,∴四边形ADBF是菱形;(2)解:∵四边形ADBF是菱形,∴菱形ADBF的面积=2△ABD的面积,∵点D是BC的中点,∴△ABC的面积=2△ABD的面积,∴菱形ADBF的面积=△ABC的面积=40,∴AB•AC=40,∴×8•AC=40,∴AC=10,∴AC的长为10.【解析】本题考查了菱形的判定与性质,直角三角形斜边上的中线,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及菱形的判定与性质是解题的关键.四、填空题(共2小题,每小题5分,满分10分)23.【参考答案】解:∵a﹣b2=4,∴b2=a﹣4,∴原式=a2﹣3(a﹣4)+a﹣14=a2﹣3a+12+a﹣14=a2﹣2a﹣2=a2﹣2a+1﹣1﹣2=(a﹣1)2﹣3,∵1>0,又∵b2=a﹣4≥0,∴a≥4,∵1>0,∴当a≥4时,原式的值随着a的增大而增大,∴当a=4时,原式取最小值为6,故答案为:6.【解析】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,灵活应用配方法,从而完成求解.24.【参考答案】解:连接AD,BD,AD和BD相交于点D,∵AD是⊙O的直径,∴∠ABD=90°,∵AB=6,BD=4,∴AD===2,∴cos∠ADB===,∵∠ACB=∠ADB,∴cos∠ACB的值是,故答案为:.【解析】本题考查三角形的外接圆和外心、圆周角定理、解直角三角形,参考答案本题的关键是求出∠ADB的余弦值.五、参考答案题(共4小题,共40分)参考答案应写出文字说明、证明过程或演算步骤.25.【参考答案】解:(1)设A种球拍每副x元,B种球拍每副y元,,解得,答:A种球拍每副40元,B种球拍每副32元;(2)设购买B型球拍a副,总费用w元,依题意得30﹣a≥2a,解得a≤10,w=40(30﹣a)+32a=﹣8a+1200,∵﹣8<0,∴w随a的增大而减小,∴当a=10时,w最小,w最小=﹣8×10+1200=1120(元),此时30﹣10=20(副),答:费用最少的方案是购买A种球拍20副,B种球拍10副,所需费用1120元.【解析】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.26.【参考答案】解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.【解析】本题主要考查根与系数的关系,分式的化简求值,参考答案的关键是把s,t看作是相应的方程的两个实数根.27.【参考答案】解:(1)猜测⊙M与x轴相切,理由如下:如图,连接OM,∵AC平分∠OAM,∴∠OAC=∠CAM,又∵MC=AM,∴∠CAM=∠ACM,∴∠OAC=∠ACM,∴OA∥MC,∵OA⊥x轴,∴MC⊥x轴,∵CM是半径,∴⊙M与x轴相切.(2)如图,过点M作MN⊥y轴于点N,∴AN=BN=AB,∵∠MCO=∠AOC=∠MNA=90°,∴四边形MNOC是矩形,∴NM=OC,MC=ON=5,设AO=m,则OC=6﹣m,∴AN=5﹣m,在Rt△ANM中,由勾股定理可知,AM2=AN2+MN2,∴52=(5﹣m)2+(6﹣m)2,解得m=2或m=9(舍去),∴AN=3,∴AB=6.(3)如图,连接AD与CM交于点E,∵BD是直径,∴∠BAD=90°,∴AD∥x轴,∴AD⊥MC,由勾股定理可得AD=8,∴D(8,﹣2).由(2)可得C(4,0),设直线CD的解析式为:y=kx+b,∴,解得.∴直线CD的解析式为:y=﹣x+2.【解析】本题主要考查切线的定义,勾股定理,矩形的性质与判定,垂径定理,待定系数法求函数表达式,题目比较简单,关键是掌握相关定理.28.【参考答案】解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,得,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵y=﹣(x﹣1)2+4,∴C(1,4),抛物线的对称轴为直线x=1,如图,设CD=t,则D(1,4﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(1+t,4﹣t),把P(1+t,4﹣t)代入y=﹣x2+2x+3得:﹣(1+t)2+2(1+t)+3=4﹣t,整理得t2﹣t=0,解得:t1=0(舍去),t2=1,∴P(2,3);(3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,∴E点坐标为(1,﹣1),∴点E关于y轴的对称点F(﹣1,﹣1),连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,设直线PF的解析式为y=kx+n,∴,解得:,∴直线PF的解析式为y=x+,∴点M的坐标为(0,).【解析】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征、二次函数的性质和旋转的性质,轴对称确定最短路线问题,会利用待定系数法求函数解析式;理解坐标与图形性质;会运用轴对称求最短路线是解题的关键.。
2020年四川省自贡市中考数学试卷一.选择题(共12个小题).1.(4分)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°2.(4分)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A.70×104B.0.7×107C.7×105D.7×1063.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.B.﹣C.1D.﹣15.(4分)在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A.(﹣1,1)B.(5,1)C.(2,4)D.(2,﹣2)6.(4分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.7.(4分)对于一组数据3,7,5,3,2,下列说法正确的是()A.中位数是5B.众数是7C.平均数是4D.方差是38.(4分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°9.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°10.(4分)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.11.(4分)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=4012.(4分)如图,在平行四边形ABCD中,AD=2,AB=,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A.2B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:3a2﹣6ab+3b2=.14.(4分)与﹣2最接近的自然数是.15.(4分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.16.(4分)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为米(结果保留根号).17.(4分)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.18.(4分)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=,前25个等边三角形的周长之和为.三、解答题(共8个题,共78分)19.(8分)计算:|﹣2|﹣(+π)0+(﹣)﹣1.20.(8分)先化简,再求值:•(+1),其中x是不等式组的整数解.21.(8分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.22.(8分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是人,m=;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是.23.(10分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?24.(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.25.(12分)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且P A=PC =AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:=;(2)若tan∠ABC=2,证明:P A是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.2020年四川省自贡市中考数学试卷参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°解:如图所示:∵a∥b,∴∠3=∠1=50°,∴∠2=∠3=50°;故选:B.2.(4分)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A.70×104B.0.7×107C.7×105D.7×106解:700000用科学记数法表示为7×105,故选:C.3.(4分)如图所示的几何体的左视图是()A.B.C.D.解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.4.(4分)关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,则a的值为()A.B.﹣C.1D.﹣1解:∵关于x的一元二次方程ax2﹣2x+2=0有两个相等实数根,∴,∴a=.故选:A.5.(4分)在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A.(﹣1,1)B.(5,1)C.(2,4)D.(2,﹣2)解:将点P(2,1)向下平移3个单位长度所得点的坐标为(2,1﹣3)即(2,﹣2);故选:D.6.(4分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项不合题意;D、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.故选:A.7.(4分)对于一组数据3,7,5,3,2,下列说法正确的是()A.中位数是5B.众数是7C.平均数是4D.方差是3解:A、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B、3出现了2次,出现的次数最多,则众数是3,故本选项错误;C、平均数是:(3+7+5+3+2)÷5=4,故本选项正确;D、方差是:[2×(3﹣4)2+(7﹣4)2+(5﹣4)2+(2﹣4)2]=3.2,故本选项错误;故选:C.8.(4分)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.9.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.10.(4分)函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.解:根据反比例函数的图象位于一、三象限知k>0,根据二次函数的图象确知a<0,b<0,∴函数y=kx﹣b的大致图象经过一、二、三象限,故选:D.11.(4分)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.12.(4分)如图,在平行四边形ABCD中,AD=2,AB=,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A.2B.C.D.解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x.∵四边形ABCD是平行四边形,∴DQ∥BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QF A≌△EFB(AAS),∴AQ=BE=x,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC∥AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2﹣AD2=AB2﹣BE2,∴(x+2)2﹣4=6﹣x2,整理得:2x2+4x﹣6=0,解得x=1或﹣3(舍弃),∴BE=1,∴AE=,故选:B.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.解:3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.14.(4分)与﹣2最接近的自然数是2.解:∵3.5<<4,∴1.5<﹣2<2,∴与﹣2最接近的自然数是2.故答案为:2.15.(4分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):②④①③.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.解:②收集最受学生欢迎菜品的数据;④整理所收集的数据;①绘制扇形图;③利用扇形图分析出最受学生欢迎的菜品;故答案为:②④①③.16.(4分)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6米(结果保留根号).解:过点D作DE⊥AB于E,过点C作CF⊥AB于F.∵CD∥AB,DE⊥AB,CF⊥AB,∴DE=CF,在Rt△CFB中,CF=BC•sin45°=3(米),∴DE=CF=3(米),在Rt△ADE中,∵∠A=30°,∠AED=90°,∴AD=2DE=6(米),故答案为6.17.(4分)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.解:连接OG,∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,∴AD=DF=4,BF=CF=2,∵矩形ABCD中,∠DCF=90°,∴∠FDC=30°,∴∠DFC=60°,∵⊙O与CD相切于点G,∴OG⊥CD,∵BC⊥CD,∴OG∥BC,∴△DOG∽△DFC,∴,设OG=OF=x,则,解得:x=,即⊙O的半径是.连接OQ,作OH⊥FQ,∵∠DFC=60°,OF=OQ,∴△OFQ为等边△;同理△OGQ为等边△;∴∠GOQ=∠FOQ=60°,OH=OQ=,S扇形OGQ=S扇形OQF,∴S阴影=(S矩形OGCH﹣S扇形OGQ﹣S△OQH)+(S扇形OQF﹣S△OFQ)=S矩形OGCH﹣S△OFQ=×﹣(××)=.故答案为:.18.(4分)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为60.解:设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=﹣x+b,∴当y=0时,x=b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=b,OD=b.∵在Rt△AOD中,tan∠ADO==,∴∠ADO=60°.∵直线y=﹣x+b与双曲线y=在第一象限交于点B、C两点,∴﹣x+b=,整理得,﹣x2+bx﹣k=0,由韦达定理得:x1x2=k,即EB•FC=k,∵=cos60°=,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•=4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=2﹣2,∴E1E2=4﹣4,即第二个三角形的周长为12﹣12,设D3(4+a,a),由题意(4+a)•a=4,解得a=2﹣2,即第三个三角形的周长为12﹣12,…,∴第四个三角形的周长为6﹣6,∴前25个等边三角形的周长之和12+12﹣12+12﹣12+12﹣12+…+12﹣12=12=60,故答案为4,60.三、解答题(共8个题,共78分)19.(8分)计算:|﹣2|﹣(+π)0+(﹣)﹣1.解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.20.(8分)先化简,再求值:•(+1),其中x是不等式组的整数解.解:•(+1)===,由不等式组,得﹣1≤x<1,∵x是不等式组的整数解,∴x=﹣1,0,∵当x=﹣1时,原分式无意义,∴x=0,当x=0时,原式==﹣.21.(8分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.22.(8分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是60人,m=30;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是.解:(1)12÷20%=60(人),×100%=30%,则m=30;故答案为:60,30;(2)C组的人数为60﹣18﹣12﹣9=21(人),补全条形统计图如图:(3)如果小张同学随机选择连续两天,画树状图如图:共有20个等可能的结果,其中连续两天,有一天是星期一的结果有2个,∴其中有一天是星期一的概率为=;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,画树状图如图:共有12个等可能的结果,其中有一天是星期三的结果有6个,∴其中有一天是星期三的概率为=;故答案为:,.23.(10分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?解:(1)由题意可得,y甲=0.9x,当0≤x≤100时,y乙=x,当x>100时,y乙=100+(x﹣100)×0.8=0.8x+20,由上可得,y乙=;(2)当0.9x<0.8x+20时,得x<200,即此时选择甲商场购物更省钱;当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;当0.9x>0.8x+200时,得x>200,即此时选择乙商场购物更省钱.24.(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.解:(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6;故答案为:6;②如图所示,满足|x+3|+|x﹣1|>4的x范围为x<﹣3或x>1;③当a为1或5时,代数式|x+a|+|x﹣3|的最小值是2.25.(12分)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且P A=PC =AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:=;(2)若tan∠ABC=2,证明:P A是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.【解答】(1)证明:连接OC.∵PC=P A,OC=OA,∴OP垂直平分线段AC,∴=.(2)证明:设BC=a,∵AB是直径,∴∠ACB=90°,∵tan∠ABC==2,∴AC=2a,AB===3a,∴OC=OA=OB=,CD=AD=a,∵P A=PC=AB,∴P A=PC=3a,∵∠PDC=90°,∴PD===4a,∵DC=DA,AO=OB,∴OD=BC=a,∴AD2=PD•OD,∴=,∵∠ADP=∠ADO=90°,∴△ADP∽△ODA,∴∠P AD=∠DOA,∵∠DOA+∠DAO=90°,∴∠P AD+∠DAO=90°,∴∠P AO=90°,∴OA⊥P A,∴P A是⊙O的切线.(3)解:如图,过点E作EJ⊥PF于J,BK⊥PF于K.∵BC=2,由(1)可知,P A=6,AB=6,∵∠P AB=90°,∴PB===6,∵P A2=PE•PB,∴PE==4,∵∠CDK=∠BKD=∠BCD=90°,∴四边形CDKB是矩形,∴CD=BK=2,BC=DK=2,∵PD=8,∴PK=10,∵EJ∥BK,∴==,∴==,∴EJ=,PJ=,∴DJ=PD﹣PJ=8﹣=,∴DE===.26.(14分)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;(2)由抛物线的表达式得,点M(﹣1,4),点N(0,3),则tan∠MAC==2,则设直线AM的表达式为:y=2x+b,将点A的坐标代入上式并解得:b=6,故直线AM的表达式为:y=2x+6,∵∠EFD=∠DHA=90°,∠EDF=∠ADH,∴∠MAC=∠DEF,则tan∠DEF=2,则cos∠DEF=,设点E(x,﹣x2﹣2x+3),则点D(x,2x+6),则FE=ED cos∠DEF=(﹣x2﹣2x+3﹣2x﹣6)×=(﹣x2﹣4x﹣3),∵﹣<0,故EF有最大值,此时x=﹣2,故点D(﹣2,2);①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,PD+PC=PD+PB=DB为最小,则BD==;②过点O作直线OK,使sin∠NOK=,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,DQ+OQ=DQ+QK=DK为最小值,则直线OK的表达式为:y=x,∵DK⊥OK,故设直线DK的表达式为:y=﹣x+b,将点D的坐标代入上式并解得:b=2﹣,则直线DK的表达式为:y=﹣x+2﹣,故点Q(0,2﹣),由直线KD的表达式知,QD与x负半轴的夹角(设为α)的正切值为,则cosα=,则DQ===,而OQ=(2﹣),则DQ+OQ为最小值=+(2﹣)=.。
2022年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下面四个数中,比0小的数是( )A. −2B. 1C. √3D. π2.如下字体的四个汉字中,是轴对称图形的是( )A. B. C. D.3.点P(−1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是( )A. 14B. 13C. 23D. 345.关于x的一元二次方程3x2−2x+m=0有两根,其中一根为x=1,则这两根之积为( )A. 13B. 23C. 1D. −136.李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照如图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为( )A. 88B. 90C. 91D. 927.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为( )D. 2A. 4B. 3C. 528.甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A. 前10分钟,甲比乙的速度慢B. 经过20分钟,甲、乙都走了1.6千米C. 甲的平均速度为0.08千米/分钟D. 经过30分钟,甲比乙走过的路程少9.如图,在Rt△ABC中,∠C=90°,BC=√5,点D是AC上一点,连结BD.若tan∠A=1,2 tan∠ABD=1,则CD的长为( )3A. 2√5B. 3C. √5D. 2BC.点P是10.如图,等腰△ABC的面积为2√3,AB=AC,BC=2.作AE//BC且AE=12线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为( )A. √3B. 3C. 2√3D. 4二、填空题(本大题共6小题,共18.0分)11.计算:|−6|=______.12.如图,已知直线a//b,∠BAC=90°,∠1=50°.则∠2=______.13.已知菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm.则菱形的面积为______cm2.14.已知m2+n2+10=6m−2n,则m−n=______.15.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.(k>0)上,且AD⊥x轴,CA 16.如图,平行四边形ABCD的顶点A在x轴上,点D在y=kx,则k=______.的延长线交y轴于点E.若S△ABE=32三、计算题(本大题共1小题,共9.0分) 17. sin30°+√9−2−1.四、解答题(本大题共9小题,共93.0分)18. 解不等式组{5x +1>3(x −1)①2x −1≤x +2②.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得______. 解不等式②,得______.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为______.19. 如图,B 是线段AC 的中点,AD//BE ,BD//CE.求证:△ABD≌△BCE .20. 先化简,再求值:(1−1x+1)÷xx 2+2x+1,其中x =√2.21. 第十四届四川省运动会定于2022年8月8日在乐山市举办.为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆.已知抢修车是摩托车速度的1.5倍,求摩托车的速度.22.为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.趣味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;②整理数据并绘制统计图;③收集40名学生对四门课程的选择意向的相关数据;④结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图.假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.(x<0)的图象交于点A(−1,n),直23.如图,已知直线l:y=x+4与反比例函数y=kx线l′经过点A,且与l关于直线x=−1对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.24.如图,线段AC为⊙O的直径,点D、E在⊙O上,CD⏜=DE⏜,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,sin∠ACE=3,延长AC至点B,使BC=4.求证:BD是⊙O5的切线.25.华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图,在正方形ABCD中,CE⊥DF.求证:CE=DF.证明:设CE与DF交于点O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD.∴∠BCE+∠DCE=90°,∵CE⊥DF,∴∠COD=90°.∴∠CDF+∠DCE=90°.∴∠CDF=∠BCE,∴△CBE≌△DFC.∴CE=DF.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图1,在正方形ABCD 中,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG ⊥FH.试猜想EGFH 的值,并证明你的猜想. 【知识迁移】如图2,在矩形ABCD 中,AB =m ,BC =n ,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG ⊥FH.则EGFH =______. 【拓展应用】如图3,在四边形ABCD 中,∠DAB =90°,∠ABC =60°,AB =BC ,点E 、F 分别在线段AB 、AD 上,且CE ⊥BF.求CEBF 的值.26. 如图1,已知二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于点A(−1,0)、B(2,0),与y 轴交于点C ,且tan∠OAC =2. (1)求二次函数的解析式;(2)如图2,过点C 作CD//x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连结PB 、PC ,若S △PBC =S △BCD ,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连结OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQOQ 的值,并求PQOQ 的最大值.答案和解析1.【答案】A【解析】解:π>√3>1>0>−2,∴比0小的数是−2.故选:A.实数比较大小,正数大于负数,正数大于0,负数小于0,两个负数比较大小,绝对值越大这个负数越小,利用这些法则即可求解.本题主要考查了实数的大小的比较,主要利用了负数小于0.2.【答案】D【解析】解:选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】B【解析】解:∵P(−1,2),横坐标为−1,纵坐标为:2,∴P点在第二象限.故选:B.根据各象限内点的坐标符号直接判断的判断即可.本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.4.【答案】A【解析】解:∵一个布袋中放着6个黑球和18个红球,∴从布袋中任取1个球,取出黑球的概率是618+6=624=14,故选:A.根据题意,可知存在6+18=24种可能性,其中抽到黑球的有6种可能性,从而可以求出从布袋中任取1个球,取出黑球的概率.本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.5.【答案】D【解析】解:∵方程的其中一个根是1,∴3−2+m=0,解得m=−1,∵两根的积为m3,∴两根的积为−13,故选:D.直接把x=1代入一元二次方程即可求出m的值,根据根与系数的关系即可求得.本题考查了一元二次方程的根已经根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1⋅x2=ca.6.【答案】C【解析】解:李老师的综合成绩为:90×30%+92×60%+88×10%=91(分);故选:C.根据加权平均数的计算公式进行解答即可.本题考查了加权成绩的计算.加权成绩等于各项成绩乘以不同的权重的和.7.【答案】B【解析】解:在平行四边形ABCD中,S△ABC=12S平行四边形ABCD,∵DE⊥AB,BF⊥AC,∴12AC⋅BF=12×AB⋅DE,∵AB=6,AC=8,DE=4,∴8BF=6×4,解得BF=3,故选:B.根据平行四边形的性质可得S△ABC=12S平行四边形ABCD,结合三角形及平行四边形的面积公式计算可求解.本题主要考查平行四边形的性质,三角形的面积,掌握平行四边形的性质是解题的关键.8.【答案】D【解析】解:由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意;故选:D.观察函数图象,逐项判断即可.本题考查一次函数的应用,解题的关键是读懂题意,能正确识图,从图中获取有用的信息.9.【答案】C【解析】解:过D点作DE⊥AB于E,∵tan∠A=DEAE =12,tan∠ABD=DEBE=13,∴AE=2DE,BE=2DE,∴2DE+3DE=5DE=AB,在Rt△ABC中,tan∠A=12,BC=√5,∴BCAC =√5AC=12,解得AC=2√5,∴AB=√AC2+BC2=5,∴DE=1,∴AE=2,∴AD=√AE2+DE2=√12+22=√5,∴CD=AC−AD=√5,故选:C.过D点作DE⊥AB于E,由锐角三角函数的定义可得5DE=AB,再解直角三角形可求得AC的长,利用勾股定理可求解AB的长,进而求解AD的长.本题主要考查解直角三角形,勾股定理,构造适当的直角三角形是解题的关键.10.【答案】B【解析】解:如图,过点A作AH⊥BC于点H.当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,CF″,点M的运动轨迹是△ECF″的中位线,M′M″=12∵AB=AC,AH⊥BC,∴BH=CH,BC,∵AE//BC,AE=12∴AE=CH,∴四边形AHCE是平行四边形,∵∠AHC=90°,∴四边形AHCE是矩形,∴EC⊥BF″,AH=EC,∵BC=2,S△ABC=2√3,×2×AH=2√3,∴12∴AH=EC2√3,∵∠BFF″=∠ECB=∠ECF″,∴∠BEC +∠CEF″=90°,∠CEF″+∠F″=90°,∴∠BEC =∠F″,∴△ECB∽△F″CE ,∴EC 2=CB ⋅CF″,∴CF″=(2√3)22=6,∴M′M″=3故选:B .如图,过点A 作AH ⊥BC 于点H.当点P 与A 重合时,点F 与C 重合,当点P 与B 重合时,点F 的对应点为F″,点M 的运动轨迹是△ECF″的中位线,M′M″=12CF″,利用相似三角形的性质求出CF″可得结论.本题考查轨迹,等腰三角形的性质,相似三角形的判定和性质,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.【答案】6【解析】解:−6<0,则|−6|=−(−6)=6,故答案为6.根据绝对值的化简,由−6<0,可得|−6|=−(−6)=6,即得答案.本题考查绝对值的化简求值,即|a|={a(a ≥0)−a(a <0).12.【答案】40°【解析】解:在Rt △ABC 中,∠BAC =90°,∠1=50°,则∠ACB =90°−50°=40°,∵a//b ,∴∠2=∠ACB =40°,故答案为:40°.根据直角三角形的两锐角互余求出∠ACB ,再根据平行线的性质解答即可.本题考查的是平行线的性质、直角三角形的性质,掌握两直线平行、同位角相等是解题的关键.13.【答案】24【解析】解:∵菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm,=24(cm2),∴菱形的面积是8×62故答案为:24.根据菱形的面积=对角线乘积的一半,可以计算出该菱形的面积.本题考查菱形的性质,解答本题的关键是明确菱形的面积=对角线乘积的一半.14.【答案】4【解析】解:∵m2+n2+10=6m−2n,∴m2−6m+9+n2+2n+1=0,即(m−3)2+(n+1)2=0,∴m=3,n=−1,∴m−n=4,故答案为:4.根据完全平方公式得出m和n的值即可得出结论.本题主要考查数字的变化规律,根据完全平方公式得出m和n的值是解题的关键.15.【答案】10【解析】解:设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,依题意得:(3x+5x+5x)×2=26,解得:x=2,∴5x=5×2=10,即正方形d的边长为10.故答案为:10.设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,利用矩形的周长计算公式,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入5x中即可求出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.【答案】3【解析】解:设BC与x轴交于点E,连接DE、OD,∵四边形ABCD为平行四边形,∴AD//BC,∴S△ODE=S△EBC,S△ADE=S△ABC,∴S△OAD=S△ABE=32,∴k=3,故答案为:3.连接DE、OD,根据平行四边形的性质得到AD//BC,根据三角形的面积公式得到S△ODE= S△EBC,S△ADE=S△ABC,进而求出S△OAD,根据反比例函数系数k的几何意义解答即可.本题考查的是反比例函数系数k的几何意义、平行四边形的性质、三角形的面积计算,掌握三角形的面积公式是解题的关键.17.【答案】解:原式=12+3−12=3.【解析】分别利用特殊角的三角函数值,算术平方根的定义及负整数指数的定义运算,然后合并即可求解.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式、特殊角的三角函数值等知识点的运算.18.【答案】x>−2x≤3−2<x≤3【解析】解:解不等式①,得x>−2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为−2<x≤3,故答案为:x>−2,x≤3,−2<x≤3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】证明:∵点B 为线段AC 的中点,∴AB =BC ,∵AD//BE ,∴∠A =∠EBC ,∵BD//CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,{∠A =∠EBC AB =BC ∠DBA =∠C,∴△ABD≌△BCE.(ASA).【解析】根据ASA 判定定理直接判定两个三角形全等.本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.20.【答案】解:(1−1x+1)÷x x 2+2x+1=x+1−1x+1⋅(x+1)2x =x x+1⋅(x+1)2x=x +1,当x =√2时,原式=√2+1.【解析】先算括号内的减法,再算括号外的除法即可化简题目中的式子,然后将x 的值代入化简后的式子计算即可.本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则.21.【答案】解:设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时, 依题意,得:20x −201.5x =1060,解得:x =10,经检验,x =10是原方程的解,且符合题意.答:摩托车的速度为10千米/小时.【解析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时,根据时间=路程÷速度结合骑摩托车的维修工人比乘抢修车的工人多用10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】①③②④ D【解析】解:(1)根据数据的收集与整理的具体步骤可判断顺序为:①③②④, 故答案为:①③②④;(2))根据抽样调查的特点易判断出:D ,故答案为:D ;(3)由条形统计图可估计,八年级学生中选择趣味数学的人数为: 840×1000=200(人),200÷40=5,答:至少应该开设5个班.(1)根据数据的收集与整理的具体步骤解答即可;(2)根据抽样调查的特点解答即可;(3)根据样本估计总体思想解答即可.本题考查条形统计图,用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【答案】解:∵点A(−1,n)在直线l :y =x +4上,∴n =−1+4=3,∴A(−1,3),∵点A 在反比例函数y =kx (x <0)的图象上,∴k =−3,∴反比例函数的解析式为y =3x ;(2)易知直线l :y =x +4与x 、y 轴的交点分别为B(−4,0),C(0,4),∵直线l′经过点A ,且与l 关于直线x =−1对称,∴直线l′与x 轴的交点为E(2,0),设l′:y =kx +b ,则{3=−k +b 0=2k +b, 解得:{k =−1b =2,∴l′:y=−x+2,∴l′与y轴的交点为D(0,2),∴阴影部分的面积=△BOC的面积−△ACD的面积=12×4×4−12×2×1=7.【解析】(1)将A点坐标代入直线l解析式,求出n的值,确定A点坐标,再代入反比例函数解析式即可;(2)通过已知条件求出直线l′解析式,用△BOC的面积−△ACD的面积解答即可.本题考查了待定系数法求反比例函数的解析式,一次函数的性质,正确地求得反比例函数的解析式是解题的关键.24.【答案】证明:(1)连接AD,∵线段AC为⊙O的直径,∴∠ADC=90°,∴∠ADF+∠CDG=90°,∵DF⊥BC,∴∠DFA=∠DAF+∠ADF=90°,∴∠CDG=∠DAF,∵CD⏜=DE⏜,∴∠DAF=∠DCG,∴∠CDG=∠DCG,∴CG=DG;(2)连接OD,交CE于H,∵CD⏜=DE⏜,∴OD⊥EC,∵sin∠ACE=OHOC =35,∵BC=4,OD=OC=6,∴ODOB =66+4=35,∴OHOC =ODOB,∵∠COH=∠BOD,∴△COH∽△BOD,∴∠BDO=∠CHO=90°,∴OD⊥BD,∵OD是⊙O的半径,∴BD是⊙O的切线.【解析】(1)证明∠CDG=∠DCG可得结论;(2)证明△COH∽△BOD可得∠BDO=90°,从而得结论.本题考查了等腰三角形的判定,平行线的判定和性质,切线的判定,垂径定理,直角三角形的性质,三角函数的定义等知识,第二问证明△COH∽△BOD是解本题的关键,难度中等.25.【答案】mn【解析】解:(1)结论:EGFH=1.理由:如图1中,过点A作AM//HF交BC于点M,作AN//EG交CD的延长线于点N,∴AM=HF,AN=BC,在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN,∴△ABM≌△ADN(ASA),∴AM=AN,即EG=FH,∴EGFH=1;(2)如图2中,过点A作AM//HF交BC于点M,作AN//EC交CD的延长线于点N,∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.∴AMAN =ABAD,∵AB=m,BC=AD=n,∴EGFH =mn.故答案为:mn;(3)如图3中,过点C作CM⊥AB于点M.设CE交BF于点O.∵CM⊥AB,∴∠CME=90°,∴∠1+∠2=90°,∵CE⊥BF,∴∠BOE=90°,∴∠2+∠3=90°,∴∠1=∠3,∴△CME∽△BAF,∴CEBF =CMAB,∵AB=BC,∠ABC=60°,∴CEBF =CMBC=sin60°=√32.(1)过点A作AM//HF交BC于点M,作AN//EG交CD的延长线于点N,利用正方形ABCD,AB=AD,∠ABM=∠BAD=∠ADN=90°求证△ABM≌△ADN即可;(2)过点A作AM//HF交BC于点M,作AN//EC交CD的延长线于点N,利用在长方形ABCD 中,BC=AD,∠ABM=∠BAD=∠ADN=90°求证△ABM∽△ADN.再根据其对应边成比例,将已知数值代入即可;(3)如图3中,过点C作CM⊥AB于点M.设CE交BF于点O.证明△CME∽△BAF,推出CEBF=CMAB,可得结论.本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26.【答案】解:(1)∵A(−1,0),∴OA=1,∵∠AOC=90°,∴tan∠OAC=OCOA=2,∴OC=2OA=2,∴点C(0,−3),设二次函数的解析式为:y=a(x+1)⋅(x−2),∴a⋅1×(−2)=−2,∴a=1,∴y=(x+1)⋅(x−2)=x2−x−2;(2)设点P(a,a2−a−2),如图1,当点P在第三象限时,作PE//AB交BC于E,∵B(2,0),C(0,−2),∴直线BC的解析式为:y=x−2,∴当y=a2−a−2时,x=y+2=a2−a,∴PE=a2−a−a=a2−2a,∴S△PBC=12PE⋅OC,∵抛物线的对称轴为直线y=12,CD//x轴,C(0,−2),∴点D(1,−2),∴CD=1,∴S△BCD=12CD⋅OC,∴12PE⋅OC=12CD⋅OC,∴a2−2a=1,∴a1=1+√2(舍去),a2=1−√2,当x=1−√2时,y=a2−a−2=a−1=−√2,∴P(1−√2,−√2),如图2,当点P在第一象限时,作PE⊥x轴于E,交直线BC于F,∴F(a,a−2)∴PF=(a2−a−2)−(a−2)=a2−2a,∴S △PBC =12PF ⋅OB =12CD ⋅OC ,∴a 2−2a =1,∴a 1=1+√2,a 2=1−√2(舍去),当a =1+√2时,y =a 2−a −2=a 2−2a +a −2=1+1+√2−2=√2, ∴P(1+√2,√2),综上所述:P(1+√2,√2)或(1−√2,−√2);(3)如图3,作PN ⊥AB 于N ,交BC 于M ,∵P(t,t 2−t −2),M(t,t −2),∴PM =(t −2)−(t 2−t −2)=−t 2+2t ,∵PN//OC ,∴△PQM∽△OQC ,∴PQOQ =PMOC =−t 2+2t2=−12(t −1)2+12, ∴当t =1时,(PQ OQ )最大=12.【解析】(1)在Rt △AOC 中求出OC 的长,从而确定点C 坐标,将二次函数设为交点式,将点C 坐标代入,进一步求得结果;(2)可分为点P 在第三象限和第一象限两种情形.当点P 在第三象限时,设点P(a,a 2−a −2),可表示出△BCD 的面积,当点P 在第三象限时,作PE//AB 交BC 于E ,先求出直线BC ,从而得出E 点坐标,从而表示出△PBC 的面积,根据S △PBC =S △BCD ,列出方程,进一步求得结果,当P 在第一象限,同样的方法求得结果;(3)作PN ⊥AB 于N ,交BC 于M ,根据P(t,t 2−t −2),M(t,t −2),表示出PM 的长,根据PN//OC ,得出△PQM∽△OQC ,从而得出PQ OQ =PM OC ,从而得出PQOQ 的函数表达式,进一步求得结果.本题考查了二次函数及其图象性质,求一次函数解析式,相似三角形的判定和性质,锐角三角函数定义等知识,解决问题的关键是作辅助线,构造相似三角形.。
四川省渠县崇德实验学校2020年中考九年级数学:四边形综合专题复习题1、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.2、如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.3、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.4、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.5、如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)6、如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.7、如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.8、在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.9、如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD 的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.10、如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.(1)判断四边形ABCD的形状并加以证明;(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);②如果∠C=60°,那么为何值时,B′P⊥AB.11、某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..12、在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.13、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.14、如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD 关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.15、已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.16、如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)___________________________写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.17、如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.18、如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC 重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.19、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).20、如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.参考答案:1、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,[来源:学#科#网] ∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.2、【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,[来源:学#科#网Z#X#X#K]∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.3、【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.4、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.5、【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.6、【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.7、【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.8、【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.9、【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.10、【解答】解:(1)四边形ABCD是平行四边形证明:∵在四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)①作图如下:②当AB=AD时,平行四边形ABCD是菱形,由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,∴B′D=B′E,设AP=a,BP=b,则直角三角形APE中,PE=a,且B′P=b,BC=B′C′=CD=a+b,∴B′E=b﹣a=B′D,∴C′D=a+b﹣(b﹣a)=a+a,∴直角三角形C′QD中,C′Q=a=CQ,DQ=C′Q=a,∵CD=DQ+CQ=a+b,∴a+a=a+b,整理得(+1)a=b,∴==,即=.11、【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.12、【解答】(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴.(2)解:作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得: =3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴,∴EG•EF=DE•EC,∵CD∥AB,∴=,∴,∴EF=EG,∴EG•EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a,∴==3.13、【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.14、【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.15、【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作G H⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.16、【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.17、【解答】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.18、【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.19、【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.20、【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.[来源:学。
2024年四川省凉山州中考数学试卷一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
1.下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有( )A.1个B.2个C.3个D.4个2.如图,由3个相同的小正方体搭成的几何体的俯视图是( )A.B.C.D.3.下列运算正确的是( )A.2ab+3ab=5ab B.(ab2)3=a3b5C.a8÷a2=a4D.a2•a3=a64.一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB时,∠EDB 的度数为( )A.10°B.15°C.30°D.45°5.点P(a,﹣3)关于原点对称的点是P′(2,b),则a+b的值是( )A.1B.﹣1C.﹣5D.56.如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=( )A.25cm B.45cm C.50cm D.55cm7.匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h随时间t变化的大致图象是( )A.B.C.D.8.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的8位女演员身高的折线统计图如下.则甲、乙两团女演员身高的方差s甲2、s乙2大小关系正确的是( )A.s甲2>s乙2B.s甲2<s乙2C.s甲2=s乙2D.无法确定9.若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是x=0,则a的值为( )A.2B.﹣2C.2或﹣2D.10.数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为( )A.50cm B.35cm C.25cm D.20cm11.如图,一块面积为60cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O 的照射下形成的投影是△A1B1C1,若OB:BB1=2:3,则△A1B1C1的面积是( )A.90cm2B.135cm2C.150cm2D.375cm212.抛物线y=(x﹣1)2+c经过(﹣2,y1),(0,y2),(,y3)三点,则y1,y2,y3的大小关系正确的是( )A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y1>y3>y2二、填空题(共5小题,每小题4分,共20分)13.已知a2﹣b2=12,且a﹣b=﹣2,则a+b= .14.方程=的解是 .15.如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是 .16.如图,四边形ABCD各边中点分别是E、F、G、H,若对角线AC=24,BD=18,则四边形EFGH的周长是 .17.如图,一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,交x轴于点C,则△AOC 的面积为 .三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.(5分)计算:+|2﹣|+2﹣1+cos30°﹣(﹣1)0.19.(5分)求不等式组﹣3<4x﹣7≤9的整数解.20.(7分)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是 人,估计全校1500名学生中最喜欢乒乓球项目的约有 人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.21.(7分)为建设全城旅游西昌,加快旅游产业发展.2022年9月29日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为1845.4平方米,塔顶金碧辉煌,为“火珠垂莲”窣(sū)堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级(2)班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上A点处,测得塔顶C的仰角为30°,眼睛B距离地面1.8m,向塔前行67m,到达点D处,测得塔顶C的仰角为60°,求塔高CF.(参考数据:≈1.414,≈1.732,结果精确到0.01m)22.(8分)如图,正比例函数y1=x与反比例函数y2=(x>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)把直线y1=x向上平移3个单位长度与y2=(x>0)的图象交于点B,连接AB、OB,求△AOB的面积.四、填空题(共2小题,每小题5分,共10分)23.(5分)已知y2﹣x=0,x2﹣3y2+x﹣3=0,则x的值为 .24.(5分)如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为 .五、解答题(共4小题,共40分)25.(8分)阅读下面材料,并解决相关问题:如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n行有n个点…,容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为 ,前15行的点数之和为 ,那么,前n行的点数之和为 .(2)体验:三角点阵中前n行的点数之和 (填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,…,第n排2n盆的规律摆放而成,则一共能摆放多少排?26.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;(2)求2EN+BN的最小值.27.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD平分∠BAC交⊙O于点D,过点D 的直线DE⊥AC,交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)连接EO并延长,分别交⊙O于M、N两点,交AD于点G,若⊙O的半径为2,∠F =30°,求GM•GN的值.28.(12分)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
方程与不等式——不等式与不等式组1 一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.不等式组的解集在数轴上可表示为()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x _________ y(用“>”或“<”填空).11.写出一个解为x≥1的一元一次不等式_________ .12.不等式x+3<﹣1的解集是_________ .13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是_________ .14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为_________ cm.15.不等式组的解集是_________ .16.不等式组的解集是_________ .三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.18.解不等式≥,并把它的解集在数轴上表示出来.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?方程与不等式——不等式与不等式组1参考答案与试题解析一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>考点:不等式的性质.分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.解答:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解考点:不等式的解集.分析:根据不等式组解集的四种情况,进行选择即可.解答:解:根据同大取较大的原则,不等式组的解集为x>2,故选:A.点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.解答:解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.点评:考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.不等式组的解集在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:D.点评:本题考查了在数轴表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:B.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:数形结合.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选:A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得﹣3<x≤4,故选:D.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.点评:本题考查的是在数轴上表示不等式的解集,熟知““小于向左,大于向右”是解答此题的关键.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3考点:在数轴上表示不等式的解集.分析:根据不等式组的解集是大于大的,可得答案.解答:解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.点评:本题考查了不等式组的解集,不等式组的解集是大于大的.二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x <y(用“>”或“<”填空).考点:不等式的定义.分析:由图知1号同学比2号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.11.写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专题:开放型.分析:根据不等式的解集,可得不等式.解答:解:解为x≥1的一元一次不等式有:x+1≥2,x﹣1≥0等.故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.不等式x+3<﹣1的解集是x<﹣4 .考点:解一元一次不等式.分析:移项、合并同类项即可求解.解答:解:移项,得:x<﹣1﹣3,合并同类项,得:x<﹣4.故答案是:x<﹣4.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是1≤k<3 .考点:解一元一次不等式.专题:计算题.分析:先把2x﹣3y=4变形得到y=(2x﹣4),由y<2得到(2x﹣4)<2,解得x <5,所以x的取值范围为﹣1≤x<5,再用x变形k得到k=x+,然后利用一次函数的性质确定k的范围.解答:解:∵2x﹣3y=4,∴y=(2x﹣4),∵y<2,∴(2x﹣4)<2,解得x<5,又∵x≥﹣1,∴﹣1≤x<5,∵k=x﹣(2x﹣4)=x+,当x=﹣1时,k=×(﹣1)+=1;当x=5时,k=×5+=3,∴1≤k<3.故答案为:1≤k<3.点评:本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了代数式的变形和一次函数的性质.14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为78 cm.考点:一元一次不等式的应用.专题:应用题.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解答:解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.15.不等式组的解集是1<x<2 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x>1,解不等式②得,x<2,所以,不等式组的解集是1<x<2.故答案为:1<x<2.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:先去分母,得3(2x﹣3)<x+1去括号,得6x﹣9<x+1移项,得5x<10系数化为1,得x<2∴原不等式的解集为:x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.18.解不等式≥,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母和去括号得到6﹣3x≥4﹣4x,然后移项后合并得到x≥﹣2,再利用数轴表示解集.解答:解:去分母得3(2﹣x)≥4(1﹣x),去括号得6﹣3x≥4﹣4x,移项得4x﹣3x≥4﹣6,合并得x≥﹣2,在数轴上表示为:.点评:本题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.也考查了在数轴上表示不等式的解集.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去括号,移项,合并同类项,系数化成1即可.解答:解:2(x﹣1)+5<3x,2x﹣2+5﹣3x<0,﹣x<﹣3,x>3,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?考点:一元一次不等式的应用;一元一次方程的应用.专题:几何图形问题.分析:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,根据等量关系:总销售额为16000元列出方程求解即可;(2)题目中的不等关系是:6月份该青椒的总销售额不低于18360元列出不等式求解即可.解答:解:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,则6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(2)依题意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.点评:考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.解答:解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.点评:此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)利用一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典,得出等式求出即可;(2)利用总费用不超过900元的钱数,进而得出不等关系求出即可.解答:解:(1)设每个书包和每本词典的价格各是x元,y元,根据题意得出:,解得:.答:每个书包的价格是28元,每本词典的价格是20元;(2)设购买z个书包,则购买词典(40﹣z)本,根据题意得出:28z+20(40﹣z)≤900,解得:z≤12.5.故最多可以购买12个书包.点评:此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?考点:一元一次不等式的应用.专题:优选方案问题.分析:(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.解答:解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.点评:本题考查了一元一次不等式的知识,注意将实际问题转化为数学模型,利用不等式的知识求解.24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?考点:一元一次不等式的应用;一元一次方程的应用.专题:销售问题.分析:(1)设A品牌文具盒的进价为x元/个,根据晨光文具店用进货款1620元,可得出方程,解出即可;(2)设B品牌文具盒的销售单价为y元,根据全部售完后利润不低于500元,可得出不等式,解出即可.解答:解:(1)设A品牌文具盒的进价为x元/个,依题意得:40x+60(x﹣3)=1620,解得:x=18,x﹣3=15.答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个.(2)设B品牌文具盒的销售单价为y元,依题意得:(23﹣18)×40+60(y﹣15)≥500,解得:y≥20.答:B品牌文具盒的销售单价最少为20元.点评:本题考查了一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.解答:解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.点评:本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
1 / 12四川省中考数学试题卷注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 考生使用答题卡作答.3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.6.保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1. 8的立方根是( )(A )22 (B )±22 (C )2 (D )±22. 未来3到5年时间里,双流县将全力推进“四改六治理”各项工作. 预计将完成130万平方米老住宅小区综合整治工作.130万这个数用科学记数法可表示为( ) (A )1.3×105 (B )1.3×106 (C )13×105 (D )13×1063. 如图所示的几何体是由4个相同的小正方体组成.其俯视图为( )4. 下列运算正确的是( )(A )33=÷a a (B )3422)(b a b a =(C )22))((a b b a b a -=--- (D )222)(b a b a -=- 5.函数21-=x y 中自变量x 的取值范围是( ) (A )2>x (B )2<x (C )2-≠x (D )2≠x6.如图,在△ABC 中,点E ,F 分别在AB ,BC 上,且EF ∥AB .已知∠B =55°,∠AFE(A )(B )(C )(D )ABCE F2 / 12=50°,则∠A 的度数是( ) (A )75° (B )60° (C )55° (D )40°7.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知∠AOB =90°,则点B (A )25(B )4 (C )5 (D )28.如图,直线b ax y +=的图像大致如左图,则二次函数bx ax y +=2的图像大致为( )9. 已知关于x 的一元二次方程032=+-m x x 的一个实数根是23,则这个方程的另一个实数根为( )(A )-3 (B )3 (C )-6 (D )610.如图,AB 与⊙O 相切于点B ,OA =2,∠A =30°,经过点B 的弦BC ∥OA ,则劣弧BC ︵的弧长为( )(A )1 6 π(B )1 3 π(C )1 2 π(D )2 3π第Ⅱ卷(非选择题,共70分)AO C BOyxb ax y +O xy (A )O xy (B )O x y (C )O xy(D )xyABO3 / 12二、填空题:(每小题4分,共l6分)11. -3的相反数为_______.12.某中学为了解学生在周末进行课外阅读的情况,随机调查了若干名学生周末课外阅读的时间,统计数据如下表所示:阅读时间(单位:小时) 0 1 2 3 4 人数(单位:人)21519186则这些学生周末课外阅读时间的众数是_______小时,中位数是_______小时. 13.在一次函数23+=x y 中,当函数值3>y 时,自变量x 的取值范围是_______. 14. 如图,△ABC 中,AB =4,AC =3,AD 是∠BAC 平分线, AE 是BC 边上的中线,过点C 作CG ⊥AD 于F ,交AB 于G , 连接EF ,则线段EF 的长为_______.三、解答题:(本大题共6个小题,共54分)15. (本小题满分12分,每题6分)(1)计算:32)21()261(30tan 32-+-+---; (2)解方程组:⎩⎨⎧=+=-1243y x y x .16.(本小题满分6分)先化简,再求值:144)131(2+++÷+--x x x x x ,其中31=x .17.(本小题满分8分)如图,某校数学学习小组在点C 处测得一棵倾斜的大树AB 顶部点A 的仰角为45°.已知大树与地面的夹角是60°,B ,C 两点间距离为18米.请你求出大树的高AB 的值(结果保留根号).18.(本小题满分8分)某校为了庆祝“五·四” 青年节,调查了本校所有学生赞同采用哪种活动方式进行AG BE DF C AB C 45° 60°4 / 12庆祝,调查的结果如图所示.根据图中给出的信息,解答下列问题:(1)这所学校赞成举办演讲比赛的学生有 人.(2)小李与小菲都是该校的学生,请你利用树状图或列表法求出小李与小菲观点一致的概率为多少?19. (本小题满分10分)如图,已知一次函数y =kx +b 的图象交反比例函数y =4-2mx(x >0)图象于点A ,B ,交x 轴于点C .(1)求的m 的取值范围; (2)若点A 的坐标是(2,-4),且BCAB=13,求m 的值和一次函数的表达式.20.(本小题满分10分)如图,正方形ABCD 的边长是2,M 是AD 的中点,E 是AB 边上的一动点.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG ,FG .(1)求证:ME =MF ;(2)当AE =a (a 为常数)时,求△EGF 的面积;(3)若点E 从点A 出发一直运动到点B ,P 是MG 的中点.在此运动过程中,请求出点P 运动路线的长.A B C 人数(单位:人)160A :文化演出B :运动会C :演讲比赛 C AB40% 35% AOx yBCFD ABM P E5 / 12B 卷(共50分)一、填空题:(每小题4分,共20分)21.若关于x 的不等式1)1(->-a x a 的解集是1-<x ,则实数a 的取值范围是_______.22.口袋中有3个相同的小球,它们分别写有数字2,3,4,从口袋中随机的取出两个球,用所得的两个数a 和b 构成一个数对(a ,b ),则点(a ,b )在函数y =x +1图像上的概率等于_______.23.如图,弹性小球从点P (0,4)出发,沿所示方向 运动,每当小球碰到矩形OABC 的边时反弹,反弹时反 射角等于入射角,当小球第1次碰到矩形的边时的点为 P 1,第2次碰到矩形的边时的点为P 2,…,第n 次碰到 矩形的边时的点为P n ,则点P 3的坐标是 ;点P 202X 的坐标是_____.24.已知有一张矩形纸片ABCD 的长为4,宽为3,点P 是BC 边上的动点(与点B ,C 不重合),现将△P AB 沿 P A 翻折,得到△P AF ,再在CD 边上选取适当的点E , 将△PCE 沿PE 翻折,得到△PME ,使得直线PF ,PM 重合.若点F 落在矩形纸片ABCD 的内部(如图),则 CE 的最大值是_______.25.如图,点P (a ,b )和点Q (c ,d )是反比例函数y =x1在第一象限内图象上的两个动点(a <b ,a ≠c ),且OP =OQ .P 1是点P 关于y 轴 的对称点,Q 1是点Q 关于x 轴的对称点,连接P 1Q 1分别交OP ,OQ 于点M ,N .若四边形PQNM 的面积为58,则点P 的坐标为_______.二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某数学兴趣小组想用一张边长为20cm 的正方形纸片ABCD (如图),制作一个无盖长方体盒子,设剪去的小正方形的边长AE =xcm .(1)若长方体的侧面积为128cm 2,求x 的值;(2)若在O 处有一圆点与纸片边界AB ,AD 的距离分别 是4cm 和6cm ,要将这个圆点留在制作成的长方体盒子的底面 上(含底面的边界,不考虑圆点的大小),求制作成的长方体盒 子侧面积S 的最大值.OQP xyM N P 1Q 1 P 2P 1xO yP A BC 1 1A BCDEBPFM6 / 1227.(本小题满分10分)如图,在⊙O 中,直径所在的直线AP 垂直于弦BC 于点P ,连接AC ,并以AC 为直角边作等腰Rt △ACD ,连接BD 分别交AP 和⊙O 于E ,F 两点,连接FC .(1)求证:∠ACF =∠ADF ;(2)若点A 到BD 的距离为m ,BF +CF =n ,求线段CD 的长;(3)请直接写出DEAP的值.28.(本小题满分12分)如图,直线y =x -3与x 轴,y 轴分别相交于B ,C 两点,经过B ,C 两点的抛物线y=ax2+bx +c 与x 轴的另一交点为A ,顶点为D ,且对称轴是直线x =1.(1)求抛物线的函数表达式;(2)连接CD ,BD ,求cos ∠DBC 的值;(3)点P 是线段BC 上的动点,过点P 作x 轴的垂线,交折线C -D -B 于点E ,将△BCD 沿直线PE 向右翻折.若翻折后的图形与△BCD 重叠部分的面积为S ,请求出S 的最大值.D(备用图)7 / 12数学参考答案及评分标准A 卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案CBDCDABCAB二、填空题11.3; 12. 2,2; 13.31>x ; 14.1 2三、解答题15.(1)解:原式=3241333-++-⨯……4分 =353-+=5 ……6分(2)解:⎩⎨⎧=+=-1243y x y x①+②得: 523=+x x解得: 1=x ……3分 将1=x 代入①,得 43=-y解得: 1-=y ……5分∴方程组的解为:⎩⎨⎧-==11y x ……6分16.解:原式2)2(1131)1)(1(++⨯⎥⎦⎤⎢⎣⎡+-++-=x x x x x x 22)2(1131++⋅+--=x x x x 2)2(11)2)(2(++⋅+-+=x x x x x22+-=x x ……4分 将31=x 代入,得75373523123122-=-=+-=+-x x ……6分 17. 解:过点A 作AD ⊥BC 于点D ,设CD =x ,则BD =18-x①②ABC 45°60° D8 / 12在Rt △ADC 中,∠ADC =90°,∠ACB =45° ∴AD =CD =x ……2分在Rt △ADB 中,∠ADB =90°,∠ABD =60°∴tan ∠ABD =ADBD= 3即x18-x=3,解得x =27-9 3 ……6分 ∴AB =ADsin ∠ABD=ADsin60°=27-93sin60°=18(3-1)所以,大树的高AB 为18(3-1)米. ……8分 18. 解:(1)100. ……2分 (2)列表如下小李小菲A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由上表可以看出,小李与小菲的意见共有9种结果,其中观点一致的有3种结果.所以,小李与小菲观点一致的概率是3193==P . ……8分 19. 解:(1)∵反比例函数y =4-2mx(x >0)的图象在第四象限 ∴4-2m <0,∴m >2 ……3分(2)∵点A (2,-4)在反比例函数y =4-2mx的图象上∴-4= 4-2m2,解得m =6 ……5分∴反比例函数为y =-8x过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N ∴∠BNC =∠AMC =90°又∵∠BCN =∠ACM ,∴△BCN ∽△ACM ∴BNAM=BCAC∵BCAB=1 3,∴BCAC = 1 4 ,即BNAM =1 4∵AM =4,∴BN =1 ∴点B 的纵坐标是-1∵点B 在反比例函数y =-8x的图象上,∴当y =-1时,x =8∴点B 的坐标是(8,-1)AOxyBC M N9 / 12∵一次函数y =kx +b 的图象过点A (2,-4)、B (8,-1)∴⎩⎪⎨⎪⎧2k +b =-48k +b =-1 解得⎩⎪⎨⎪⎧k =12b =-5∴一次函数的解析式是y =12x -5 ……10分20. 解:(1)在正方形ABCD 中,∠A =∠ADC =90°∴∠MDF =90°,∠A =∠MDF ∵M 是AD 的中点,∴AM =DM 又∵∠AME =∠DMF∴△AME ≌△DMF ,∴ME =MF ……3分 (2)当点E 与点A 重合时,a =0,S △EGF =21×2×2=2 当点E 与点A 不重合时,0<a≤2在Rt △AME 中,AE =a ,AM =1,ME =12+a∴EF =2ME =212+a过M 作MN ⊥BC ,垂足为N则∠MNG =90°,∠AMN =90°,MN =AB =AD =2AM ∴∠AME +∠EMN =90°∵∠EMG =90°,∴∠GMN +∠EMN =90° ∴∠AME =∠GMN ,∴Rt △AME ∽Rt △NMG ∴MEMG =AMNM =12,∴MG =2ME =212+a ∴S △EGF =21EFQ ·MG =21·212+a ·212+a =2a2+2 ∴S △EGF =2a2+2 ……7分 (3)过点P 作PP 1⊥MN 于点P 1,则点E 从点A 运动到点E 的过程中,点P 的运动路线为P 1P易证Rt △P 1MP ≌Rt △AME ∴PP 1=AE∴点E 从点A 运动到点B 的过程中, 点P 的运动路线P 1P =AB =2∴点P 运动路线的长为2 ……10分FDCA BMPEF DCABMP E P 110 / 12B 卷(共50分)一、填空题: 21.1>a ; 22. 31; 23.(12,4),(2,6); 24. 34; 25. (31,3) 二、解答题:26.解:解:(1)由题意可得:128)220(4=-x x解得21=x ,82=x所以,长方体的侧面积为128cm 2时,x 的值为2或8. ……3分 (2)由题意可得:x x S )220(4-=(40≤<x ) 整理得200)5(880822+--=+-=x x x S在这个S 关于x 的二次函数中,其函数图像的开口向下,对称轴为5=x 所以当5<x 时,S 的值随着x 的增大而增大 所以,当40≤<x 时,S 的最大值在4=x 时取得 所以,S 最大值=192200)54(82=+--所以,制作成的长方体盒子侧面积S 的最大值是192 cm 2. ……8分 27. 解:(1)证明:连接AB ,在⊙O 中,AP 是直径所在的直线,BC 是弦∵AP ⊥BC ,∴BP =CP ∴AB =AC又∵△ACD 是等腰直角三角形 ∴AC =AD ,∴AB =AD ∴∠AB D =∠ADB又∵∠ABD =∠ACF ,∴∠ACF =∠ADB ……3分 (2)过点A 作AM ⊥BD 于点M则AM =m ,∠AMB =90°,且BM =DM =12BD∵AC =AD ,∴∠ADC =∠ACD 又∵∠ACF =∠ADF∴∠FCD =∠FDC ,∴FC =FD又∵BF +CF =n ,∴ BF +DF =n ,即BD =n ∴DM =12 BD =n2∴在Rt △ADM 中,AD 2=AM 2+DM 2=m2+(n 2)2=m 2+n24PA BC EFDOM在Rt△ACD中,CD2=AC2+AD2=2AD2=2m2+n2 2∴CD=128m2+2n2……8分(3)DEAO的值是 2 ……10分28.解:(1)∵y=x-3,当y=0时,x=3;当x=0时,y=-3∴B(3,0),C(0,-3)∵抛物线的对称轴是直线x=1,∴A(-1,0)设抛物线的解析式为y=a(x+1)(x-3),把C(0,-3)代入得-3=a(0+1)(0-3),∴a=1∴抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3 ……3分(2)∵y=x2-2x-3=(x-1)2-4∴抛物线的顶点D的坐标为(1,-4)又∵B(3,0),C(0,-3)∴BC=32,CD=2,BD=2 5∴BC2+CD2=20=BD2∴△BCD是直角三角形,且∠BCD=90°,BD为斜边∴cos∠DBC=BCBD=3225=31010……7分(3)设点P的横坐标为x由B(3,0),D(1,-4)可得直线BD的解析式为y=2x-6 设翻折后点C的对应点为C1,连接CC1交PE于点F则CC1⊥PE,C1F=CF=x∵OB=OC=3,∴∠OCB=45°∵PE∥y轴,∴∠CPF=∠PCF=∠OCB=45°由(1)知∠BCD=90°,∴△PCE是等腰直角三角形∴PE=2x当点C1落在线段BD上时,点C1的纵坐标为-3把y=-3代入y=2x-6,得x=3 2∴C1F=CF=3 4①当0<x≤34时OA B xyCDx=1FPEC111 / 12S=12PE·C1F=12·2x·x=x2当x=34时,S有最大值916……9分②当34≤x≤1时,设C1P、C1E分别交BD于点G、H易证Rt△BPG∽Rt△BCD,∴BPPG=BCCD=322=3∴BP=3PG设C1G=t,∵BP=BC-PC=32-2x∴32-2x=3(2x-t),∴t=423x- 2∴S=S△PC1E-S△HC1K=x2-32(423x-2)2=-133x2+8x-3=-133(x-1213)2+913当x=1213时,S有最大值913……10分③当1≤x<3时,设C1P交BD于点K,作KH⊥PE于点H 则PH=KH,HE=2KH,∴PE=3KH易得直线BC的解析式为y=x-3∵点P的横坐标为x,∴P(x,x-3),E(x,2x-6)∴PE=x-3-(2x-6)=3-x,KH=13(3-x)∴S=S△PKE=12·(3-x)·13(3-x)=16(x-3)2当1≤x<3时,S随x的增大而减小,在x=1时,S有最大值23……11分∵916<23<913∴当x=1213时,S有最大值913……12分教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
四川省自贡市2021年中考[数学]考试真题与答案解析一、选择题共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的。
1. 自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A. B. C. D. 50.88710⨯38.8710⨯48.8710⨯388.710⨯答案:C2. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A. 百B. 党C. 年D. 喜答案:B3. 下列运算正确的是( )A. B. 22541a a -=()22346a b a b-=C. D. 933a a a ÷=222(2)4a b a b-=-答案:B4. 下列图形中,是轴对称图形且对称轴条数最多的是( )A.B.C.D.5. 如图,AC 是正五边形ABCDE 的对角线,的度数是()ACD ∠A. 72°B. 36°C. 74°D. 88°答案:A6. 学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A. 16,15 B. 11,15C. 8,8.5D. 8,9答案:C7. 已知,则代数式的值是( )23120x x --=2395x x -++A. 31 B. C. 41D. 31-41-答案:B8. 如图,,,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于()8,0A ()2,0C -点B ,则点B 的坐标为()A. B. C. D. ()0,5()5,0()6,0()0,69. 已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是()ΩA. 函数解析式为B. 蓄电池的电压是18V 13I R=C. 当时, D. 当时,10A I ≤ 3.6R ≥Ω6R =Ω4AI =答案:C10. 如图,AB 为⊙O 的直径,弦于点F ,于点E ,若,,CD AB ⊥OE AC ⊥3OE =5OB =则CD 的长度是()A. 9.6B.C.D. 19答案:A11. 如图,在正方形ABCD 中,,M 是AD 边上的一点,.将6AB =:1:2AM MD =沿BM 对折至,连接DN ,则DN 的长是( )BMA △BMN △A. B.C. 3D.5212. 如图,直线与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动22y x =-+点,过点P 作y 轴的平行线交直线于点Q ,绕点O 顺时针旋转3y x =-+OPQ △45°,边PQ 扫过区域(阴影部份)面积的最大值是()A. B. C. D. 23π12π1116π2132π答案:A二、填空题13. 请写出一个满足不等式的整数解_________.7x >答案:6(答案不唯一)14. 某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.答案:83分.15. 化简: _________.22824a a -=--答案:22a +16. 某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.答案:14354917. 如图,的顶点均在正方形网格格点上.只用不带刻度的直尺,作出ABC 的角平分线BD (不写作法,保留作图痕迹).ABC答案:.18. 当自变量时,函数(k 为常数)的最小值为,则满足条13x -≤≤y x k =-3k +件的k 的值为_________.答案:2-三、解答题19. .|7|(2-+-答案:1-20. 如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF .答案:证明见试题解析.21. 在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据,)tan 370.75︒≈tan 53 1.33︒≈ 1.73≈答案:办公楼的高度约为10.4米.22. 随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?答案:A 型机平均每小时运送70件,B 型机平均每小时运送50件23. 为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A (优秀)、B (良好)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.答案:(1)100,补全条形统计图见解析;(2)P(恰好回访到一男一女);35=(3)700人24. 函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数的图象,并探究其性质.284xy x =-+列表如下:x (4)-3-2-1-01234…y…852413a85b2-2413-85-…(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数的图象,判断下列关于该函数性质的命题:284xy x =-+①当时,函数图象关于直线对称;22x -≤≤y x =②时,函数有最小值,最小值为;2x =2-③时,函数y 的值随x 的增大而减小.11x -<<其中正确的是_________.(请写出所有正确命题的序号)(3)结合图象,请直接写出不等式的解集_________.284xx x >+答案:(1),,画出函数的图象见解析;(2)②;(3)2a =85b =-0x <25. 如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 延长线于点C ,于点E ,交⊙O 于点F ,连接AD ,FD .AE CD ⊥(1)求证:;DAE DAC ∠=∠(2)求证:;DF AC AD DC ⋅=⋅(3)若,EF 的长.1sin 4C ∠=AD =答案:(1)见解析;(2)见解析;(3)EF .6=26. 如图,抛物线(其中)与x 轴交于A 、B 两点,交y 轴于点(1)()y x x a =+-1a >C .(1)直接写出的度数和线段AB 的长(用a 表示);OCA ∠(2)若点D 为的外心,且与,求此抛物ABC BCD △ACO △:4线的解析式;(3)在(2)的前提下,试探究抛物线上是否存在一点P ,使得(1)()y x x a =+-若存在,求出点P 的坐标;若不存在,请说明理由.CAP DBA ∠=∠答案:(1)∠OCA =45°,AB = a +1;(2);(3)存在,P 1(,2y x x 2=--12-),P 2(1,-2).54-。