人教版七年级上册数学有理数知识点例题习题
- 格式:docx
- 大小:38.37 KB
- 文档页数:3
人教版七年级数学上册《有理数相关概念》专题训练-附参考答案目录正数和负数 ...................................................................................................................................... 1 有理数概念及其分类 ...................................................................................................................... 2 有理数的分类 .................................................................................................................................. 2 有理数的应用 .................................................................................................................................. 5 数轴的定义 ...................................................................................................................................... 8 数轴上表示有理数 .......................................................................................................................... 9 数轴上表示有理数(带字母) .................................................................................................... 10 数轴的性质 .................................................................................................................................... 12 数轴上的应用 ................................................................................................................................ 13 相反数的定义 ................................................................................................................................ 15 相反数的性质 ................................................................................................................................ 15 相反数与数轴 ................................................................................................................................ 16 绝对值的定义 ................................................................................................................................ 17 含字母的绝对值化简 .................................................................................................................... 18 非负性 ............................................................................................................................................ 20 绝对值求值 (21)【例1】在数1- 0 3.05- π- 2+ 12-中 负数有( )A .1个B .2个C .3个D .4个【解答】解:在数1- 0 3.05- π- 2+ 12-中 负数有1- 3.05- π- 12- 共4个.故选:D .【变式训练1】中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨 记为6+吨 那么仓库运出小麦8吨应记为( )吨. A .8+B .8-C .8±D .2-【解答】解:仓库运进小麦6吨 记为6+吨∴仓库运出小麦8吨应记为8-吨故选:B .【变式训练2】若收入3元记为3+ 则支出2元记为( )A .2-B .1-C .1D .2【解答】解:由题意知 收入3元记为3+ 则支出2元记为2- 故选:A .【变式训练3】冬残奥会举办最理想的温度是17C ︒-至10C ︒ 若10C ︒表示零上10C ︒ 那么17C ︒-表示()A .零上17C ︒B .零上27C ︒C .零下17C ︒D .零下17C ︒-【解答】解:17C ︒-表示零下17C ︒ 故选:C .【例2】下列各数中属于负整数的是( ) A .0B .3C .5-D . 1.2-【解答】解:A 0为整数 故选项不符合题意B 3为负正整数 故选项不符合题意C 5-为负整数 故选项符合题意D 1.2-为负分数 故选项不符合题意.故选:C .【变式训练1】在 3.5- 227 0.161161116⋯ 2π中 有理数有( )个. A .1B .2C .3D .4【解答】解:A 3.5-是负分数 故是有理数B227是正分数 故为有理数 C 0.161161116⋯是无限不循环小数 是无理数 故不是有理数D2π是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B . 【变式训练2】在122- 3.5+ 0 0.7- 5 13-中 负分数有( )A .1个B .2个C .3个D .4个【解答】解:在122- 3.5+ 0 0.7- 5 13-中负分数有0.7- 13- 共有2个故选:B .【变式训练3】下列说法中 正确的是( ) A .正有理数和负有理数统称有理数 B .正分数 零 负分数统称分数 C .零不是自然数 但它是有理数 D .一个有理数不是整数就是分数【解答】解:A .正有理数 零和负有理数统称有理数 故本选项不合题意B .正分数和负分数统称分数 故本选项不合题意C .零是自然数 也是有理数 故本选项不合题意D .一个有理数不是整数就是分数 说法正确 故本选项符合题意.故选:D .有理数的分类 有理数的分类:①按定义 有理数可分为:②按正 负 有理数可分为:【例3】将下列各数填在相应的圆圈里: 6+ 8- 75 0.4- 0 23%37 2006- 1.8- 34-.【解答】解:如图:【变式训练1】把下列各数分别填在相应的集合内:11- 4.8 73 2.7-163.141592634-73正分数集合:{ 4.8 163.141592673}⋯负分数集合:{}⋯非负整数集合:{}⋯非正整数集合:{}⋯.【解答】解:正分数集合:{4.8163.14159267}3⋯负分数集合:{2.7-3} 4-⋯非负整数集合:{730}⋯非正整数集合:{11-0}⋯.故答案为:4.8 163.1415926732.7 -3 4 -73 011-【变式训练2】把下列各数分别填入相应的集合里.224- 5 3.14 π3-0.15.(1)整数集合:{0 5 3-...}(2)分数集合:{...}(3)有理数集合:{...}(4)非负数集合:{...}.【解答】解:(1)整数集合:{0 5 3...}-(2)分数集合:22{4- 3.14 0.15...}(3)有理数集合:{0224- 5 3.14 3-0.15...}(4)非负数集合:{0 5 3.14 π0.15...}.故答案为:0 5 3-224- 3.14 0.150224- 5 3.14 3-0.150 5 3.14 π0.15.【变式训练3】把下列各数分别填入相应的集合:6+0 8-π 4.8-7-2270.658-.整数集合{6+0 8-7-}分数集合{}正有理数集合{}负有理数集合{}非负有理数集合{}自然数集合{}.【解答】解:整数集合{6+0 8-7}-分数集合{4.8-2270.65}8-正有理数集合{6+2270.6}负有理数集合{8- 4.8-7-5} 8 -非负有理数集合{6+0 2270.6}自然数集合{6+0}.故答案为:6+0 8-7- 4.8-2270.658-6+2270.6 8- 4.8-7-58-6+02270.6 6+有理数的应用【例4】某工艺厂计划一周生产工艺品2800个平均每天生产400个但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正减产记为负):(2)已知该厂实行每周计件工资制每生产一个工艺品可得70元若超额完成任务则超过部分每个另奖60元少生产一个扣100元.试求该工艺厂在这一周应付出的工资总额.【解答】解:(1)计划一周生产工艺品2800个=++--+-+-=(个)∴这周生产的数量2800(6261611158)2810(2)由(1)可知本周比计划多生产10个=⨯+⨯=(元).∴这一周应付出的工资2810706010197300【变式训练1】A水果超市最近新进了一批百香果每斤进价10元为了合理定价在第一周试行机动价格卖出时每斤以15元为标准超出15元的部分记为正不足15元的部分记为负超市记录第一周百香果的售价情况和售出情况:)第一周星期三超市售出的百香果单价为15元这天的利润是元.(2)第一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果每斤20元超出5斤的部分每斤降价4元方式二:每斤售价17元.林老师决定下周在A水果超市购买40斤百香果通过计算说明应选择上述两种促销方式中的哪种方式购买更省钱.【解答】解:(1)卖出时每斤以15元为标准表格中的数据表示超出15元的部分记为正不足15元的部分记为负∴星期三超市售出的百香果单价为15元这天的利润是10(1510)50⨯-=(元)故答案为:15(2)12023501013021555450225⨯-⨯+⨯-⨯+⨯+⨯-⨯=-(元)-⨯++++++=⨯=(元)(1510)(2035103015550)5165825-+=(元)(225)825600所以第一周超市出售此种百香果盈利600元(3)方式一:205(405)(204)660⨯+-⨯-=(元)方式二:4017680⨯=(元)660680<∴选择方式一购买更省钱.【变式训练2】体育课上某小组的8名男同学进行了100米测验达标成绩为15秒下表是这个小组8名男生的成绩记录(“+“表示成绩大于15秒).(2)这个小组男生的达标率为多少?(3)这个小组男生的平均成绩是多少秒?【解答】解:(1)15 1.213.8-=(秒).故这个小组男生的最好成绩是13.8秒(2)6100%75%8⨯=.故这个小组男生的达标率为75%(3)0.60.8 1.20.900.60.40.32-+--++--=-15(2)814.75+-÷=(秒).答:这个小组男生的平均成绩是14.75秒.【变式训练3】某粮仓原有大米148吨某一周该粮仓大米的进出情况如下表:(当天运进大米8吨记作8+吨:当天运出大米8吨记作8-吨.)运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元求这一周该粮仓需要支付的装卸总费用.【解答】解:(1)14832262316262198m-+--++-=解得10m=-.答:星期五该粮仓是运出大米运出大米10吨(2)|32|26|23||16||10|26|21|154-++-+-+-++-=154152310⨯=(元).答:这一周该粮仓需要支付的装卸总费用为2310元.【例5】如图是一些同学在作业中所画的数轴其中画图正确的是() A.B.C.D.【解答】解:A刻度不均匀故错误B正确C数据顺序不对故错误D没有正方向故错误.故选:B.【变式训练1】在下列图中正确画出的数轴是()A.B.C.D.【解答】A单位长度不一致故该选项不符合题意B有原点正方向单位长度故该选项符合题意C没有原点故该选项不符合题意D没有正方向故该选项不符合题意.故选:B.【变式训练2】如图所示下列数轴的画法正确的是()A.B.C.D.【解答】解:A单位长度不一致故此选项不符合题意B缺少原点故此选项不符合题意C规定了原点单位长度正方向的直线叫做数轴故此选项符合题意D缺少正方向故此选项不符合题意故选:C.【变式训练3】下列各图是四位同学所画的数轴其中正确的是() A.B.C.D.【解答】解:A选项中数轴缺少原点A∴选项不合题意B选项单位长度不一致B∴选项正确C选项中负方向1-和2-标错了C∴选项不合题意D选项中符合数轴的三要素D∴选项不合题意.故选:D.【例6】如图数轴上一个点被叶子盖住了这个点表示的数可能是() A.2.3B. 1.3-C.3.7D.1.3【解答】解:叶子盖住的点位于2和3之间四个选项中的数只有2.3这个适合这个位置故选:A.【变式训练1】如图在数轴上有M N两点则两点表示的数字之和不可能()A .2B .4-C . 3.45-D .7-【解答】解:设点M N 在数轴上所表示的数为m n 且0n m << 由于点N 离原点的距离比点M 到原点的距离要大0m n ∴<<-0m n ∴+< 即两点表示的数字之和不可能为正数.故选:A .【变式训练2】数32-在数轴上的位置可以是( )A .点A 与点B 之间 B .点B 与点O 之间C .点O 与点D 之间 D .点D 与点E 之间【解答】解:302-< 是负数∴在原点左侧3212-<-<-∴数32-在数轴上的位置可以是点A 与点B 之间 故选:A .【变式训练3】如图 点A 是数轴上一点 则点A 表示的数可能为( )A . 1.5-B . 2.5-C .2.5D .1.5【解答】解:根据图示可得点A 表示的数在2-和1-之间 四个选项中只能是 1.5-. 故选:A .【例7】如图 数轴上A B 两点所对应的有理数分别为a 和b 则a b -的结果可能是( )A .1-B .1C .2D .3【解答】解:由图可知 210.51b a -<<-<<<a b ∴-的结果可能是C .故选:C .【变式训练1】如图 点A B C D 四个点在数轴上表示的数分别为a b c d 则下列结论中 错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d< 【解答】解:根据数轴上点的位置得:0a b c d <<<< ||||||||c b d a <<<0a c ∴+< 0b a -> 0ac <0bd<. 故选:C .【变式训练2】有理数a b c 在数轴上所对应的点如图所示 则下列结论正确的是( )A .0a b +>B .0a b ->C .0a c +<D .0b c +>【解答】解:由数轴可知0b c a c b <-<<<<-A 0a b +< 故A 不符合题意.B 0a b -> 故B 符合题意.C 0a c +> 故C 不符合题意.D 0b c +< 故D 不符合题意.故选:B .【变式训练3】如图 若数轴上A B 两点对应的有理数分别为a b 则a b +的值可能是( )A .2B .1C .1-D .2-【解答】解:由图可知 32a -<<- 12b <<a b ∴+的结果可能是1-.故选:C .【例8】一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A则点A表示的数是() A.3B.3-C.0D.3±【解答】解:由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A首先点A表示的数是正数又与原点相距三个单位长度∴点A表示的数是3故选:A.【变式训练1】下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C. 1.5-D.3-【解答】解:A.2到原点的距离是2个长度单位不符合题意B.1到原点的距离是1个长度单位不符合题意C. 1.5-到原点的距离是1.5个长度单位不符合题意D.3-到原点的距离是3个长度单位符合题意∴在数轴上所对应的点与原点的距离最远的点表示的数是3-.故选:D.【变式训练2】数轴上表示数为a和4a-的点到原点的距离相等则a的值为() A.2-B.2C.4D.不存在【解答】解:由题意知:a与4a-互为相反数40a a∴+-=解得:2a=.故选:B.【变式训练3】如图A B C D E为某未标出原点的数轴上的五个点且AB BC CD DE===则点C所表示的数是()A.2B.7C.11D.12【解答】解:17(3)20AE=--=又AB BC CD DE===AB BC CD DE AE+++=154DE AE ∴== D ∴表示的数是17512-= C 表示的数是17527-⨯=故选:B . 数轴上的应用【例9】如图 点O 为数轴的原点 点A B 均在数轴上 点B 在点A 的右侧 点A 表示的数是5-65AB OA =.(1)求点B 表示的数(2)将点B 在数轴上平移3个单位 得到点C 点M 是AC 的中点 求点M 表示的数.【解答】解:(1)65AB OA = 5OA =6AB ∴=651BO AB AO ∴=-=-=则点B 表示的数是1(2)当点B 向左平移时 3CB =∴点C 表示的数是2-点M 是AC 的中点∴点M 表示的数是5(2)3.52-+-=- 当点B 向右平移时 3CB =C ∴表示的数是4点M 是AC 的中点M ∴表示的数是54122-+=- 所以点M 表示的数是 3.5-或12-.【变式训练1】在今年720特大洪水自然灾害中 一辆物资配送车从仓库O 出发 向东走了4千米到达学校A 又继续走了1千米到达学校B .然后向西走了9千米到达学校C 最后回到仓库O .解决下列问题:(1)以仓库O 为原点 以向东为正方向 用1个单位长度表示1千米 画出数轴.并在数轴上表示A BC 的位置(2)结合数轴计算:学校C 在学校A 的什么方向 距学校A 多远?(3)若该配送车每千米耗油0.1升 在这次运送物资回仓的过程中共耗油多少升? 【解答】解:(1)如图(2)4(4)8--=(千米)答:学校C 在学校A 的西边 距学校8A 千米 (3)419418+++=(千米)180.1 1.8⨯=(升)答:共耗油1.8升.【变式训练2】出租车司机小刘某天上午营运全是在南北走向的某条大街上进行的 如果规定向北为正 向南为负 他这天上午的行程是(单位:千米):12+ 8- 10+ 13- 10+ 12- 6+ 15- 11+14-.(1)将最后一名乘客送达目的地时 小张距上午出发点的距离是多少千米?在出发点的什么方向? (2)若汽车耗油量为0.6升/千米 出车时 邮箱有油67.4升 若小张将最后一名乘客送达目的地 再返回出发地 问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油 请说明理由.【解答】解:(1)(12)(8)(10)(13)(10)(12)(6)(15)(11)(14)13++-+++-+++-+++-+++-=-(千米). 答:小张距上午出发点的距离是13千米 在出发点的南方 (2)(12810131012615111413)0.674.4++++++++++⨯=(升)74.467.47-=(升)答:需要加油 要加7升油.【变式训练3】如图 已知数轴上点O 是原点 点A 表示的有理数是2- 点B 在数轴上 且满足3OB OA =.(1)求出点B 表示的有理数(2)若点C 是线段AB 的中点 请直接写出点C 表示的有理数. 【解答】解:(1)3OB OA = 2AO =326OB ∴=⨯=当点B 在点A 的左侧时 点B 表示的数为6- 当点B 在点A 的右侧时 点B 表示的数为6 综上 点B 表示的有理数是6±.(2)当点B 在点A 的左侧时 点C 表示的有理数为:|6(2)|22242-----=--=- 当点B 在点A 的右侧时|6(2)|222---=故点C 表示的有理数为4-或【例10】2022的相反数是( ) A .2022-B .2022C .12022D .12022-【解答】解:2022的相反数是2022-. 故选:A .【变式训练1】23-的相反数是( )A .32-B .32C .23 D .23-【解答】解:23-的相反数是:23.故选:C .【变式训练2】相反数等于它本身的数是( ) A .1B .0C .1-D .0或1±【解答】解:相反数等于它本身的数是 故选:B .【变式训练3】一个数的相反数是最大的负整数 则这个数为( ) A .1- B .0C .1D .不存在这样的数【解答】解:最大的负整数是1- 根据概念 (1-的相反数)(1)0+-= 则1-的相反数是1 故选:C .【例11】若1x -与2y -互为相反数 则2022()x y -= . 【解答】解:1x -与2y -互为相反数 120x y ∴-+-= 1x y ∴-=-∴原式2022(1)1=-=.故答案为:【变式训练1】若m n 为相反数 则(2021)m n +-+为 2021- . 【解答】解:m n 为相反数0m n ∴+=(2021)(2021)2021m n m n ∴+-+=++-=-.故答案为:2021-.【变式训练2】若a b 互为相反数 则(2)a b --的值为 2- . 【解答】解:因为a b 互为相反数 所以0a b +=所以(2)22022a b a b a b --=-+=+-=-=-. 故答案为:2-.【变式训练3】若a b 互为相反数 则(4)a b +-的值为 4- . 【解答】解:由题意得:0a b +=. (4)4044a b a b ∴+-=+-=-=-.故答案为:4-.相反数与数轴【例12】数轴上点A 表示3- B C 两点所表示的数互为相反数 且点B 到点A 的距离为 3 则点C 所表示的数应是 .【解答】解:设B 点表示的数是x |(3)|3BA x =--=解得0x =或6x =-∴点B 表示0或6-由B C 两点所表示的数互为相反数 得C 点表示的数是0或6故答案为:0或【变式训练1】如图 数轴上表示数2的相反数的点是( )A .点NB .点MC .点QD .点P【解答】解:2的相反数是2- 点N 表示2-∴数轴上表示数2的相反数的点是点N .故选:A .【变式训练2】已知数轴上A B 两点间的距离是6 它们分别表示的两个数a b 互为相反数()a b > 那么a = b = . 【解答】解:a b 互为相反数 ||||a b ∴=A B 两点间的距离是6||||3a b ∴==a b > 3a ∴= 3b =-.故答案为:3 3-.【变式训练3】一个数在数轴上表示的点距原点3个单位长度 且在原点的左边 则这个数的相反数是 .【解答】解:设此数是x 则||3x = 解得3x =±. 此数在原点左边∴此数是3- 3-的相反数是3故答案为:3绝对值的定义【例13】3-的绝对值是( )A .13-B .3C .13D .3-【解答】解:|3|3-=. 故选:B .【变式训练1】有理数2- 12- 0 32中 绝对值最大的数是( )A .2-B .12-C .0D .32【解答】解:2-的绝对值是2 12-的绝对值是12 0的绝对值是0 32的绝对值是32.312022>>> 2∴-的绝对值最大.故选A .【变式训练2】在3- 0.3 0 13这四个数中 绝对值最小的数是( ) A .3-B .0.3C .0D .13【解答】解:|3|3-= |0.3|0.3= |0|0= 11||33=100.333<<<∴绝对值最小的数是故选:C .【变式训练3】下列说法中正确的是( ) A .两个负数中 绝对值大的数就大 B .两个数中 绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【解答】解:两个负数比较 绝对值越大 对应的数越小A ∴选项不合题意B 选项不合题意0的绝对值为0 C ∴选项不合题意绝对值相等的两个数可能相等 也可能互为相反数D ∴选项正确故选:D .【例14】有理数x y 在数轴上对应点如图所示:(1)在数轴上表示x - ||y (2)试把xy 0 x - ||y 这五个数从小到大用“<”号连接(3)化简:||||||x y y x y +--+. 【解答】解:(1)如图(2)根据图象 0||x y y x -<<<<(3)根据图象 0x > 0y < 且||||x y >0x y ∴+> 0y x -<||||||x y y x y ∴+--+ x y y x y =++--y =.【变式训练1】有理数a b c 在数轴上的位置如图:(1)判断正负 用“>”或“<”填空:b c - < 0 b a - 0 c a - (2)化简:||||||b c b a c a -+---.【解答】解:(1)观察数轴可知:0a b c <<<0b c ∴-< 0b a -> 0c a ->.故答案为:< > >.(2)0b c -< 0b a -> 0c a ->||||||0b c b a c a c b b a c a ∴-+---=-+--+=.【变式训练2】有理数a b c 在数轴上的位置如图(1)判断正负 用“>”或“<”填空:c b - > 0 a b + 0 a c - (2)化简:||||2||c b a b a c -++--.【解答】解:(1)由图可知 0a < 0b > 0c > 且||||||b a c <<0c b -> 0a b +< 0a c -<故答案为:> < <(2)原式[()][2()]c b a b a c =-+-+---22c b a b a c =---+- 2a b c =--.【变式训练3】已知a b c 三个数在数轴上对应点如图 其中O 为原点 化简|||2|||||b a a b a c c ---+--.【解答】解:根据数轴可得0c b a <<<|||2|||||(2)()20b a a b a c c a b a b a c c a b a b a c c ∴---+--=---+---=--++-+=.【例15】若|3||5|0x y ++-= 那么的值是多少? 【解答】解:由题意得 30x += 50y -= 解得3x =- 5y = 所以 352x y +=-+= 答:x y +的值是【变式训练1】已知|3||5|0a b -++= 求: (1)a b +的值 (2)||||a b +的值.【解答】解:|3||5|0a b -++=30a ∴-= 50b += 3a ∴= 5b =-(1)3(5)2a b +=+-=- (2)|||||3||5|358a b +=+-=+=.【变式训练2】如果|3|a -与|5|b +互为相反数 求a b -的值. 【解答】解:|3|a -与|5|b +互为相反数|3||5|0a b ∴-++=又|3|0a - |5|0b +30a ∴-= 50b +=解得3a = 5b =-3(5)358a b ∴-=--=+=.【变式训练3】已知|2||2|0x y x -+-= 求20202019x y -的值.【解答】解:|2||2|0x y x -+-=20x ∴-= 20y x -=2x ∴= 1y =则202020192020220192021x y -=⨯-=.绝对值求值【例16】已知||3a = ||5b = 且a b > 求2b a -的值.【解答】解:因为||3a = ||5b =所以3a =或3- 5b =或5-.又因为a b >所以3a =或3- 5b =-①当3a = 5b =-时252311b a -=--⨯=-.②当3a =- 5b =-时252(3)1b a -=--⨯-=.综上所述:2b a -的值为11-或【变式训练1】已知||3x = ||7y =.(1)若x y < 求x y +的值(2)若0xy < 求x y -的值.【解答】解:由题意知:3x =± 7y =±(1)x y <3x ∴=± 7y =10x y ∴+=或 4(2)0xy <3x ∴= 7y =-或3x =- 7y =10x y ∴-=±1.如果向东走5米记作:“5+” 那么向西走8米记作( )A .8+B .8-C .5+D .5- 【解答】解:向东走5米记作5+米∴向西走8米记作8-米.故选:B .2.如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作( )A .3+ mB .3- mC .13+ mD .13- m 【解答】解:如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作3m -. 故选:B .3.下面两个数互为相反数的是( )A .3-和(3)-+B .|2|-和|2|C .712和127D .14和0.25- 【解答】解:A (3)3-+=- 所以两数相等 不合题意B |2|2-= |2|2= 所以两数相等 不合题意C 712127不互为相反数 不合题意 D10.254= 所以互为相反数 符合题意. 故选:D .4.在0.2 (5)-- 1|2|2-- 15% 0 35(1)⨯- 22- 2(2)--这八个数中 非负数有( ) A .4个 B .5个 C .6个 D .7个【解答】解:0.20> (5)0--> 15%0> 00=是非负数故选:A .5.在一次数学活动课上 某数学老师在4张同样的纸片上各写了一个正整数 从中随机取2张 并将它们上面的数相加 重复这样做 每次所得的和都是5 6 7 8中的一个数 并且这4个数都能取到 根据以上信息 下列判断正确的是( )A .四个正整数中最小的是1B .四个正整数中最大的是8C .四个正整数中有两个是2D .四个正整数中一定有3【解答】解:相加得5的两个整数可能为:1 4或2 3.相加得6的两个整数可能为:1 5或2 4或3 3.相加得7的两个整数可能为:1 6或2 5或3 4.相加得8的两个整数可能为:1 7或2 6或3 5或4 4.每次所得两个整数和最小是5∴最小两个数字为2 3每次所得两个整数和最大是8∴最大数字为4或5当最大数字为4的时四个整数分别为2 3 4 4.当最大数字为5时四个整数分别为2 3 3 5.∴四个正整数中一定有3.故选:D.6.点M N P和原点O在数轴上的位置如图所示点M N P表示的有理数为a b c(对应顺序暂不确定).如果0>那么表示数c的点为()+>ab acbc<0b cA.点M B.点N C.点P D.点O【解答】解:0bc<∴c异号b+>b c所以M表示b c中的负数P表示其中的正数所以M表示数c.这样也符合条件ab ac>故选:A.7.一辆货车从超市出发向东走了3km到达小彬家继续向东走了1.5km到达小颖家然后向西走了9.5km到达小明家最后回到超市.小明家距小彬家()km.A.4.5B.6.5C.8D.13.5【解答】解:由题意画图如下:∴小明家距小彬家9.5 1.58()km -=故选:C .8.下列各组数中 互为相反数的是( )A .43和34-B .13和0.333-C .14和4D .a 和a -【解答】解:A 43和34- 虽然符号相反 但是绝对值不相等 所以它们不是相反数 故A 错误 B13和0.333- 符号相反 但绝对值不相等 所以它们不是相反数 故B 错误 C 14和4 符号相同 所以它们不是相反数 故C 错误 D a 和a - 符号相反 绝对值相等 所以它们互为相反数 故D 正确.故选:D .9.在现代生活中 手机微信支付已经成为一种新型的支付方式.如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为 36-元 .【解答】解:如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为36-元.故答案为:36-元.10.温度升高1C ︒记为1C ︒+ 气温下降9C ︒记为 9C ︒- 【解答】解:温度升高1C ︒记为1C ︒+∴气温下降9C ︒记为:9C ︒-.故答案为:9C ︒-.11.把25%化成小数是 0.25 .【解答】解:把25%化成小数是:0.25故答案为:0.25.12.定义:对于任意两个有理数a b 可以组成一个有理数对(,)a b 我们规定(,)1a b a b =+-.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-= 0(2)当满足等式(5,32)5x m -+=的x 是正整数时 则m 的正整数值为 .【解答】解:(1)根据题中的新定义得:原式2(1)1110=+--=-=.故答案为:0(2)已知等式化简得:53215x m -++-= 解得:1123m x -= 由x m 都是正整数 得到1129m -=或1123m -=解得:1m =或4.故答案为:1或4.13.测量一幢楼的高度 七次测得的数据分别是:79.8m 80.6m 80.4m 79.1m 80.3m 79.3m 80.5m .(1)以80为标准 用正数表示超出部分 用负数表示不足部分 写出七次测得数据对应的数(2)求这七次测量的平均值(3)写出最接近平均值的测量数据 并说明理由.【解答】解:(1)若以80为标准 用正数表示超出部分 用负数表示不足部分 他们对应的数分别是: 0.2- 0.6+ 0.4+ 0.9- 0.3+ 0.7- 0.5+(2)80(0.20.60.40.90.30.70.5)780()m +-++-+-+÷=答:这七次测量的平均值是80m .(3)参考(1)可得:因为|0.2|0.2-= 在七次测得数据中绝对值最小所以绝对值最接近80m 的测量数据为79.8m答:最接近平均值的测量数据为79.8m .14.暴雨天气 交通事故频发 一辆警车从位于一条南北走向的主干道上的某交警大队出发 一整天都在这条主干道上执勤和处理事故 如果规定向北行驶为正 这辆警车这天处理交通事故行车的里程(单位:千米)如下:4+ 5- 2- 3- 6+ 3- 2- 7+ 1+ 7- 请问:(1)第几个交通事故刚好发生在某交警大队门口?(2)当交警车辆处理完最后一个事故时 该车辆在哪个位置?(3)如果警车的耗油量为每百千米12升 那么这一天该警车从出发值勤到回到交警大队共耗油多少升?【解答】解:(1)(4)(5)(2)(3)(6)0++-+-+-++=∴第5个交通事故刚好发生在某交警大队门口(2)(4)(5)(2)(3)(6)(3)(2)(7)(1)(7)4++-+-+-+++-+-+++++-=-∴当交警车辆处理完最后一个事故时 该车辆在交警大队南边4千米的位置(3)12(|4||5||2||3||6||3||2||7||1||7||4|) 5.28100++-+-+-+++-+-+++++-+-⨯=(升) 答:这一天该警车从出发值勤到回到交警大队共耗油5.28升.15.已知下列各数:5-13 4 0 1.5- 5 133 12-.把上述各数填在相应的集合里: 正有理数集合:{ 13 4 5 133}⋯ 负有理数集合:{ }⋯分数集合:{ }⋯.【解答】解:大于0的有理数称为正有理数 ∴正有理数有13 4 5 133小于0的有理数称为负有理数∴负有理数有5- 1.5- 12- 正分数和负分数都是分数 且小数也是分数 ∴分数有131.5- 133 12-. 故答案为134 5 133 5- 1.5- 12- 13 1.5- 133 12-.。
1.1正数和负数比0大的数叫做正数,比0小的数叫做负数。
0既不是正数也不是负数,它是正数与负数的分界点。
在正数前面加上符号“-”的数就是负数。
例1、3.2、0.4、25%、15等都是正数;-3.2、-0.4、-25%、-15等都是负数。
正数前面可以加上符号“+”,也可以省略这个符号。
但负数前面的符号“-”不能省略。
例2、13可以写成+13,+13也可以省略“+”号,写成13 。
但是-13不能省略“-”号写作13 。
0和正数统称为非负数,0和负数统称为非正数。
正数和负数可以分别用来表示相反意义的量。
例3、存入100元记为+100,则取出200元记为-200 。
例4、向北走50米记为+50,则向南走70米记为-70 。
0不仅可以表示“没有”,还可以表示其它意思。
例5、0是正数和负数的分界。
例6、0℃不代表没有温度,相反,0℃是一个确定的温度。
1.2有理数正整数、0、负整数统称为整数,即:整数{ 正整数0负整数正分数、负分数统称为分数,即:分数{正分数负分数整数和分数统称为有理数。
有理数的分类:按定义分类 按性质分类有理数{ 整数{ 正整数0负整数分数{正分数负分数 有理数{正有理数{正整数正分数0负有理数{负整数负分数与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是分数。
例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是分数。
例2、无限不循环小数,如π、1.010010001…等都不是分数。
引入负数之后,奇数和偶数的范围扩大了。
例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。
例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。
用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点。
②通常规定直线上从原点向右为正方向,从原点向左为负方向。
在一些特殊情况下,也可以规定直线上从原点向上为正方向,从原点向下为负方向。
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
数学七年级上(人教版)基础知识点及习题第一章有理数1.1正数和负数正数:正数是大于零的数。
有时为了明确表达意义,在正数前面也加上“+”(正)号,例如+1,+5,+0.01,+13,一般情况下正数前正号省略不写。
负数:负数是小于零的数。
在正数前面加上符号“-”(负)号,书写负数是负号不可以省略。
零既不是正数,也不是负数。
可以理解为“0”是正数与负数的分界点,所以不属于两方的任意一方。
注:①正数和负数表示相反意义的量,例如零上5摄氏度记作“+5”,那么“-5”表示为零下5摄氏度;向正东方向走10米记作“+10”,那么“-10”表示为向正西方向走10米。
②0不只是表示没有,还有其它的意义,例如0摄氏度温度为0的时候,而不是没有温度。
练习1.给下列各数分类,哪些是正数,哪些是负数。
-1,-2.5,0,-3.8,3.6,+150,+5.32.如果支出10元记作-10元,那么+10元的意义是。
3.如果海拔500米(海拔:高出海平面的高度)记作+500米,那么-500米的意义是。
4.三层楼记作+3层,地下2层记作。
5.初一二班第一周的数学考试成绩的平均分是92,瑶瑶的成绩为98记为+6分,远远数学的成绩记为-3,那么远远的数学成绩为分。
6.每年的防汛期间,各地的防汛指挥部要密切关注水位的变化以应对洪涝灾害,下面是某地七月中一周的水位变化其中有水位上升天,水位下降天。
7.瑶瑶的妈妈记录了最近十天减肥的体重变化,+0.1kg、-0.2kg、-0.05kg、-0.1kg、0kg、+0.05kg、-0.01kg、-0.2kg、+0.02kg、-0.5kg其中达到减肥得到目的天数天。
8.下图是某同学微信的收支情况,按图中表示。
其中“+”、“-”分别表示的含义、。
9.小明的妈妈在2020年测量小明的升高为158cm,2021年记录为+5,2022年至今记录为+8,小明比2020年长高。
10.下列说法正确的是()A.考试中答对得分答错扣分最低分是0分B.0是非自然数B.0°c表示没有温度 D.0既不是正数也不是负数11.下列说法中正确的是()A.+a是正数B.任一自然数前边加上负号就是负数C.负数的前边一定有负号D.b既是正数也是负数12.一盒罐头的净含量为(450±50)g,则下面合格的产品是()A.420gB.380gC.550gD.580g13.下列各组语句中,表示互为相反意义的是()A.升高3米与下降-3米B.收入增加a元与收入减少a元C.快跑50米与慢跑50米D.上午1时30分与下午1时30分14.甲比乙年龄大-3岁,那么下面的说法正确的是()A.甲比乙大3岁B.甲比乙小3岁C.乙比甲小3岁D.乙比甲小-3岁15.下列对0的说法中,错误的是()A.0是自然数B.0既不是正数也不是负数C.0是偶数D.0是最小的数16.小刚同学制定了新学期的学习计划,每天规定学习一小时,超过一小时记为“+”不足记为“-”如果小刚每日从20:00开始学习,11:00要准时休息。
人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
1.2.1有理数 基础练知识点1:有理数的相关概念1.在-2,+3.5,0,−23,-0.7,11中,负分数有 ( )A.1个B.2个C.3个D.4个 2.在−56,+1,6.7,-14,0,722,-5,25%中,属于整数的有( )A.2个B.3个C.4个D.5个 3.下列说法错误的是( )A.-2是负有理数B.0不是整数C.25是正有理数D.-0.25是负分数4.在有理数2,+7.5,-0.03,-0.4,0中,非负数是________.5.给出一个数-107.987及下列判断: ①这个数不是分数,但是有理数; ②这个数是负数,也是分数; ③这个数与π一样,不是有理数;④这个数是一个负小数,也是负分数其中判断正确的序号是_________.知识点2:有理数的分类6.在下列选项中,所填的数正确是( )A.正数:{15,0.15,0,…}B.负数:{-12,−38,0,…} C.分数:{225,−38,0.15,…} D.整数:{523,0,-20,…} 7.下列说法正确的是( )A.正整数和负整数统称为整数B.一个有理数不是整数就是分数C.正整数、负整数、正分数、负分数统称为有理数D.整数和小数统称有理数8.下列有理数-3,0,20,-1.25,113,3,1,-1中,正整数是______,负整数是______,负分数是______,非负数是______. 9.把下列各数分别填在对应的横线上;3,-0.01,0,212,+3.333,-0.010010001…,+8,-101.1,+ 87,-100.(1) 负数:__________________________________________________________________________________.(2) 整数:__________________________________________________________________________________. (3) 正分数:________________________________________________________________________________.10.在-16,2018,327,0,-5,+13,−14,-0.618中,正整数有m 个,分数有n 个,则m+n 的值为______. 易错盘点:易错点1:不能正确理解有理数的分类而出错 11.请将下列各数按要求分类:−12,7.6,-1.5,-3,0,+357,-2011,910.(1) 正数:________________________________________________________________. (2) 负数:________________________________________________________________. (3) 非负数:______________________________________________________________. (4) 整数:________________________________________________________________. 易错点2:对分数的概念理解错误12.在-2,+3,10%,0.23,-0.918, −12中,分数的个数为 ( )A.2B.3C.4D.5能力练13.下列各数:57,-5,π,0.3,15%,其中有理数的个数是 ( )A.2B.3C.4D.514.如图所示的圈表示负数集合、整数集合和正数集合,其中有甲、乙、丙三个部分,则关于这三部分的数的个数,下列说法正确的是( )负数集合整数集合分数集合A.甲、丙两部分有无数个数,乙部分只有一个数0 B 甲、乙、丙三部分都有无数个数C.甲、乙、丙三部分都只有一个数D.甲部分只有一个数,乙、丙两部分有无数个数 15.把下列各数填入相应的大括号内: −45,2, 227,3.14,0,-15%,2.8,-5,-0.618 正有理数:{ }; 负有理数:{ };分数:{}。
人教版七年级数学上册知识点归纳总结及典型试题汇总本章主要介绍有理数的概念和运算。
有理数可以用数轴来认识和理解,同时也可以将这些概念串在一起。
在具体运算时,需要注意运算法则、运算律、运算顺序和近似计算。
1.有理数是可以写成 p/q 形式的数,其中 p 和 q 都是整数且 p 不等于 0.有理数包括正整数、正分数、整数、零、负整数和负分数。
需要注意的是,1、-1 和 0 是三个特殊的有理数,它们将数轴上的数分成四个区域,每个区域的数有其自己的特性。
2.数轴是一条直线,规定了三个要素。
3.相反数是指符号相反的两个数,它们的和为 0,商为 -1.需要注意的是,a-b+c 的相反数是-a+b-c,a-b 的相反数是b-a,a+b 的相反数是 -a-b。
4.绝对值是非负数,正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值的意义是数轴上表示某数的点离开原点的距离。
如果两个数互为相反数,则它们的绝对值相等。
5.在比较有理数的大小时,正数永远大于负数,两个负数比较时,绝对值大的反而小。
在数轴上,右边的数总比左边的数大。
例如,-1,-2,+1,+4 表示与标准质量的差,绝对值越小,越接近标准。
6.乘积为 1 的两个数互为倒数。
如果 ab=1,则 a 和 b 互为倒数;如果 ab=-1,则 a 和 b 互为负倒数。
需要注意的是,有些数没有倒数。
1.单项式是由数字或字母乘积组成的式子,如果只有一个数字或字母,也可以称为单项式。
多项式则是由几个单项式相加组成的式子。
2.在单项式中,数字因数称为单项式的系数(要包括符号),所有字母指数的和称为单项式的次数(只与字母有关)。
在多项式中,所含单项式的个数称为多项式的项数,而最高次项的次数则称为多项式的次数。
3.整式是指由单项式相加或相减组成的代数式,而多项式是整式的一种特殊情况。
4.同类项是指含有相同字母并且相同字母的指数的项,与系数和字母的排列顺序无关。
合并同类项的法则是将同类项的系数相加,而字母和字母的指数不变。
1.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B 解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.4.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( )A .7.26×1010B .7.26×1011C .72.6x109D .726×108A 解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】726亿=7.26×1010.故选A .【点睛】本题考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.9.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.11.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.13.下列分数不能化成有限小数的是()A.625B.324C.412D.116C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.14.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C 解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.3.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.4.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.5.33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.6.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.7.若m ﹣1的相反数是3,那么﹣m =__.2【分析】根据只有符号不同的两个数互为相反数可得关于m 的方程根据解方程可得m 的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.9.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.10.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.11.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万 【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可. 【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万. 【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.1.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 2.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.4.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.。
人教版七年级上册第一章有理数知识点习题
一.正数与负数
大于0的数叫做正数,小于0的数叫做负数,0既不是负数也不是偶数
练习:电梯上升到四楼记为+4,下降到负二楼记为
二.有理数
能够写成分数的形式的数都是有理数
三.数轴
(1
(2
四.相反数
2
五.绝对值
1.
(1)当a
(2)当a
(3)当a=0
练习:
—
2.(1)
(2)
(1)—8
1.
(1
(2
(3
计算:①—
2.(1
(2)三个数相加,先把前两个数相加,或者先把后两位数相加,和不变
(a+b)+c=a+(b+c)
练习:计算:16+(—8)+24+(—12)
七.有理数的减法
减去一个数,等于加上这个数的相反数
a—b=a+(—b)
计算:①—3—(—13)②0—(—4)③6.3—(—2.7)
一.选择题
1.相反数是它本身的数是()
A. 1
B. -1
C. 0
D.不存在
2、下列各式中,等号成立的是()
A 、-6-=6
B 、(6)--=-6
C 、-112=-112
D 、 3.14+=-3.14 3、在数轴上表示的数8与-2这两个点之间的距离是 ( )
A 、6
B 、10
C 、-10 D-6
4、一个有理数的绝对值等于其本身,这个数是 ( )
A 、正数
B 、非负数
C 、零
D 、负数
5. 下列计算结果中等于3的是( ) A. 74-++ B. ()()74-++ C. 74++- D. ()()74+--
二、填空题
9(6) ()2
12115.2212--+--- 五.解决问题
1.已知有理数a ,b ,c 在数轴上的位置如下图,且|a |=|b |
(1)求a+b 的值
(2)判断a —c ,b+c 的符号
(3)化简|a |—|c—a |+|c—b |—|—b |
2. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)
为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5
(1)问收工时距O 地多远?
(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?
3、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10
万元,3、4月亏损分别是0.7万元和0.8万元。
试用正、负数表示各月的利润,并算出该商场上半年的总利润额。