新浙教版七年级(上册)数学第一章《有理数》知识点及典型例题
- 格式:doc
- 大小:218.00 KB
- 文档页数:7
浙教版七年级上册数学第1章有理数含答案一、单选题(共15题,共计45分)1、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,且,有以下结论:①; ②;③; ④,其中结论正确的个数是()A.4个B.2个C.3个D.1个2、一个数加上它的相反数,再减去这个数与它倒数的积是()A.0B.1或-1C.-1D.13、若有理数a、b在数轴上对应的位置如图所示,则下列关系正确的是()A.|a|<|b|B.a>bC.a<bD.a=b4、若a为有理数,且|a|= - a,那么a是()A.正数B.负数C.非负数D.非正数5、下列各组运算中,结果为负数的是()A.﹣|﹣3|B.(﹣3)×(﹣2)C.﹣(﹣3)D.(﹣3)26、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是()A.0B.﹣2C.2aD.2c7、如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B. m<nC.|m| |n|>0D.2+m<2+n8、若,则的值为( )A.1B.C.0D.9、下列各组数相等的是()A.﹣3 2与(﹣3)2B.﹣3 3与(﹣3)3C.﹣|﹣1|与﹣(﹣1) D.2 3与3 210、﹣2的相反数的倒数是()A.-B.C.﹣2D.211、实数a、b在数轴上的位置如图所示,下列各式成立的是( )A. B.a﹣b>0 C.ab>0 D.a+b>012、如果把收入300元记作+300元,那么支出200元记作()A.+100元B.-200元C.+200元D.-100元13、数轴上A、B两点分别表示- 和-3,那么A、B两点的距离是()A.-B.C.D.-14、下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6.其中,正确的算式有()A.0个B.1个C.2个D.3个15、如图,数轴上点A表示的数可能是()A. B.-2.3 C.- D.-2二、填空题(共10题,共计30分)16、如图,数轴上点A、B所表示的两个数的和是________.17、–3的绝对值是________,倒数是________,相反数是________.18、数学考试成绩以80分为标准,老师将5位同学的成绩简单记作:+15,﹣4,+11,﹣7,0,则这五名同学的平均成绩为________.19、若a,b,c为有理数,且abc≠0,则=________.20、巴黎与东京的时差为-8,带正号的数表示同一时间比东京早的时间数.如果东京现在的时间是13:20.那么巴黎现在的时间是________ .21、若则的值为________.22、在下列各数中: ,-3,0,-0.7,5,其中是非负整数的是________.23、若已知|a+2|+|b﹣3|+|c﹣4|=0,则式子a+2b+3c的值为________.24、绝对值等于9的数是________.25、已知x、y为直角三角形两边的长,满足,则第三边的长为________。
1.有理数:(1)整数和分数统称有理数.(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;a a 和-互为相反数,0的相反数0;(2)注意: a-b+c 的相反数是-a+b-c ;a+b 的相反数是-a-b ; 4.绝对值:(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (4) ①非负性:|a|≥0 ②|a|=|-a| ③若|a|=b ,则a=±b ④0a 1aa >⇔= ;0a 1aa <⇔-=;5. 比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值; ②比较两个绝对值的大小; ③根据“两个负数,绝对值大的反而小”做出正确的判断。
1.有理数加法法则:·同号两个数相加,取加数的符号,并把绝对值相加。
·异号的两个数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
·互为相反数的两数相加得0.一个数同0相加仍得这个数2.灵活运用运算律:①相反数相加; ②同号相加; ③同分母相加; ④凑整的相加。
3.加法交换律:a b b a +=+4.加法结合律:()()a b c a b c ++=++5.有理数减法法则:减去一个数等于加上这个数的相反数。
6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘积仍得0。
7.倒数:如果两个数互为倒数,则它们的乘积为1。
(如:-2与1-2)注意:①零没有倒数②倒数等于本身的数:1,-1越来越大等于本身的数汇总:相反数等于本身的数:0, 绝对值等于本身的数:正数和0 , 平方等于本身的数:0,1 算术平方根于本身的数:0,1 平方根于本身的数:0 立方等于本身的数:0,1,-1. 立方根于本身的数:0,1,-1 8.有理数乘法法则乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数七年级数学上册第一章 有理数及其概念1.整数:包含正整数和负整数,分数包含正分数和负分数.正整数和正分数通称为正数,负整数和负分数通称为负数.正整数和负整数通称为自然数2.正数:都比0大,负数比0小,0既不是正数也不是负数.正整数、0、负整数、正分数、负分数这样的数称为有理数. 数轴的三要素:原点、正方向、单位长度三者缺一不可.任何一个有理数,都可以用数轴上的一个点来表示.反过来,不能说数轴上所有的点都表示有理数3.相反数:只有符号不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0.在任意的数前面添上“-”号,就表示原来的数的相反数.在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等.数轴上两点表示的数,右边的总比左边的大.正数在原点的右边,负数在原点的左边.4.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a即:当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =5.绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;0 ---1 2 3越来越互为相反数的两数除0外的绝对值相等;任何数的绝对值总是非负数,即|a|≥0①对任何有理数a,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b,则a=±b④对任何有理数a,都有|a|=|-a|6.比较两个负数的大小,绝对值大的反而小.比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断.7.两个负数比较大小,绝对值大的反而小.8.数轴上的两个点表示的数,右边的总比左边的大.第二章有理数的运算1.有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加.·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.·一个数同0相加仍得这个数2.灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.3.加法交换律:a b b a+=+4.加法结合律:()()++=++a b c a b c5.有理数减法法则:减去一个数等于加上这个数的相反数.6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘积仍得0.7.有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号变为相反数8.有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律.有理数的加减法混合运算的步骤:①写成省略加号的代数和.在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算.注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数.9.倒数:如果两个数互为倒数,则它们的乘积为1.如:-2与21、 3553与…等 10.有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘,积仍为0.11.乘法交换律:ab ba = 12.乘法结合律:()()ab c a bc = 13.乘法分配律:()a b c ac bc +⨯=+乘法的交换律、结合律、分配律在有理数运算中同样适用.14.有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积.乘积为1的两个有理数互为倒数.注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置.一个带分数要先化成假分数.③正数的倒数是正数,负数的倒数是负数.15.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数.·两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何数都得0,且0不能作除数,否则无意义.16.有理数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂.在n a 中a 叫做底数,n 叫做指数,n a 读作a 的n 次幂或a 的n 次方. 注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数.17.乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值.18.有理数混合运算法则:①先算乘方,再算乘除,最后算加减.②如果有括号,先算括号里面的.19.混合运算顺序:· 先算乘方,再乘除,后加减; · 同级运算,从左到右进行;· 如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行. 20.近似数和有效数字:=⨯⨯⨯⨯ an a a a a 个幂与实际接近的数,叫近似数21.有效数字:一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数 字起到精确到那一位数字止,所有的数字例题精讲1、 -33÷214×-232 – 4-23×- 232 2、 -32+-23 –2×-1033、 -314++-7124、-23--5+-64--125、如果()()0132122=-+-++c b a ,求333c a abc -+的值.考点二、运用运算律进行简便运算 1、-+ 2、-12+16-34+512×-123、117512918--×36-6×+×6 4、492425×-5考点三、与数轴相关的计算或判断1、已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是A 、b+c<0B 、-a+b+c<02、a ,b 在数轴上的位置如图所示,则a ,b ,a +b ,a -b 中,负数的个数是 A .1个 B .2个 C .3个 D .4个3、若a .b .c 在数轴上位置如图所示,则必有a -2-1A .abc >0B .ab -ac >0C .a +b c >0D .a -cb >04、有理数a ,b 在数轴上的位置如图所示,则在a +b ,a -b ,ab ,3a ,23a b s 这五个数中,正数的个数是A .2B .3C .4D .55、有理数a 、b 在数轴上的对应的位置如图所示,则 A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >06、a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = .考点四、带绝对值的分类讨论1、若a b =,则a 和b 的关系是2、1___x x -==若,则;123______x x -==若,则.3、已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值是1,则2()x a b cd x cd -++-= .4、已知ab>0,试求abab b b a a ||||||++的值.考点五、求汽车来回运动最后停在何处的问题1、体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下单位:千米:+15,-4,+13,―10,―12,+3,―13,―17.-11ab1当最后一名教师到达目的地时,小王距离接送第一位教师的出发地什么方向,多少千米2若汽车耗油量为升1千米,这天下午汽车共耗油多少升考点六、科学计数法及近似数的综合1、近似数×109精确到位;近似数万精确到位;近似精确到位2、如果一个近似数是,则它的精确值x的取值范围是A <x<B ≤x<C <x≤D <x<3、我国2013年参加高考报名的总人数约为1230万人,则该人数可用科学记数法表示为人.4、×109是位整数;62100…00用科学计算数表示为考点七、基准量是否发生变化的应用题1、股民小王上星期五买进某股票1000股,每股25元,下表为本周内每日该股票收盘价比前一天的涨跌情况单位:元:+表示收盘价比前一天涨1星期四收盘时,每股是多少元2本周内最高价是每股多少元最低价是每股多少元3已知买进股票时需付‰的手续费,卖出时需付成交额的‰千分之的手续费和3‰的交易税.如果小王在星期五收盘前将全部股票卖出,他的收益情况如何收益=卖股票收入-买股票支出-卖股票手续费和交易税-买股票手续费4谈谈你对股市的看法:2、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班的人数不一定相等,实际每日的生产量与计划量相比较的情况如下表.记超出的为正,不足的为负;单位:辆:1本周六生产了多少辆2产量最多的一天比产量最少的一天多生产了多少辆3用简便方法算出本周实际总产量第三章实数知识框图注意掌握以下公式:①⎧=⎨⎩② =将考点与相关习题联系起来考点一、“……说法正确的是……”的题型 1、下列说法正确的是A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .4π是分数2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17的平方根.其中正确的有 A .0个 B .1个 C .2个 D .3个 3、下列结论中正确的是A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别1、下面几个数:.0.34,…π,227其中,无理数的个数有 A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是3 B. 1的立方根是±1 =±1 D. 5的平方根的相反数3、一个自然数的算术平方根为a,则与之相邻的前一个自然数是 考点三、计算类型题1则下列结论正确的是1322(39)(310)ππ--、4x-12=9考点四、数形结合1. 点A 在数轴上表示的数为35,点B 在数轴上表示的数为5-则A,B 两点的距离为______ 2、如图,数轴上表示2A,B,点B 点A 的对称点为C,则点C 表示的数是 A 2-1 B .12.22 D 2-2 考点五、实数绝对值的应用1、|32232+23-考点六、实数非负性的应用 123|49|07a b a a --=+,求实数a,b 的值.2.已知x-62+2(26)x y -求x-y 3-z 3的值.第四章代数式代数式分类的拓展将考点与相应习题联系起来考点一、代数式的书写是否正确的问题1、下列代数式书写规范的是A.512ab2 B.ab÷c C.a-cbD.m·32、下列代数式书写规范的是A.a÷3 B.8×a C.5a D.212a考点二、去括号的问题1、下列运算正确的是A.-3x-1=-3x-1 B.-3x-1=-3x+1 C.-3x-1=-3x-3 D.-3x-1=-3x+3 2、下列去括号中错误的是A.2x2-x-3y= 2x2-x+3y B.13x2+3y2-2xy=13x2-2xy +3y2C.a2-4-a+1= a2-4a-4 D.- b-2a--a2+b2= - b+2a+a2-b23、下列去括号,错误的有个① x2+2x-1= x2+2x-1,② a2-2a-1= a2-2a-1,③ m-2n-1=m-2n-2,④ a-2b-c=a-2b+cA. 0B. 1C. 2D. 34、去括号:--1-a-1-b=考点三、代数式中与概念有直接关系的题目1、单项式中-27πa2b的系数和次数分别是⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧)(被开方数含有字母无理式分式多项式单项式整式有理式代数式A .-27,4B .27,4C .-27π,3D .27π,3 2.下列代数式中,不是整式的是A. 13a 2+12a+1B. a 2+1bC. m+12D. 2006x+y 3.下列说法正确的是 A. x 2-3x 的项是x 2,3x B. 3a b 是单项式 C. 12,πa,a 2+1都是整式 D. 3a 2bc-2是二次二项式4、若m,n 为自然数,则多项式x m -y n -2m+n 的次数是 A. m B. n C. m+n D. m,n 中较大的数5、下列各项式子中,是同类项的有 组 ① -2xy 3与5y 3x,② -2abc 与5xyz,③ 0与136,④ x 2y 与xy 2,⑤ -2mn 2与mn 2,⑥ 3x 与-3x 2 A. 2 B. 3 C. 4 D. 56、若A 和B 都是三次多项式,则A+B 一定是A. 六次多项式B. 次数不高于三次的多项式或单项式C. 三次多项式D. 次数不低于三次的多项式或单项式0或27、已知-6a 9b 4和5a 4m b n 是同类项,则代数式12m+n-10的值为8、多项式2b-14ab 2-5ab-1中次数最高的项是 ,这个多项式是 次 项式 9、若2a 2m-5b 与mab 3n-2的和是单项式,则m 2n 2=考点四、代数式求值的问题,主要有先化简再直接代入、整体代入、稍作变形后再代入把整式的加减也归入这一类1、若代数式x 2+3x-3的值为9,则代数式3x 2+9x-2的值为 A 、0 B 、24 C 、34 D 、442、已知a-b=2,a-c=12,则代数式b-c 2+3b-c+94的值为A 、-32B 、32C 、0D 、973、若a+b=3,ab=-2,则4a-5b-3ab-3a-6b+ab=4、已知a2-ab=15,b2-ab=10,则代数式3a2-3b2的值为5、先化简,再求值-1 2a-32a-23a2 -632a+13a2 -1,其中a=-26、先化简,再求值13a2-5b2+12ab-5a2-b2-12ab+4a2,其中a=112,b= -1225x-y3-3x-y2+7x-y-5x-y3+x-72-5x-y,其中x-y=137、有这样一道题:计算2x3-3x2y-2xy2-x3-2xy2+y3+-x3+3x2y-y3的值,其中x=12,y=-1,小明把x=12错抄成x= -12,但他的计算结果也是正确的,请你帮他找出原因.8、已知一个多项式与5ab-3b2的和等于b2-2ab+7a2,求这个多项式考点五、用代数式表示实际生活中的问题1、洗衣机每台原价为a元,在第一次降价20%的基础上再降价15%,则洗衣机的现价是每台元2、用20元钱购买x本书,且每本书需另加邮寄费元,则购买这x本书共需要元3、买单价为c元的球拍m个,付出了200元,应找回元.4、为鼓励节约用电,某地对居民用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费,某户居民在一个月内用电160度,该户居民这个月应缴纳电费是元用含a、b的代数式表示;5、某城市自来水费实行阶梯收费,收费标准如下表:1某用户十月份用水30吨,用含a的代数式表示该用户十月份所交的水费2若a=元时,求该用户十月份应交的水费6、某市电话拨号上网有两种收费方式,用户可以任选其一:A计时制:元每分钟;B包月制:60元每月限一部个人住宅电话上网;此外,每一种上网方式都得加收通信费元每分钟.1某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;2若某用户估计一个月内上网的时间为25小时,你认为采用哪种方式较为合算7、我国出租车收费标准因地而异,A市为:行程不超过3千米收起步价10元,超过3千米后每千米增收元;B市为:行程不超过3千米收起步价8元,超过3千米后每千米增收元.1填空:某天在A市,张三乘坐出租车2千米,需车费 ____元;2分别计算在A、B两市乘坐出租车10千米的车费;3试求在A市与在B市乘坐出租车xx>3千米的车费相差多少元第五章 一元一次方程1.含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.运用方程解决问题:1设未知数.2找出相等的数量关系,3根据相等关系列方程,解决问题.2.等式的性质:1、等式两边加或减同一个数或式子,结果仍相等.c b c a b a ±=±=那么如果,2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.cb c a c b a bcac b a =≠===那么如果那么如果),0( ,3.移项:把等式一边的某项变号后移到另一边,叫做移项4.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系5.数化为1等,最后得出a x =的形式.第六章 图形的初步认识1. 线段、射线、直线正确理解直线、射线、线段的概念以及它们的区别:经过两点有一条直线,并且只有一条直线.两点确定一条直线.AOB图12..比较线段的长短线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法.用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍.两点之间的所有连线中,线段最短.两点间的线段长度,叫做这两点的距离 两点之间线段的长度,叫做这两点之间的距离......... 3角的度量与表示角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠AOB②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β4.角度数的换算:1°=60分,1′=60秒角也可以看成是由一条射线绕着它的端点旋转而成的.如图5一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角...如图6所示:终边继续旋转,当它又和始边重合时,所成的角叫做周角...如图7所示: 5.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分....b 图2图5平图6 1图3β 图4线.. 6.等角的补角相等,等角的余角相等7.经过直线外一点,有且只有一条直线与这条直线平行.8.如果两条直线都与第三条直线平行,那么这两条直线互相平行. 9.互相垂直的两条直线的交点叫做垂足... 10.平面内,过一点有且只有一条直线与已知直线垂直.11.如图8所示,过点C 作直线AB 的垂线,垂足为O 点,线段CO 的长度叫做点.C .到直线...AB ..的.距离... 周角图8。
从自然数到有理数知识点:一、有理数的概念:1)正整数、零和负整数统称为整数;2)正分数、负分数统称为分数;3)整数和分数统称为有理数。
(0既不是正数,也不是负数)随堂测试一:1、把下列各数分别填在表示它所属的括号里:-5.3 ,+31 ,43,0 , -7 ,1312 ,2005 , -1.39.(1)正有理数:{ ……} (2)负有理数:{ ……} (3)整数:{ ……} (4)分数:{ ……} (5)非负有理数:{ ……} 2、请你任意写出一个自然数 ;一个负分数 .二、1、数轴的概念:规定了原点、单位长度和正方向的直线叫做数轴。
2、相反数的概念:若两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
注意:零的相反数是零。
3、在数轴上,表示为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。
(例如:-100和100的点分别位于远点的左侧和右侧,到原点的距离都是100个长度单位。
)随堂测试二:1、点A ,B ,C ,D ,E 在数轴上的位置如图所示,请你把各点所表示的数填入相应的括号内.A 、( )B 、( )C 、( )D 、( )E 、( ) 2、画一条数轴,在数轴上表示—2,3,-4.5以及它们的相反数。
3、如果一个数与它的相反数相等,那么这个数是 。
4、数轴上表示一个数的点在“-2.5”的右边,并且距离“-2.5”4个单位长度,求这个数。
三、1、绝对值的概念:我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
(例如:数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5。
记作丨-5丨=5 。
)2、一般地,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零;互为相反数的两个数的绝对值相等。
随堂测试三:1、如果说一个数与它的绝对值相等,那么这个数是 .2、任何数的绝对值都是( )A 正数B 负数C 非负数D 非正数3、绝对值小于2的整数有________。
1、有理数的加法加法法则:1.同号相加,取相同的符号,并把绝对值相加。
2.异号两数相加,绝对值相等时何为0,绝对值不等时,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.一个数同0相加,仍得这个数。
运算律:交换律:a+b=b+a 结合律:(a+b )+c=a+(b+c )2、有理数的减法减法法则:减去一个数等于加上这个数的相反数。
如:3-5=3+(-5)将减法转化成加法时,注意两变:一是减号变加号,二是减数变为其相反数。
3、有理数的乘法有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。
注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
4、有理数的除法有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
5、有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=15;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
7、有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
=⨯⨯⨯⨯a n a a a a 个。
浙教版七年级上册数学重点知识归纳一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数,属于有理数; - 5是负整数,属于有理数;0.5是有限小数,可化为(1)/(2),属于有理数;0.3̇是无限循环小数,可化为(1)/(3),也属于有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
右边的数总比左边的数大。
- 例如:在数轴上表示 - 2和3, - 2在原点左边距离原点2个单位长度,3在原点右边距离原点3个单位长度,且3> - 2。
3. 相反数。
- 只有符号不同的两个数互为相反数。
0的相反数是0。
- 若a与b互为相反数,则a + b=0。
例如:3与 - 3互为相反数,3+( -3)=0。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 即| a|=a(a≥0) - a(a < 0)。
例如:|5| = 5,| - 3|=3。
5. 有理数的运算。
- 加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:2 + 3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:2+( - 3)= - 1,( - 2)+3 = 1。
- 一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 = 5+( - 3)=2。
- 乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:2×3 = 6,( - 2)×( - 3)=6,2×( - 3)= - 6。
- 任何数同0相乘,都得0。
- 除法法则。
浙教版七年级上册各章节重难点第一章有理数1.1从自然数到有理数正数:大于零的数负数:小于零的数零既不是正数也不是负数。
正整数、零和负整数统称为整数,负分数和正分数统称为分数,整数和分数统称为有理数。
有理数整数正整数零负整数正分数自然数分数负分数1.2数轴数轴:规定了原点、单位长度和正方向的直线叫做数轴。
任何一个有理数都可以用数轴上的点表示。
相反数:如果两个数符号不同,称其中一个数为另一个数的相反数。
也称这两个数互为相反数。
注意,零的相反数是零。
在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
1.3绝对值绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是它本身。
互为相反数的两个绝对值相等。
注:任何数的绝对值大于或等于零。
(非负数)1.4有理数的大小比较一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零;一个数与零相加,仍得这个数。
在有理数运算中,加法的交换律和结合律仍成立。
加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)2.2有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为 1 ,就称这两个有理数互为倒数。
2022-2023学年浙教版七年级数学上册《第1章有理数》知识点分类训练(附答案)一.正数和负数1.下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.若盈利1000元记作+1000元,则﹣200元表示亏损200元2.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少()g为合格.A.200B.198C.197D.196二.有理数3.在﹣1,0,1,这四个数中,属于负整数的是()A.﹣1B.0C.1D.4.把下列各数填入相应的大括号里:+2,﹣3,0,﹣3,﹣1.414,﹣17,①正数集合:{ …}②整数集合:{ …}③分数集合:{ …}三.数轴5.明明家为起点,向东走记为正,向西走记为负.明明从家出发,先走了+20米,又走了﹣30米,这时明明离家的距离是()米.A.20B.10C.﹣10D.﹣306.一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,则点A表示的数是()A.3B.﹣3C.0D.±37.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣38.如图,数轴上的两个点分别表示数a和﹣2,则a可以是()A.﹣3B.﹣1C.1D.29.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣110.数轴上的点B到原点的距离是6,则点B表示的数为()A.12或﹣12B.6C.﹣6D.6或﹣6四.相反数11.2022的相反数是()A.﹣2022B.2022C.﹣D.12.若m与互为相反数,则m的值为()A.﹣3B.C.D.3五.绝对值13.计算的结果等于()A.3B.C.D.﹣314.﹣|﹣6|的相反数是()A.﹣6B.C.﹣D.615.﹣2022的绝对值是()A.﹣2022B.﹣C.D.202216.已知|a|=3,|b|=5,且a>b,求b﹣2a的值.17.已知|x|=3,|y|=7.(1)若x<y,求x+y的值;(2)若xy<0,求x﹣y的值.六.非负数的性质:绝对值18.已知|x+3|+|y﹣2|=0,那么x=,y=.七.有理数大小比较19.下面的数中,比0小的是()A.B.2022C.|﹣2022|D.﹣202220.如图,数轴上A、B两点所表示的两个数分别是m、n,把m、n、﹣m、﹣n按从小到大顺序排列,排列正确的是()A.﹣m<﹣n<m<n B.m<n<﹣m<﹣n C.m<﹣n<﹣m<n D.m<﹣n<n<﹣m 21.画出数轴,在数轴上表示下列各数,并将上述数据用“<”号连接起来﹣(+4),﹣(﹣2),0,+(﹣1.5),﹣|﹣3|参考答案一.正数和负数1.解:∵0既不是正数,也不是负数,∴A正确,不符合题意;∵零上6摄氏度可以写成+6℃,也可以写成6℃,∴B正确,不符合题意;∵正方向可以自主确定,∴向东走一定用正数表示,向西走一定用负数表示,是错误的,∴C不正确,符合题意;∵盈利1000元记作+1000元,则﹣200元表示亏损200元,∴D正确,不符合题意;故选:C.2.解:∵200﹣3=197(g),∴这种食品净含量最少197g为合格,故选:C.二.有理数3.解:在﹣1,0,1,这四个数中,属于负整数的是﹣1.故选:A.4.解:①正数集合:{+2,};②整数集合:{+2,﹣3,0,﹣17};③分数集合:{﹣3,﹣1.414,}.故答案为:+2,;+2,﹣3,0,﹣17;﹣3,﹣1.414,.三.数轴5.解:因为(+20)+(﹣30)=﹣10(米),所以这时明明离家的距离是10米.故选:B.6.解:∵由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,首先点A表示的数是正数,又与原点相距三个单位长度,∴点A表示的数是3,故选:A.7.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.8.解:根据数轴得:a<﹣2,∴a可以是﹣3.故选:A.9.解:由题意得,圆片的周长为π.∴点A'表示的数是﹣1+π.故选:D.10.解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.四.相反数11.解:2022的相反数是﹣2022.故选:A.12.解:﹣(﹣)=,∵m与互为相反数,∴.故选:B.五.绝对值13.解:||=.故选:C.14.解:﹣|﹣6|=﹣6,﹣6的相反数是6,∴﹣|﹣6|的相反数是6.故选:D.15.解:﹣2022的绝对值是|﹣2022|=2022.故选:D.16.解:因为|a|=3,|b|=5,所以a=3或﹣3,b=5或﹣5.又因为a>b,所以a=3或﹣3,b=﹣5①当a=3,b=﹣5时,b﹣2a=﹣5﹣2×3=﹣11.②当a=﹣3,b=﹣5时,b﹣2a=﹣5﹣2×(﹣3)=1.综上所述:b﹣2a的值为﹣11或1.17.解:由题意知:x=±3,y=±7,(1)∵x<y,∴x=±3,y=7∴x+y=10或4(2)∵xy<0,∴x=3,y=﹣7或x=﹣3,y=7,∴x﹣y=±10,六.非负数的性质:绝对值18.解:∵|x+3|+|y﹣2|=0,∴x+3=0,y﹣2=0,解得:x=﹣3,y=2.故答案为:﹣3,2.七.有理数大小比较19.解:∵>0,2022>0,|﹣2022|=2022>0,﹣2022<0,∴D选项符合题意,故选:D.20.解:∵m<0<n,且|m|>n,∴﹣m>n,﹣n>m,∴m、n、﹣m、﹣n的大小关系为m<﹣n<n<﹣m.故选:D.21.解:﹣(+4)=﹣,﹣(﹣2)=2,+(﹣1.5)=﹣1.5,﹣|﹣3|=﹣3,∴这些数在数轴上对应的点表示如下:∴<﹣|﹣3|<+(﹣1.5)<0<﹣(﹣2).。
新浙教版七年级上册数学第一章《有理数》知识点及典型例题知识框图将考点与相应习题联系起来考点一、关于“……说法正确的是……”的题型(只可能是选择题)1、下列语句:① 带“-”号的数是负数;② 如果a 为正数,则-a 一定是负数;③ 不存在既不是正数又不是负数的数;④ 00C 表示没有温度,正确的有( )个 A.0 B.1 C.2D.32、下列说法不正确的是( ) A.数轴是一条直线;B.表示-1的点,离原点1个单位长度;C.数轴上表示-3的点与表示- 1的点相距2个单位长度;D.距原点3个单位长度的点表示—3或3。
3、下列说法中不正确的是( )A.-5表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等. 4、如图:下列说法正确的是( )A.a 比b 大B.b 比a 大C.a 、b 一样大D.a 、b 的大小无法确定5、若|a +b|=-(a +b ),下列结论正确的是( )A.a +b ≤0B.a +b<0C.a +b=0D.a +b>06、下列说法:① 一个数的绝对值的相反数一定是负数;② 只有负数的绝对值是它的相反数;③ 正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等,错误的个数是( ) A.3个 B.2个 C.1个 D.0个7、如果a 表示有理数,那么下列说法中正确的是( )A.+a 与-(-a)互为相反数B. +a 与-a 一定不相等C.-a 一定是负数D. -(+a)与+(-a)一定相等 8、已知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( ) A.a 、b 中一定有一个是负数 B.a 、b 都为0 C.a 与b 不可能相等 D.a 与b 的绝对值相等 9、下列说法正确的是( )A. -|a|一定是负数B. 只有两个数相等时,它们的绝对值才相等C. 若|a|=|b|,则a 与b 互为相反数D. 若一个数小于它的绝对值,则这个数为负数10、给出下面说法:① 互为相反数的两个数绝对值相等;② 一个数的绝对值等于它本身,这个数不是负数; ③ 若|m|>m ,则m<0;④ 若|a|>|b|,则a>b ,其中正确的有( ) A.①②③ B.①②④ C.①③④ D.②③④考点二、具有相反意义的量、相反数、数轴、绝对值、有理数的分类等概念的直接考题1、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,以此类推,上午7:45应记为2、在时钟上,把时针从钟面数字“12”按顺时针方向拨到“6”,计做拨了“+12”周,那么,把时针从“12”开始,拨了“14”周后,该时针所指的钟面数字是 3、若a 与b 互为相反数,则下列式子:①a+b=0;②a=-b ;③|a|=|-b|;④a=b ,其中一定成立的序号为 4、数轴上到数-1所表示的点的距离为5的点所表示的数是5、绝对值最小的有理数是 ;绝对值最小的整数是 ;| 3.14 -π|= _________6、写出所有不小于-4并且小于3.2的整数:7、绝对值小于6且大于3的整数有( )A.1个B.2个C.3个D.4个8、下面关于0的说法:① 是整数,也是有理数;② 是正数,不是负数;③ 不是整数,是有理数;④ 是整数,也是自然数,正确的是( )A.①②B.②③C.①④D.①③ 9、在15,38-,0.15,-30,-12.8,-227,-1.010010001,π7-,-3.12112111211112……,-3.141414……中,负分数的个数是( )A.3个B.4个C.5个D.6个10、一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数点的个数是 (1)判断墨迹盖住的整数共有多少个?并说明理由。
(2)直接写出被盖住的这些整数中有多少对相反数? 11、1;23-;8.9;-2.8;+100;115;-0.03;0;-(-7);-3.12112111211112……;-3.141414……;π7-;|-35|正整数: ;负整数: ;正分数: ;分数: ;自然数: ;属于非负整数集合的有 ; 非负数: ;属于非正整数集合的有_______________12、式子4+|x-1|能取得的最小值是 ,这时x= ;式子3-|2x-1|能取得的最大值是 ,这时x= 13、将下面一组数填入相应的圈内:-0.6,-8,0.212121…,-809,122-,89.9,0,+4,你能说出图中重叠部分表示的是什么数吗?考点三、有理数大小的比较 1、比较大小20112012-20092010-;-π -3.14 2、试比较下列各组数的大小: (1)12-与23-;23-与34-;34-与45-;……;1n n -+与12n n +-+(2)你能模仿(1)得出21n n +-+与1n n+-两者的大小关系吗?举例说明考点四、绝对值在实际生活中的运用,如判断某些产品是否合格,求汽车来回运动所行驶的路程以及耗油量1、正式比赛时,乒乓球的直径有严格的规定。
现在四个乒乓球,超过规定的尺寸记为正数,不足规定的尺寸记为负数。
为了选择一个乒乓球进行比赛,裁判对这四个乒乓球进行了测量,得到结果:A球+0.2mm,B球-0.1mm,C球+0.3mm,D球-0.2mm,你认为应选哪一个乒乓球用于比赛?为什么?2、出租车司机小王某天上午的营运全是在东西走向的光明大道上进行的,如果规定向东为正,向西为负,那么这天下午行车里程(单位:千米)如下:-2,+5,-1,+10,-15,-3若出租车的耗油量为0.1升/千米,这天上午小王开车共耗油多少升?考点五、关于带绝对值的简单加、减、乘、除计算(1)|+64|÷8-|-4| (2)|+313|×|920-| (3)|-35|×(5735-)-40×|-10%|附加题:|112-|+|1132-|+|1143-|+……+|119998-|+|1110099-|考点六、几个非负数和的形式,以及在此基础上将分数拆成两数之差的形式求和1、若|a|+|b-1|=0,则a=;b= ;2、若|ab-2 |+|b-1|=0,求1ab+1(1)(1)a b+++1(2)(2)a b+++……1(2012)(2012)a b++考点七、关于输入一个数后,进行某种变化后,会得出一个数的程序性题目1、某计算程序是:当输入一个数时,显示的结果总等于这个数的绝对值与2的和。
若输入-2,则显示的结果是;若输入某数后,显示的结果是4,则输入的数是考点八、点在数轴上有规则左右运动的创新题型1、一个点从数轴上的原点出发,向右移动1个单位,再向左移动3个单位,得到点A1,称为第一次跳跃,然后又向右移动3个单位,再向左移动5个单位,得到点A2,称为第二次跳跃……这样下去一直到点A n,若点A n表示的数是-18,则这次是第次跳跃巩 固 练 习一、选择题1、下列说法错误的是( )A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数6个 2、在15,38-,0.15,-30,-12.8,-227,-1.010010001,π7-,-3.12112111211112……,-3.141414……中,负分数的个数是( )A.3个B.4个C.5个D.6个3、下列各数中,比|-2|大的是( )A.-|-2}B.-(-2)C. -(-6)D. -(+6)4、质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下: 第一个0.13毫米,第二个为-0.12毫米,第三个为-0.15毫米,第四个为0.11毫米,则质量最差的零件是( ) A.第一个 B.第二个 C.第三个 D.第四个5、数轴上A 、B 两点分别表示数8.2,365,则A 、B 两点间的距离为( ) A. 1445 B. 1425C. 1.8D. 1.6 6、数轴上到数-1所表示的点的距离为5的点所表示的数是( ) A. -6 B. 6或-4 C. 4 D. -6或47、一个数的绝对值与这个数相等,那么这个数只能是( ) A. 0或1 B. -1 C. ±1 D. 非负数8、一天上午6:00某条江的水位为80.4m ,到上午11:30水位上涨了5.3m ,到下午6:00水位下跌了0.9m 。
则下午6:00的水位为( )A. 76mB. 84.8mC. 85.8mD. 86.6m9、一种零件,图纸上标明的加工要求是直径0.030.0445+-,现有下列尺寸的产品,其中不合格的是( ) A. 直径为45.02 B. 直径为44.8 C. 直径为44.99 D. 直径为45.0110、任意有理数a ,式子2-|a|;|a+2|;|-a|-a ;|-a|+2,值一定不为零的是( ) A. 2-|a| B. |a+2| C. |-a|-a D. |-a|+2 二、填空题1、若a 与-3互为相反数,则a= ;若|-x|=|-6|,则x=2、一个数的绝对值等于2013,则这个数是3、比较大小:-5 -5.2;|-6| |-6.2|4、绝对值不大于2的整数是 ;绝对值最小的有理数是 ;最大的负整数是 ;5、1、若|3a+1|+|b-1|=0,则a= ;b= ;6、1、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,以此类推,上午11:30应记为7、数轴上的点A 表示-3,让点A 沿着数轴向右移动2个单位到点B ,那么点B 表示数 ;请你写出三个有理数,使它们所对应的点在线段AB 上:8、给出依次排列的一组数:1,-3,5,-7,9,……,按此规律,第6个数为 ;第2013个数为 9、数轴上原点右边8cm 处的点表示的数为32,则原点左边18cm 处的点表示的数为 10、数a 在数轴上的位置如图所示,且|a+1|=2,则|3a+15|=三、解答题1、把下列各数填入相应的括号内:1;23-;8.9;-2.8;+100;115;-0.03;0;-(-7);-3.12112111211112……;-3.141414……;π7-;|-35| 正整数: ;负整数: ;正分数: ;分数: ;自然数: ;属于非负整数集合的有 ; 非负数: ;属于非正整数集合的有_______________ 2、计算 (1)|+213|×|-52|÷|+109| (2)|-35|×(5735-)-40×|-10%| (3)|-4|×|+52|+|-6|÷|-2|3、画出数轴,然后在数轴上表示下列各数:0,-2.5,312,-2,+5,并按从大到小的顺序排列。