八年级上第五章《二元一次方程》单元检测题
- 格式:doc
- 大小:167.00 KB
- 文档页数:4
北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。
一、选择题1.若2(23)3x y z -+=,2(23)203x y z ++=,则23xy yz +的值是( ) A .50B .100C .103D.2022.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,则关于x ,y 的方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解是( ) A .16x y =⎧⎨=-⎩B .14x y =⎧⎨=⎩C .46x y =⎧⎨=-⎩D .44x y =⎧⎨=-⎩3.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .124.下列四组数值是二元一次方程26x y -=的解的是( )A .15x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .23x y =⎧⎨=⎩5.如图,方格中的任一行、任一列及对角线上的数的和都相等,则m 等于( )A .14B .10C .13D .96.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( ) A .46282x y x y +=⎧⎨=+⎩B .46282y x x y +=⎧⎨=+⎩C .46282x y x y +=⎧⎨=-⎩D .46282y x x y +=⎧⎨=-⎩7.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( )A .32-B .32C .2-D .28.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩9.已知,y与()1x-成正比例,且比例系数为2,则当6y=时,x的值为()A.2B.3C.4D.610.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③11.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.4.50.51y xy x=-⎧⎨=+⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=+⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩12.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.4种B.5种C.6种D.7种二、填空题13.已知关于,x y的方程组2326322x y kx y k+=+⎧⎨+=+⎩.(1)用k表示x y+的值为____.(2)若7x y+=,则k的值为____.14.写出方程35x y-=的一组解_________.15.若方程x|m|-2+(m+3)y2m-n=6是关于x、y的二元一次方程,则m+n=_____16.已知方程组2629x yx y+=⎧⎨+=⎩,则x-y=_________.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.18.已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________.19.已知24x y -=,用含x 的代数式表示y 为:y =____________.20.若关于x 、y 的方程组35x y mx y ny +=⎧⎨+=⎩ 与()81m n x y x y ⎧-=-⎨-=⎩的解相同,则11178m n - 的值为________________. 三、解答题21.如图,直线l 1:y =x +1与直线l 2:y =mx +n 交于点P (1,b ),直线l 2与x 轴交于点A (4,0). (1)求b 的值;(2)解关于x ,y 的方程组1y x y mx n=+⎧⎨=+⎩,并直接写出它的解;(3)判断直线l 3:y =nx +m 是否也经过点P ?请说明理由.22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m %,3%5m ,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m 的值.23.如图,直线y kx b =+分别交x 轴于点()4,0A ,交y 轴于点()0,8B . (1)求直线AB 的函数表达式.(2)若点()2,P m ,点(),2Q n 是直线AB 上两点,求线段PQ 的长.24.用白铁皮做罐头盒,每张铁皮可制作24个盒身,或制作32个盒底,一个盒身与两个盒底配成一套罐头盒,现有40张白铁皮请用二元一次方程组的知识解答下列问题. (1)问用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?(2)已知一张白铁皮的成本为120元,每张制作盒底的加工费为30元/张,而制作盒身的加工方式有横切和纵切两种,横切的加工费为20元/张,纵切的加工费为25元/张,问在(1)的结论下,若想要总费用控制在5900元,应安排多少张横切,多少张纵切? 25.解方程(组): (1)()()221342x x +--= (2)35821x y x y ⋅+=⎧⎨-=⎩26.(1)解方程组:42213x y x y -=⎧⎨+=-⎩(2)解方程组:()()431227x y y x y ⎧-=-+⎨+=⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先开平方,然后组成方程组,解方程组求出y 与(2x+3z ),整体代入求值计算即可. 【详解】解:∵2(23)3x y z -+=,2(23)203x y z ++=,∴233x y z -+=,23203x y z ++=∴23323203x y z x y z ⎧-+=⎪⎨++=⎪⎩23323203x y z x y z ⎧-+=⎪⎨++=⎪⎩,23323203x y z x y z ⎧-+=⎪⎨++=⎪⎩,2323x y z x y z ⎧-+=⎪⎨++=⎪⎩, ∴,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,解得2322x z y ⎧⎪+=⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩, ()(20332033232350224+xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===,()(20332033232350224-xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===.故选择:A . 【点睛】本题考查开平方,解方程组,因式分解,整体代入求代数式的值,掌握开平方,解方程组,因式分解,整体代入求代数式的值.2.A解析:A 【分析】将方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩变形为111222a x b y c a x b y c +=⎧⎨+=⎩类似的形式,解方程组即可.【详解】解:方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩可化为:1112222(1)2(1)a x b y c a x b y c -+=⎧⎨-+=⎩,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,∴方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解满足()2215x y =⎧⎨-+=⎩,即解为:16x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的解,解二元一次方程组,正确的解出方程组的解是解题的关键.3.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.4.B解析:B 【分析】将各项中x 与y 的值代入方程检验即可. 【详解】 解:A 、把15x y =⎧⎨=⎩代入方程得:左边=2-5=-3,右边=6,左边≠右边,不符合题意; B 、把42x y =⎧⎨=⎩代入方程得:左边=8-2=6,右边=6,左边=右边,符合题意;C、把24xy=⎧⎨=⎩代入方程得:左边=4-4=0,右边=6,左边≠右边,不符合题意;D、把23xy=⎧⎨=⎩代入方程得:左边=4-3=1,右边=6,左边≠右边,不符合题意;故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.D解析:D【分析】如图,根据题意得121211161115121116x yx++=++⎧⎨++=++⎩,求出1314xy=⎧⎨=⎩,根据16+m+y=12+11+16,求出答案.【详解】如图,由题意得12121116 1115121116x yx++=++⎧⎨++=++⎩,解得1314 xy=⎧⎨=⎩,∵16+m+y=12+11+16,∴16+m+14=39,解得m=9,故选:D..【点睛】此题考查二元一次方程组的应用,根据题意设出未知数列方程组解决问题是解题的关键.6.A解析:A【分析】设小亮买了甲种水果x千克,乙种水果y千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【详解】设小亮买了甲种水果x千克,乙种水果y千克,由题意得:46282x yx y+=⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A . 【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.8.C解析:C 【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】依题意,得: 4.512y x yx -=⎧⎪⎨-=⎪⎩, 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.C解析:C 【分析】根据题意列出解析式,然后利用待定系数法求出y 与x 的解析式,取6y =时,求得x 的值即可. 【详解】 设()1y k x =-, 由题意可知:2k =,∴函数关系式为:()21y x =-,当6y =时,()621x =-, 解得:4x =, 故选:C . 【点睛】本题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求函数解析式的方法.10.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把2x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意.③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1,把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立,综上可知正确的为①③. 故选:B . 【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.11.C解析:C 【分析】根据题中的等量关系即可列得方程组. 【详解】设木头长为x 尺,绳子长为y 尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺, ∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺, ∴0.5y=x+1, 故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.12.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题13.【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将代入然后解一元一次方程求解【详解】解:(1)由①+②可得:∴故答案为:(2)将代入中解得:故答案为:9【点睛】本题考查 解析:385k + 【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将7x y +=代入,然后解一元一次方程求解. 【详解】解:(1)2326322x y k x y k +=+⎧⎨+=+⎩①②,由①+②可得:5538x y k +=+ ∴385k x y ++=故答案为:385k + (2)将7x y +=代入385k x y ++=中, 38=75k +,解得:9k = 故答案为:9.【点睛】本题考查加减法解二元一次方程组及解一元一次方程,掌握解方程的步骤正确计算是解题关键.14.(答案不唯一)【分析】将xy 的数值代入计算使等号左右两边相等即可【详解】解:当x=3y=4时3x-y=9-4=5∴方程的一组解故答案为:(答案不唯一)【点睛】此题考查二元一次方程的解正确计算是解题的解析:34x y =⎧⎨=⎩(答案不唯一) 【分析】将x 、y 的数值代入计算使等号左右两边相等即可.【详解】解:当x=3,y=4时,3x-y=9-4=5,∴方程35x y -=的一组解34x y =⎧⎨=⎩, 故答案为:34x y =⎧⎨=⎩(答案不唯一). 【点睛】 此题考查二元一次方程的解,正确计算是解题的关键.15.8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn 的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m 、n 的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.16.【分析】用和作差即可解答【详解】解:∵∴②-①得x-y=3故答案为3【点睛】本题考查了方程组的应用掌握整体思想是解答本题的关键解析:【分析】用29x y +=和26x y +=作差即可解答.【详解】解:∵2629x y x y +=⎧⎨+=⎩①② ∴②-①得x-y=3.故答案为3.【点睛】本题考查了方程组的应用,掌握整体思想是解答本题的关键.17.【分析】设小长方形的长是xmm 宽是ymm 根据图(1)知长的3倍=宽的5倍即3x=5y ;根据图(2)知宽的2倍-长=5即2y+x=5建立方程组【详解】设小长方形的长是xmm 宽是ymm 根据题意得:解得∴解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.18.【分析】根据方程组的解可以把解代入方程组构成新的方程组求出mn 再代入求平方根【详解】将代入方程组得解得所以所以的平方根为故答案为:【点睛】考核知识点:解方程组平方根解方程组理解平方根的定义是关键 解析:12± 【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根.【详解】将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得 27264m n m n +=⎧⎨-=⎩, 解得51m n =⎧⎨=⎩. 所以114m n =- 所以1m n -的平方根为12± 故答案为:12± 【点睛】 考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.19.2x-4【分析】【详解】由2x-y=4得:-y=4-2x ∴y=2x-4故答案为:2x-4 解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x ,∴ y=2x-4,故答案为:2x-420.-2【分析】联立两方程中不含mn 的方程求出相同的解把求出的解代入剩下的方程中求出m 与n 的值即可【详解】由题意得解得∴解得∴===−=-2故答案为:-2【点睛】此题考查了二元一次方程组的解方程组的解即解析:-2【分析】联立两方程中不含m ,n 的方程求出相同的解,把求出的解代入剩下的方程中求出m 与n 的值即可.【详解】由题意得31x y x y +=⎧⎨-=⎩, 解得21x y =⎧⎨=⎩, ∴22725m n m n -=⎧⎨-=-⎩,解得17212m n ⎧=-⎪⎨⎪=-⎩, ∴11178m n -=1171()(12)1728⨯--⨯-==−1322-=-2. 故答案为:-2【点睛】 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题21.(1)2;(2)12x y =⎧⎨=⎩;(3)是,理由见解析 【分析】(1)由点P 的坐标结合一次函数图象上点的坐标特征,即可求出b 的值;(2)利用数形结合的思想即可得出方程组的解就是两直线的交点坐标,依此即可得出结论;(3)根据点A 、P 的坐标,利用待定系数法求出m 、n 的值,由此即可得出直线l 3的解析式,代入x=1得出y=2,由此即可得出直线l 3:y=nx+m 也经过点P .【详解】解:(1)∵点P (1,b )在直线l 1:y =x +1上,∴b =1+1=2.(2)∵直线l 1:y =x +1与直线l 2:y =mx +n 交于点P (1,2),∴关于x ,y 的方程组1y x y mx n =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩. (3)直线l 3:y =nx +m 也经过点P .理由如下:将点A (4,0)、P (1,2)代入直线l 2:y =mx +n 中,得:042m n m n =+⎧⎨=+⎩,解得:2383m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线l 3:y =83x ﹣23. 当x =1时,y =83×1﹣23=2, ∴直线l 3:y =83x ﹣23经过点P (1,2). 【点睛】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b 值;(2)根据交点坐标得出方程组的解;(3)利用待定系数法求出m 、n 的值.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.22.(1)照明灯45万个,投射灯5万个;(2)m =20.【分析】(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,依题意,得:5091201005x y x y +=⎧⎨+=⎩, 解得:455x y =⎧⎨=⎩. 答:该城市灯光秀使用照明灯45万个,投射灯5万个. (2)依题意,得:9(1﹣m %)×1000+120(135-m %)×50×(1+20%)=13536,解得:m =20.答:m 的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)28y x =-+;(2【分析】(1)直接用待定系数法将点A 、B 的坐标代入求解即可;(2)将点()2P m ,,()2Q n ,代入(1)求出的函数表达式中,即可求出点P 、Q 的坐标,然后根据两点之间距离公式求解即可.【详解】(1)将()40A ,,()08B ,分别代入y kx b =+,得 4008k b b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩∴一次函数的表达式为28y x =-+;(2)将()2P m ,,()2Q n ,分别代入28y x =-+,得 4m =,3n =,即()24P ,,()32Q ,分别过点P ,Q 作关于x 轴,y 轴垂线,相交于点H ,则1QH =,2PH =, ∴2222125PQ QH PH =+==+【点睛】本题考查了用待定系数法求一次函数的解析式和一次函数的性质的应用,以及两点之间距离公式的计算,正确掌握知识点是解题的关键.24.(1)用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)应安排4张横切,12张纵切才能使总费用控制在5900元.【分析】(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,根据共有40张白铁皮且制作的盒底总数是制作的盒身的2倍,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排m 张横切,则安排(16−m )张纵切,根据总费用=40张白铁皮的成本+总加工费,列出关于m 的方程,即可解决问题.【详解】解:(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,依题意,得:4022432x y x y +⎧⎨⨯⎩==,解得:1624x y ⎧⎨⎩==, 答:用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)设安排m 张横切,则安排(16−m )张纵切,120×40+30×24+20m +25(16−m )=5900解得:m=4,答:在(1)的结论下,应安排4张横切,12张纵切才能使总费用控制在5900元.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程组或一元一次方程.25.(1)x=-4;(2)11x y =⎧⎨=⎩【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()()221342x x +--=去括号得,423+42x x +-=移项,合并同类项得,x=-4;(2)35821x y x y ⋅+=⎧⎨-=⎩①②①+②×5得,13x=13解得,x=1把x=1代入②得,2-y=1解得,y=1所以,方程组的解为:11x y =⎧⎨=⎩ 【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.26.(1)16x y =-⎧⎨=-⎩;(2)23x y =⎧⎨=⎩ 【分析】(1)用加减消元法解方程组即可;(2)先化简方程组,再用加减消元法解方程组即可.【详解】解:(1)42213x y x y -=⎧⎨+=-⎩①②, 2⨯+①②,得:99x =-,解得,1x =-,把1x =-代入①得:42y --=,解得,6y =- ,∴原方程组的解为:16x y =-⎧⎨=-⎩, (2)解:原方程组整理得:4527x y x y -=⎧⎨+=⎩①②, +①②得:612x =,解得,2x =,把2x =代入②得:47y +=,解得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,解题关键是熟练运用加减法进行消元,准确的求出一个未知数的值,再利用一元一次方程求另一个未知数的值.。
单元测试(五) 二元一次方程组(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列说法中,正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程3x +2y =7的解x 、y 为自然数的有无数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组中各个方程的公共解叫做这个方程组的解2.已知⎩⎪⎨⎪⎧x =2,y =1是方程kx -y =3的解,那么k 的值为( )A .2B .-3C .1D .-13.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线y 1=k 1x +b 1与y 2=k 2x +b 2的图象没有交点,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解的情况是( )A .有无数组解B .有一组解C .有两组解D .没有解5.运用加减法解方程组⎩⎪⎨⎪⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5,较简单的方法是( )A .先消去x ,再解⎩⎪⎨⎪⎧22y +2z =6166y -38z =-37B .先消去z ,再解⎩⎪⎨⎪⎧2x -6y =1538x +18y =21C .先消去y ,再解⎩⎪⎨⎪⎧11x +7z =2911x +3z =9 D .三个方程相加得8x -2y +4z =11再解6.已知∠A 、∠B 互余,∠A 比∠B 大30°. 设∠A 、∠B 的度数分别为x °、y °,下列方程组中,符合题意的是( )A.⎩⎪⎨⎪⎧x +y =180x =y -30B.⎩⎪⎨⎪⎧x =-2x =y +30C.⎩⎪⎨⎪⎧x +y =90x =y +30D.⎩⎪⎨⎪⎧x +y =90x =y -30 7.小明在解关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =★,则△和★代表的数分别是( ) A .1,5 B .5,1 C .-1,3 D .3,-18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所列的二元一次方程组是( )A.⎩⎪⎨⎪⎧x -y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=09.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A.⎩⎪⎨⎪⎧x +y =272x +3y =66B.⎩⎪⎨⎪⎧x +y =272x +3y =100C.⎩⎪⎨⎪⎧x +y =273x +2y =66D.⎩⎪⎨⎪⎧x +y =273x +2y =100 10.如图所示,两台天平保持平衡,已知每块巧克力的重量相等,每个果冻的重量相等,则每块巧克力和每个果冻的重量分别是( )A .10 g ,40 gB .15 g ,35 gC .20 g ,30 gD .30 g ,20 g二、填空题(每小题4分,共16分)11.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =________.12.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,有________种租车方案.13.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.14.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,根据题意可列方程组为________________.三、解答题(共54分)15.(8分)解方程组:⎩⎪⎨⎪⎧3x +2y =19,①2x -y =1.②x+2y-9+(3x-y+1)2=0,求x·y的平方根.16.(8分)已知||17.(8分)直线a与直线y=2x+1的交点的横坐标是2,与直线y=-x+2的交点的纵坐标是1,求直线a对应的表达式.18.(10分)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2016年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?代收电费收据代收电费收据2016年3月2016年4月收费员:林云收费员:林云19.(8分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm ,放入一个大球水面升高________cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?20.(12分)今年3月,两次植树劳动前八年级(2)班学生到商店去购买A 牌矿泉水,该商店对A 牌矿泉水的销售方法是:“购买不超过30瓶按零售价销售,每瓶1.5元;多于30瓶但不超过50瓶,按零售价的8折销售;购买多于50瓶,按零售价的6折销售.”该班两次共购A 牌矿泉水70瓶(第一次多于第二次),共付出90.6元.(1)该班分两次购买矿泉水比一次性购买70瓶多花了多少钱?(2)该班第一次与第二次分别购买矿泉水多少瓶?参考答案1.D2.A3.A4.D5.C6.C7.B8.D9.A 10.C 11.0 12.2 13.2 14.⎩⎪⎨⎪⎧x +y =1000.9x +1.4y =100×1.215.由②,得y =2x -1,③把③代入①,得3x +4x -2=19,解得x =3.把x =3代入③,得y =2×3-1,即y =5.故原方程组的解为⎩⎪⎨⎪⎧x =3,y =5.16.由非负数的性质,得⎩⎪⎨⎪⎧x +2y -9=0,3x -y +1=0.①②由①,得x =9-2y ,③将③代入②,得3(9-2y)-y +1=0,解得y =4.把y =4代入③,得x =1.所以x·y =4,则x·y 的平方根是±2.17.设直线a 的表达式为y =kx +b.由x =2代入y =2x +1求得y =5,即直线a 上的一个点的坐标是(2,5);由y =1代入y =-x +2求得x =1,即直线a 上的另一个点的坐标是(1,1).将点(2,5)、(1,1)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =1,2k +b =5.解得⎩⎪⎨⎪⎧k =4,b =-3.所以直线a 对应的表达式为y =4x -3.18.设第一阶梯电价每度x 元,第二阶梯电价每度y 元,由题意,得⎩⎪⎨⎪⎧200x +20y =112,200x +65y =139.解得⎩⎪⎨⎪⎧x =0.5,y =0.6.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.19.(1)2 3 (2)设应放入x 个大球,y 个小球,由题意得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10.解得⎩⎪⎨⎪⎧x =4,y =6.答:应放入4个大球,6个小球.20.(1)90.6-70×1.5×0.6=27.6(元). (2)设第一次购买了x 瓶矿泉水,第二次购买了y 瓶矿泉水,且x >y.①当第二次不足20瓶时,⎩⎪⎨⎪⎧x +y =70,0.9x +1.5y =90.6.解得⎩⎪⎨⎪⎧x =24,y =46;(不合题意,舍去)②当第二次在20瓶到30瓶之间时,⎩⎪⎨⎪⎧x +y =70,1.2x +1.5y =90.6.解得⎩⎪⎨⎪⎧x =48,y =22;③当第二次多于30瓶但少于35瓶时,1.2×70=84(元)≠90.6元(不合题意,舍去),所以该班第一次与第二次分别购买矿泉水48瓶、22瓶.。
第五章解二元一次方程组测试卷一、填空:1.x=2,y=﹣1适合方程2x+3ay=1,则a=.2.方程x m+1+y2n+m=5是二元一次方程,则m=,n=.3.二元一次方程2x﹣y=1有以下解:、、.4.在二元一次方程3x+2y=4中,用含x的代数式表示y可得到,再用含y的代数式表示x可得到.5.当a2x﹣y=a,方程x﹣2y=﹣1的解是.(其中a≠0)6.如果2a y+5b3x与﹣4a2x b2﹣4y是同类项,则x=,y=.7.在方程组中,如果是它的一个解,那么a=,b=.8.已知,都是方程ax﹣y=b的解,则a=,b=.9.若方程组的解x与y的和等于1,则k=.10.如果方程组与方程组有相同的解,则m﹣n=.二、选择题(共3小题,每小题3分,满分9分)11.已知长江比黄河长836km,黄河长度的6倍比长江长度的5倍多1284km,设长江,黄河的长度分别为xkm和ykm,则下列方程组中正确的是()A.B.C.D.12.已知x2m﹣1+3y4﹣2n=﹣7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.13.分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“”的个数为()A.2 B. 3 C. 4 D. 5三、解方程组:14.15.16.18.19.20..21.22.23.五、简答题:24.若单项式123x234﹣3n y456+m与678x7n﹣456y123﹣2m的差仍是单项式,求m﹣2n的值.25.在平面直角坐标系中,已知点A(2a﹣b,﹣8)与点B(﹣2,a+3b)关于原点对称,求a、b的值.26.求使方程组有正整数解的自然数m的值.27.把质量分数分别为90%和60%的甲、乙两种酒精溶液配制成质量分数为75%的消毒酒精溶液500g,求从甲、乙两种酒精中各取多少克.28.某商场以一定的进价购进一批服装,并以一定的单价售出,平均每天卖出10件,30天共获利15000元,现在为了尽快回笼资金,商场决定将每件衣服降价20%出售,结果平均每天比降价前多卖10件,这样30天可获利12000元,问这批服装每件的进价及降价前出售的单价各是多少?29.将一摞笔记本分给若干个同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,共有多少笔记本,多少同学?30.某厂第二车间的人数比第一车间的人数的少30人.如果从第一车间调10人到第二车间,那么第二车间就是第一车间的.问这两个车间各有多少人?31.某液化气公司计划向A、B两城市输送天然气,A城市需144万m3,B城市需90万m3,现已两次送气,往A城市送气3天,B城市送气2天,共送气84万m3,往A城市送气2天,B城市送气3天,共送气81万m3,问完成往A、B两城市送气任务还各需多少天?32.列方程或方程组解应用题:某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程)33.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,全部销售完后共获利润660元.篮球排球进价(元/个)150 120售价(元/个)175 140(1)请利用二元一次方程组求购进篮球和排球各多少个?(2)销售8个篮球的利润与销售几个排球的利润相等?34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.35.甲、乙两人在A地,丙在B地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A、B两地之间的距离.。
第五章 二元一次方程组单元测试本试卷满分120分,试题共26题.答卷前,请认真读题!一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,是二元一次方程的是( ) A .y =3x ﹣1B .xy =1C .x +1y =2D .x+y+z =12.已知3x −y2=1,用含x 的式子表示y 下列正确的是( ) A .y =6x ﹣2 B .y =2﹣6xC .y =﹣1+3xD .y =−12−32x3.解方程组{2x +y =7①x −y =2②的最佳方法是( )A .代入法消去y ,由①得y =7﹣2xB .代入法消去x ,由②得x =y+2C .加减法消去y ,①+②得3x =9D .加减法消去x ,①﹣②×2得3y =34.若{x =2y =−1是二元一次方程mx+2y =4的解,则m 的值是( )A .3B .﹣3C .2D .﹣25.一次函数y =x+1和一次函数y =2x ﹣2的图象的交点坐标是(3,4),据此可知方程组{x −y =−12x −y =2的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−36.对于实数x ,y :规定一种运算:x △y =ax+by (a ,b 是常数).已知2△3=11,5△(﹣3)=10.则a ,b 的值为( ) A .a =3,b =35B .a =2,b =3C .a =3,b =53D .a =3,b =27.已知实数a ,b 满足:(a ﹣b+3)2+√a +b −1=0,则a 2022+b 6等于( ) A .65B .64C .63D .628.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组( )求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩9.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( )A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.由方程组{x +m =−4y −3=m 可得x 与y 之间的关系式是 (用含x 的代数式表示y ).12.已知{x =ay =b 是二元一次方程4x ﹣7y =8的一个解,则代数式17﹣8a+14b 的值是 . 13.如果4a 2x ﹣3y b 4与−23a 3b x+y 是同类项,则xy = .14.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为 . 15.二元一次方程组{x +y =52x −y =1的解为{x =2y =3,则一次函数y =5﹣x 与y =2x ﹣1的交点坐标为 .16.在关于m ,n 的方程()()284370m n m n λ+-++-=中,能使λ无论取何值时,方程恒成立的m ,n 的和为 .17.一次函数y =kx+b (k 、b 是常数)当自变量x 的取值为1≤x ≤5时,对应的函数值的范围为﹣2≤y ≤2,则此一次函数的解析式为 .18.如图,两个形状、大小完全相同的大长方形内放入五个如图③的小长方形后分别得到图①、图②,已知大长方形的长为a ,则图①中阴影部分的周长与图②中阴影部分的周长的差是______.(用含a 的式子表示)三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤) 19.(6分)解方程组:(1){2x −3y =54x −5y =7; (2){x+3y 2=355(x −2y)=−4.20.(6分)《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.21.(6分)直线l 1:y =2x+1与直线l 2:y =mx+4相交于点P (1,b ). (1)求b 、m 的值,并结合图象求关于x 、y 的方程组{2x −y =−1mx −y =−4的解.(2)垂直于x 轴的直x =a 与直线l 1,l 2分别交于点C 、D ,若线段CD 的长为2,求a 的值.22.(6分)已知关于x ,y 的二元一次方程组 32129x y k x y +=+⎧⎨-=⎩的解互为相反数,求k 的值.23.(8分)如图,直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x 、y 的方程组{y =x +1y =mx +n ,请你直接写出它的解;(3)直线l 3:y =nx+m 是否也经过点P ?请说明理由.24.(10分)阅读材料:善于思考的小强同学在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”解法:解:将方程②变形:4x+10y+y =5,即2(2x+5y )+y =5…③,把方程①代入③得:2×3+y =5即y =﹣1,把y =﹣1代入方程①,得x =4,所以方程组的解为{x =4y =−1.请你解决以下问题(1)模仿小强同学的“整体代换”法解方程组{3x +4y =166x +9y =25;(2)已知x ,y 满足方程组{x 2+xy +3y 2=113x 2−5xy +9y 2=49;(i )求xy 的值;(ii )求出这个方程组的所有整数解.25.(12分)某商场计划用50000元从厂家购进60台新型电子产品,已知该厂家生产三种不同型号的电子产品,设甲、乙型设备应各买入x ,y 台,其中每台的价格、销售获利如下表:甲型 乙型 丙型 价格(元/台) 900 700 400 销售获利(元/台)20016090(1)购买丙型设备 60﹣x ﹣y 台(用含x ,y 的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了50000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,则应选择哪种购进方案,为使销售时获利最大?并求出这个最大值.26.(12分)已知点A (0,4)、C (﹣2,0)在直线l :y =kx+b 上,l 和函数y =﹣4x+a 的图象交于点B (1)求直线l 的表达式;(2)若点B 的横坐标是1,求关于x 、y 的方程组{y =kx +by =−4x +a 的解及a 的值.(3)若点A 关于x 轴的对称点为P ,求△PBC 的面积.。
一、选择题1.已知关于x ,y 的二元一次方程组437mx ny x my +=⎧⎨+=⎩,下列说法中正确的有( ) ①当方程组的解是12x y =⎧⎨=⎩时,m ,n 的值满足3m n +=; ②当3m =时,不论n 取什么实数,x y +的值始终不变;③当方程组的解是43x y =⎧⎨=⎩时,方程组(2)(1)43(2)(1)7m x n y x m y -+-=⎧⎨-+-=⎩的解为22x y =⎧⎨=⎩. ④当1m =时,若方程有自然数解,则n 的值为2或34. A .①③ B .②③ C .①② D .①②④2.已知24510a b a b +=⎧⎨-=⎩,则+a b 等于( ) A .8 B .7 C .6 D .53.若关于x ,y 的二元一次方程组259x y k x y k +=⎧⎨-=⎩的解也是二元一次方程24x y +=的解,则k 的值为( )A .1B .-1C .2D .-24.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23B .29C .44D .53 5.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -= C .93t =D .91t = 6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种 7.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l8.下列各方程中,是二元一次方程的是( )A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy 9.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2- B .2 C .6- D .610.把60个乒乓球分别装在两种不同型号的盒子里(两个盒子必须都装),大盒装6个,小盒装4个,当把乒乓球都装完的时候恰好把盒子都装满,那么不同的装球方法有( ).A .2种B .4种C .6种D .8种11.已知方程组43235x y k x y -=⎧⎨+=⎩的解满足x y =,则k 的值为( ) A .1 B .2 C .3 D .412.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩ 二、填空题13.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay +=⎧⎨+=⎩的解,则a b +=________. 14.已知直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (2,b ),则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______. 15.若方程组41524x y k x y +=-⎧⎨+=⎩的解为x 、y ,且x +y >0,则k 的取值范围是__________. 16.已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________.17.在平面直角坐标系中有两点(1,2)A -,()2,3B ,如果函数1y kx =-的图象与线段AB 的延长线相交(交点不包括点B ),则实数k 的取值范围是__________.18.在方程27x y +=中,用含x 的代数式表示y ,则得___________.19.如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为 ______cm 220.若关于x 、y 的方程组35x y mx y ny +=⎧⎨+=⎩ 与()81m n x y x y ⎧-=-⎨-=⎩的解相同,则11178m n - 的值为________________. 三、解答题21.表格中的两组对应值满足一次函数y =kx +b ,函数图象为直线1l ,如图所示.将函数y =kx +b 中的k 与b 交换位置后得一次函数y =bx +k ,其图象为直线2l .设直线1l 交y 轴于点A ,直线1l 交直线2l 于点B ,直线2l 交y 轴于点C .x ﹣2 4y ﹣4 2l 2的解析式;(2)若点P 在直线1l 上,且△BCP 的面积是△ABC 的面积的1+2倍,求点P 的坐标; (3)若直线y =a 分别与直线1l ,2l 及y 轴的三个交点中,其中一点是另两点所成线段的中点,求a 的值.22.(1)解方程组:1?37x y x y =+⎧⎨+=⎩; (2)解方程组:5210?258?x y x y +=⎧⎨+=⎩. 23.已知0k ≠,将关于x 的方程0kx b +=记作方程☆.(1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______;(3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.24.计算:(1)()101123242-⎛⎫-+-- ⎪⎝⎭; (2)已知223y x x =-+--,求()2021x y +的立方根;(3)如图,一次函数y kx b =+的图像分别与x 轴、y 轴交于点A 、B ,且经过点31,2⎛⎫- ⎪⎝⎭,求AOB 的面积.25.如图是某商场第二季度某品牌运动服装的S 号,M 号,L 号,XL 号,XXL 号销售情况的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)求XL 号,XXL 号运动服销量的百分比;(2)补全条形统计图:该商场第三季度继续销售该品牌运动服500件,根据以上统计结果,M 号运动服应该进多少件较为合适?(3)按照M 号,XL 号运动服装的销量比,从M 号、XL 号运动服装中分别取出x 件、y 件,若再取2件XL 号运动服装,将它们放在一起,现从这()2x y ++件运动服装中,随机取出1件,取得M 号运动服装的概率为35,求,x y 的值 26.若关于x ,y 的多项式()()23291027a x a b xy x y +++-++不含二次项,求35a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】将12x y =⎧⎨=⎩代入原方程组,求出m 和n 值,可判断①;将m=3代入原方程组,可判断②;根据原方程组的解为43x y =⎧⎨=⎩,可得2413x y -=⎧⎨-=⎩,求出x 和y 值,可判断③;将m=1代入原方程组,求出x 和y ,再找到当方程组的解为自然数时n 的部分值,可判断④.【详解】解:①将12x y =⎧⎨=⎩代入437mx ny x my +=⎧⎨+=⎩中,得24327m n m +=⎧⎨+=⎩,解得:21m n =⎧⎨=⎩, 则m+n=3,故正确;②当m=3时,有337x y +=, 则73x y +=,故正确; ③当方程组437mx ny x my +=⎧⎨+=⎩的解是43x y =⎧⎨=⎩时, 则有2413x y -=⎧⎨-=⎩, 则方程组(2)(1)43(2)(1)7m x n y x m y -+-=⎧⎨-+-=⎩的解为64x y =⎧⎨=⎩,故错误; ④当m=1时,方程组为437x ny x y +=⎧⎨+=⎩,解得:7431531n x n y n -⎧=⎪⎪-⎨⎪=⎪-⎩, ∵方程有自然数解,当n=2时,21x y =⎧⎨=⎩,当n=34时,14x y =⎧⎨=⎩,当n=47时,07x y =⎧⎨=⎩,故错误; 故选:C .【点睛】此题考查了二元一次方程组的解,和解二元一次方程组,解题的关键是理解题意,掌握方程组的解即为能使方程组中两方程成立的未知数的值.2.D解析:D【分析】解二元一次方程组再进行计算即可;【详解】24510a b a b +=⎧⎨-=⎩, 10a b -=两边同时乘以2得:2220a b -=,245a b +=减去2220a b -=得:615b =-, 解得:52b =-, 代入10a b -=得:152a =, ∴155522a b +=-=; 故答案选D .【点睛】本题主要考查了二元一次方程组的求解,结合代数式求值是解题的关键.3.B解析:B【分析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=4的解,也就是说,它们有共同的解,及它们是同一方程组的解,故将其列出方程组解答即可.【详解】解:由方程组259x y k x y k +=⎧⎨-=⎩,得143133x k y k ⎧=⎪⎪⎨⎪=-⎪⎩, 把x 、y 的值代入24x y +=中, 得14132433k k -⨯=, 解得k=-1.故选:B .【点睛】 本题考查了二元一次方程组的解,解二元一次方程.会将二元一次方程组的解,代入二元一次方程x+2y=4是解题的关键.4.C【分析】分别令n=2与n=5表示出a2,a5,代入已知等式求出a1与d的值,即可确定出a15的值.【详解】令n=2,得到a2=a1+d=5①;令n=5,得到a5=a1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s ts t+=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.A解析:A【解析】试题设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.7.B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 8.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .9.C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键. 10.B解析:B【分析】结合题意,列二元一次方程,再根据x 和y 均为正整数,通过解二元一次方程,即可得到答案.【详解】假设大盒有x 个,小盒有y 个根据题意得:6460x y +=结合题意,x 和y 均为正整数当1x =时,60613.54y -==,不符合题意 当2x =时,6012124y -==,符合题意 当3x =时,601810.54y -==,不符合题意 当4x =时,602494y -==,符合题意 当5x =时,60307.54y -==,不符合题意 当6x =时,603664y -==,符合题意 当7x =时,6042 4.54y -==,不符合题意 当8x =时,604834y -==,符合题意 当9x =时,6054 1.54y -==,不符合题意当10x =时,606004y -==,不符合题意 ∴共有4种装球方法故选:B .【点睛】 本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的性质并运用到实际问题中,从而完成求解.11.A解析:A【分析】把x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解. 【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x k x =⎧⎨=⎩, 所以k=1,故选:A【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键. 12.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.二、填空题13.9【分析】根据二元一次方程组的解的定义得到关于ab 的二元一次方程组解方程组即可【详解】解:由题意得:解得所以9故答案为:9【点睛】本题考查的是二元一次方程组的解二元一次方程组的解法掌握解二元一次方程解析:9【分析】根据二元一次方程组的解的定义得到关于a、b的二元一次方程组,解方程组即可.【详解】解:由题意得:40 222 ab a-=⎧⎨-=⎩,解得45ab=⎧⎨=⎩,所以,a b+=9.故答案为:9.【点睛】本题考查的是二元一次方程组的解、二元一次方程组的解法,掌握解二元一次方程组的一般步骤是解题的关键.14.【分析】首先将点P(2b)代入直线l1:y=x+1求出b的值进而得到P点坐标再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案【详解】解:∵直线y=x+1经过点P(2b)∴b=2+1解析:23 xy=⎧⎨=⎩【分析】首先将点P(2,b)代入直线l1:y=x+1求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(2,b),∴b=2+1,解得b=3,∴P(2,3),∴关于x的方程组10x ymx y n-+=⎧⎨-+=⎩的解为23xy=⎧⎨=⎩,故答案为:23 xy=⎧⎨=⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.k>-3【分析】本题可将两式相加得到6x+6y=k+3根据x+y的取值可得出k 的值【详解】两式相加得:6x+6y=k+3∵x+y>0∴6x+6y=6(x+y)>0即k+3>0∴k >-3故答案为:k >解析:k >-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y 的取值,可得出k 的值.【详解】两式相加得:6x+6y=k+3,∵x+y >0∴6x+6y=6(x+y )>0,即k+3>0,∴ k >-3,故答案为:k >-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y 的形式,再根据x+y >0求得k 的取值.16.【分析】根据方程组的解可以把解代入方程组构成新的方程组求出mn 再代入求平方根【详解】将代入方程组得解得所以所以的平方根为故答案为:【点睛】考核知识点:解方程组平方根解方程组理解平方根的定义是关键 解析:12± 【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根.【详解】将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得 27264m n m n +=⎧⎨-=⎩, 解得51m n =⎧⎨=⎩. 所以114m n =- 所以1m n -的平方根为12± 故答案为:12±【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.17.【分析】先求出直线AB 的解析式找出两临界点即可得出答案【详解】解:设AB 的解析式为:y=kx+b ;将代入可得;解得:当与直线AB 平行此时当过时2k-1=3则k=2∴实数k 的取值范围是:【点睛】本题考 解析:123k << 【分析】先求出直线AB 的解析式,找出两临界点即可得出答案.【详解】解: 设AB 的解析式为:y=kx+b ;将(1,2)A -,()2,3B 代入可得232k b k b +=⎧⎨-+=⎩; 解得:1373k b ⎧=⎪⎪⎨⎪=⎪⎩当1y kx =-与直线AB 平行,此时13k =, 当1y kx =-过()2,3B 时,2k-1=3,则k=2,∴实数k 的取值范围是:123k << 【点睛】本题考查一次函数图象与系数的关系,有一定难度,关键是找出两临界条件. 18.【分析】把x 看做已知数求出y 即可【详解】解:方程2x+y=7解得:y=7-2x 故答案为:y=7-2x 【点睛】本题考查了解二元一次方程解题的关键是将x 看做已知数求出y解析:72y x =-【分析】把x 看做已知数求出y 即可.【详解】解:方程2x+y=7,解得:y=7-2x .故答案为:y=7-2x .【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .19.70【解析】设小长方形的长为xcm 宽为ycm 则解析:70【解析】设小长方形的长为xcm ,宽为ycm.则255{{7706172x y x xy x y y ==⇒⇒=+==20.-2【分析】联立两方程中不含mn 的方程求出相同的解把求出的解代入剩下的方程中求出m 与n 的值即可【详解】由题意得解得∴解得∴===−=-2故答案为:-2【点睛】此题考查了二元一次方程组的解方程组的解即解析:-2【分析】联立两方程中不含m ,n 的方程求出相同的解,把求出的解代入剩下的方程中求出m 与n 的值即可.【详解】由题意得31x y x y +=⎧⎨-=⎩, 解得21x y =⎧⎨=⎩, ∴22725m n m n -=⎧⎨-=-⎩, 解得17212m n ⎧=-⎪⎨⎪=-⎩, ∴11178m n -=1171()(12)1728⨯--⨯-==−1322-=-2. 故答案为:-2【点睛】 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题21.(1)21y x =-+;(2)(2或(24-;(3)5-或75-或12- 【分析】(1)根据待定系数法求得直线1l 的解析式,由题意k 与b 交换位置可得出直线2l 的解析式;(2)根据函数与x 轴交点、y 轴交点以及交点坐标特征分别求出A 、B 、C 的坐标,根据三角形面积公式求得△ABC 的面积,由点在函数上的坐标特征设点P(x ,y),由BCP ACP ABC S S S =-表示出△BCP 的面积,根据题意列出等式,解方程即可得出答案; (3)求得两条直线与指向y=a 的交点横坐标,分三种情况讨论求得即可.【详解】解:(1)由题意:把(﹣2,﹣4)、(4,2)代入一次函数y =kx +b ,得4224k b k b -=-+⎧⎨=+⎩解得:12k b =⎧⎨=-⎩∴ 直线1l 的解析式为:2y x =-,由题意知直线2l 的解析式为:y bx k =+∴直线2l 的解析式为:21y x =-+(2)∵直线1l 交y 轴于点A ,∴把x=0,代入直线1l ,即022y =-=-,∴(0,2)A -∵直线1l 交直线2l 于点B ,∴ 联立2y 21y x x =-⎧⎨=-+⎩即221x x -=-+,解得:1x =,∴121y =-=-,∴ (1,1)B -,∵直线2l 交y 轴于点C ,∴把x=0,代入直线2l ,即0+11y ==,∴(0,1)C ∴11331222ABC B S AC x =⋅⋅=⨯⨯= ∵ 点P 在直线1l 上,∴ 设P (x ,y )即P (x ,x-2) ∵13332222BCP ACP ABC P P SS S AC x x =-=⋅⋅-=- ∵()1+2BCP ABC S S =, (3331222p x -=+⨯解得:2p x =∴2p x =+2p x =-,∴2p y x =-=y 24p x =-=-,∴ 点P 的坐标:(2+或(24--(3)把y=a 代入2y x =-,得2x a =+,把y=a 代入21y x =-+,得12a x -=,分三种情况:①当中点在y 轴上时,1202a a -++=, 解得:5a =-, ②当中点在l 1上时,()122=2a a -+, 解得:75a =-, ③当中点在l 2上时,1222a a -⨯=+, 12a =-, 综上所述,a 的值为:5-或75-或12-.【点睛】本题考查了一次函数图像与几何变换,两条直线交点问题,待定系数法求一次函数的解析式,分类讨论是解题的关键.22.(1)21x y =⎧⎨=⎩;(2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)利用代入消元法求解即可;(2)变形后,用加减消元法求解即可.【详解】解:(1)137x y x y =+⎧⎨+=⎩①②,将①代入②中得3(1)7y y ++=,解得1y =,将1y =代入①中得:112x =+=,故该方程组的解为:21x y =⎧⎨=⎩; (2)5210258x y x y +=⎧⎨+=⎩①②, ①×2得:10420x y +=③,②×5得:102540x y +=④,④-③得:2120y =,解得2021y =, 将2021y =代入①中得:20210152x +⨯=,解得3421x =, 故该方程组的解为:34212021x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查解二元一次方程组.熟练掌握解二元一次方程组的两种方法,并能灵活运用是解题关键.23.(1)x=23;(2)1,5(答案不唯一);(3)y=1 【分析】(1)将k 和b 代入后解方程即可;(2)将x=-5代入方程,得到k 和b 的关系,取一组特殊值即可;(3)将x=3代入方程☆:得3b k =-,从而得到关于y 的方程()220k y -=,结合k≠0求出y 值即可.【详解】解:(1)当k=3,b=-2时,方程☆为:3x-2=0,解得:x=23. 故答案为:x=23; (2)∵方程☆的解为x=-5,∴-5k+b=0,∴k=1,b=5,故答案为:1,5(答案不唯一);(3)∵方程的解为x=3,代入方程☆,则30k b +=,∴3b k =-,解关于y 的方程:()250k y b --=,即()2530k y k -+=,得:()220k y -=,∵k≠0,∴2y-2=0.解得:y=1.【点睛】本题考查了一元一次方程的解,二元一次方程的解,熟练掌握解一元一次方程是关键. 24.(1)3+;(2)1-;(3)3. 【分析】(1)根据二次根式的运算、零次幂及负指数幂可进行求解;(2)由二次根式的性质可得x=2,然后可得y=-3,最后代入求解即可;(3)由图像可得点B 的坐标为()0,3,然后把点B 和点31,2⎛⎫- ⎪⎝⎭代入求解一次函数的解析式,进而可得点A 的坐标,然后问题可求解.【详解】解:(1)原式=123+=+(2)∵3y =,∴20,20x x -≥-≥,∴2x ≤,2x ≥,∴2x =,∴3y =-,∴()()20212021231x y +=-=-;∴()2021x y +的立方根为1-;(3)由图像可得点B 的坐标为()0,3,然后把点()0,3B 和点31,2⎛⎫- ⎪⎝⎭代入一次函数y kx b =+得: 332b k b =⎧⎪⎨-+=⎪⎩,解得:323k b ⎧=⎪⎨⎪=⎩, ∴一次函数的解析式为332y x =+, 令y=0时,则有3032x =+,解得:2x =-, ∴OA=2,OB=3,∴12332AOBS=⨯⨯=△.【点睛】本题主要考查一次函数与几何的综合及二次根式的运算,熟练掌握一次函数与几何的综合及二次根式的运算是解题的关键.25.(1)XL号,XXL号运动服装销量的百分比分别为15%,10%;(2)见解析,M 号运动服应该进150件较为合适;(3)所求,x y的值分别为12,6【分析】(1)由M号的销售量及其所占的百分比求出运动服装总销量,再求出XXL号运动服装销量的百分比,根据各组所占百分比的和为单位1求出XL号运动服装销量的百分比;(2)用运动服装总销量分别乘以S号,L号,XL号所占的百分比,得到对应服装销量,即可补全条形统计图,进而可得到结论;(3)根据题意列出方程组,求解即可.【详解】解:()16030%200÷=(件),20100%10%200⨯=,125%30%20%10%15%----=答:XL号,XXL号运动服装销量的百分比分别为15%,10%()2S号服装销量:20025%50⨯=(件),L号服装销量:20020%40⨯=(件),XL号服装销量:20015%30⨯=(件),条形统计图补充如图:60500150200⨯=(件)∴M号运动服应该进150件较为合适.()3由题意,得2325x yxx y=⎧⎪⎨=⎪++⎩解得126 xy=⎧⎨=⎩∴所求,x y的值分别为12,6.【点睛】本题考查了条形统计图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了概率公式.26.-5【分析】根据多项式不含二次项可得3209100aa b+=⎧⎨+=⎩,求出a和b的值代入即可求解.【详解】解:∵多项式不含二次项,∴320 9100 aa b+=⎧⎨+=⎩,解得23a=-,35=b.当23a=-,35=b时,233535535a b⎛⎫-=⨯--⨯=-⎪⎝⎭.【点睛】本题考查多项式的次数、解二元一次方程组、代数式求值,根据题意得出二元一次方程组是解题的关键.。
第五章单元测试一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的是( )A .⎩⎨⎧x -z =1,y =2B .⎩⎨⎧x =-1,y -2x =2C .⎩⎨⎧x +y =1,xy =xzD .⎩⎨⎧x -y =0,y 2=12.已知⎩⎨⎧x =2k ,y =3k 是二元一次方程2x +y =14的解,则k 的值是( ) A .2 B .-2 C .3 D .-33. 直线l 1:y =k 1x +b 1和直线l 2:y =k 2x +b 2在平面直角坐标系中如图所示,通过观察我们就可以得到方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为⎩⎨⎧x =1,y =1,这一求解过程主要体现的数学思想是( )A .数形结合思想B .分类讨论思想C .类比思想D .公理化思想4.以方程2x +y =14的解为坐标的点组成的图象是一条直线,这条直线对应的一次函数表达式为( )A .y =2x +14B .y =2x -14C .y =-2x +14D .y =-x +75.设直线y =kx +b 经过点(-5,1),(3,-3),那么k 和b 的值分别是( )A .-2,-3B .1,-6C .-12,-32D .1,66.用加减消元法解方程组⎩⎨⎧2x +5y =-10,①5x -3y =-1②时,下列结果正确的是( ) A .要消去x ,可以用①×3-②×5 B .要消去y ,可以用①×5+②×2C .要消去x ,可以用①×5-②×2D .要消去y ,可以用①×3+②×27.为安置200名因暴风雪受灾的灾民,需要搭建可容纳12人和8人的两种帐篷(不能只搭建一种,且每顶帐篷都要住满),则搭建方案共有( )A .8种B .9种C .16种D .17种8.已知关于x ,y 的方程组⎩⎨⎧ax -by =4,ax +by =2的解为⎩⎨⎧x =4,y =2,则4a -3b 的值为( ) A .-92 B .92 C .-32 D .329.天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x 元和y 元,则可列方程组为( )A .⎩⎨⎧x +y =500,(1+5%)x +(1-8%)y =500×(1+0.2%) B .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×0.2% C .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×(1+0.2%) D .⎩⎨⎧x +y =500,5%x +8%y =500×(1+0.2%) 10.汪老师购买了一条18米长的彩带来装饰教室,他用剪刀剪了a (a >2)次,把彩带剪成了一段5米长,一段7米长和若干段相同长度(长度为整数)的彩带,则a 的所有可能取值的和为( )A .11B .12C .14D .16二、填空题(每题3分,共15分)11.如果4x a +b -2y a -b =8是二元一次方程,那么a =________.12. 已知x ,y 满足方程组⎩⎨⎧2x +y =5,x +2y =4,则x +y 的值为______. 13.《九章算术》中的算筹图是竖排的,为了看图方便,我们把它改成横排,图1,图2中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是⎩⎨⎧x +3y =18,2x +4y =26.类似地,图2所示的算筹图,可以表述为______________________.14. 如图,一次函数y =kx +b 和y =-13x +13的图象交于点M .则关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =kx +b ,y =-13x +13的解是__________. 15.《九章算术》中有一题为“今有人共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”题目的大意是:有几人共同出钱买鸡,每人出9枚铜钱,则多了11枚铜钱;每人出6枚铜钱,则少了16枚铜钱,那么共有________人买鸡,鸡的价格为________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.解下列方程组:(1)⎩⎨⎧x +5y =6,3x -6y -4=0; (2)⎩⎨⎧2a +3b =2,4a -9b =-1;(3)⎩⎪⎨⎪⎧5(x -9)=6(y -2),x 4-y +13=2; (4)⎩⎨⎧x -y +z =0,4x +2y +z =3,25x +5y +z =60.17.若关于x ,y 的方程组⎩⎨⎧3x +5y =m +2,2x +3y =m的解x 与y 的值的和等于2,求m 2-4m +4的值.18.一个两位数的十位数字与个位数字的和为6,如果把这个两位数加上36,那么恰好成为个位数字与十位数字对调后组成的两位数,则原来的两位数是多少?19.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以12千米/时的速度下山,以9千米/时的速度通过平路,到学校共用了55分钟.回去时,通过平路的速度不变,但以6千米/时的速度上山,回到营地共花去了1小时10分钟,则夏令营到学校有多少千米?20.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3 h完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50 t,甲、乙两队在此路段的清雪总量y(t)与清雪时间x(h)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为________t.(2)求此次任务的清雪总量m.(3)求乙队调离后y与x之间的函数关系式.21.某扶贫帮扶小组积极响应政策,对农民实施精准扶贫.某农户老张种植花椒和黑木耳两种干货共800千克,扶贫帮扶小组通过市场调研发现,花椒市场价为60元/千克,黑木耳市场价为48元/千克,老张全部售完可以收入4.2万元.已知老张种植花椒的成本为25元/千克,种植黑木耳的成本为35元/千克,根据脱贫目标任务要求,老张种植花椒和黑木耳两种干货的纯收入(销售收入-种植成本)在2万元以上才可以顺利脱贫.请你分析一下扶贫帮扶小组是否能帮助老张顺利脱贫.22.如图,在平面直角坐标系xOy中,直线l1:y=x+1与x轴交于点A,直线l2与x轴交于点B(1,0),l1与l2相交于点C(m,3).(1)求直线l2的表达式;(2)过x轴上一动点D(t,0),作垂直于x轴的直线,分别与直线l1,l2交于P,Q两点.连接AQ,若S△AQC=2S△ABC,求此时点Q的坐标.23.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地,轿车比货车晚出发1.5 h,如图,线段OA表示货车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系;折线BCD表示轿车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程中,轿车行驶多少时间时,两车相距15 km?答案一、1. B 2. A 3. A 4. C 5. C 6. C 7.A 8.B9. C 10. C二、11.1 12.313.⎩⎨⎧3x +2y =19,x +4y =23 14.⎩⎨⎧x =-2,y =115.9;70 三、16.解:(1)⎩⎪⎨⎪⎧x =83,y =23. (2)⎩⎪⎨⎪⎧a =12,b =13. (3)⎩⎨⎧x =-18,y =-20.5. (4)⎩⎨⎧x =3,y =-2,z =-5.17.解:⎩⎨⎧3x +5y =m +2,2x +3y =m ,①② ①-②得x +2y =2.③因为x +y =2,④所以③-④得y =0.把y =0代入④得x =2,把x =2,y =0代入②,得m =4,所以m 2-4m +4=42-4×4+4=4.18.解:设原来的两位数的十位数字为x ,个位数字为y ,由题意得⎩⎨⎧ x +y =6,10x +y +36=10y +x ,解得⎩⎨⎧x =1,y =5,则原来的两位数是15.19.解: 设平路有x 千米, 山路有y 千米,由题意得⎩⎪⎨⎪⎧x 9+y 12=5560,x 9+y 6=11060,解得⎩⎨⎧x =6,y =3, 故夏令营到学校有3+6=9(千米).20.解:(1)270(2)乙队调离前,甲、乙两队每小时的清雪总量为270÷3=90(t), 因为乙队每小时清雪50 t ,所以甲队每小时的清雪量为90-50=40(t),所以m =270+40×3=390.(3)由(2)可知点B 的坐标为(6,390),设乙队调离后y 与x 之间的函数关系式为y =kx +b (k ≠0), 因为图象经过点A (3,270),B (6,390),所以⎩⎨⎧3k +b =270,6k +b =390,解得⎩⎨⎧k =40,b =150.所以乙队调离后y 与x 之间的函数关系式是y =40x +150.21.解:设老张种植花椒x 千克,黑木耳y 千克,依题意得⎩⎨⎧x +y =800,60x +48y =42 000,解得⎩⎨⎧x =300,y =500,(60-25)×300+(48-35)×500=17 000(元),17 000<20 000,所以扶贫帮扶小组不能帮助老张顺利脱贫.22.解:(1)因为直线l 1:y =x +1与l 2相交于点C (m ,3),所以3=m +1,解得m =2,所以点C (2,3).设直线l 2的表达式为y =kx +b ,因为直线l 2与x 轴交于点B (1,0),与l 1相交于点C (2,3),所以⎩⎨⎧k +b =0,2k +b =3,解得⎩⎨⎧k =3,b =-3,所以直线l 2的表达式为y =3x -3.(2)当点D 在B 的左侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,-3).将(t ,-3)代入y =3x -3,得-3=3t -3,解得t =0,所以Q (0,-3);当点D 在B 的右侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,9).将(t ,9)代入y =3x -3,得9=3t -3,解得t =4,所以Q (4,9).综上所述,点Q 的坐标为(0,-3)或(4,9).23.解:(1)由图象可得,货车的速度为300÷5=60(km/h),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(km).(2)设线段CD 对应的函数表达式是y =kx +b ,将点C (2.5,80),点D (4.5,300)的坐标代入,得⎩⎨⎧2.5k +b =80,4.5k +b =300,解得⎩⎨⎧k =110,b =-195,即线段CD 对应的函数表达式是y =110x -195(2.5≤x ≤4.5).(3)当x =2.5时,两车之间的距离为60×2.5-80=70(km),因为70>15,所以在轿车行进过程中,两车相距15 km 的时间是在2.5 h ~4.5 h 之间,由图象可得,线段OA 对应的函数表达式为y =60x ,则|60x -(110x -195)|=15,解得x 1=3.6,x 2=4.2.因为轿车比货车晚出发1.5 h ,3.6-1.5=2.1(h),4.2-1.5=2.7(h),所以在轿车行进过程中,轿车行驶2.1 h 或2.7 h 时,两车相距15 km .。
八年级数学上册第五章《二元一次方程组》单元测试题-北师大版(含答案)班级: 姓名: 座号: 成绩: 一、选择题(每小题3分,共30分) 1.下列方程组中,是二元一次方程组的是( )A. B. C. D. 2.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )A.2,4x y =⎧⎨=⎩ B.3,6x y =⎧⎨=⎩ C.4,3x y =⎧⎨=⎩ D.4,2x y =⎧⎨=⎩3.已知x=3,y=5,且kx +2y =﹣5,则k 的值为( ) A .3B .4C .5D .﹣54. 用代入法解方程组时,代入正确的是( ) A .x ﹣2﹣x =4B .x ﹣2﹣2x =4C .x ﹣2+2x =4D .x ﹣2+x =45. 二元一次方程2x-y=1有无数个解,下列各组值中,不是该方程解的是( )A.⎩⎨⎧==11y x B.⎩⎨⎧==10y x C.⎩⎨⎧-=-=31y x D.⎩⎨⎧-=-=52y x6. 如图1所示的计算程序计算的值,若输入, 则输出的值是( ).A.0B.C.2D.4 7. 已知单项式nm n m y x y x +-6331与是同类项,那么( ) A .B .C .D .8. 学校计划用80元钱购买A 、B 两种奖品(两种都要买),A 种每个6元,B 种每个10元,在钱全部用完的情况下,有多少种购买方案( ) A .2种B .3种C .4种D .5种9. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人, 组数为y 组,则列方程组为( )2311089x y x y ⎧+=⎨-=-⎩24795x y x y +=⎧⎨-=⎩21734x y y x-=⎧⎪⎨-=-⎪⎩426xy x y =⎧⎨+=⎩y 2=x y 2-A .⎩⎨⎧=+=-x y x y 5837 B .⎩⎨⎧=-=-x y x y 5837 C .⎩⎨⎧=+=+x y x y 5837 D .⎩⎨⎧=-=+xy xy 583710. 《九章算术》中记载了一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( ) A .B .C .D .二、填空题(每小题4分,共28分)11. 已知x -3y =3,则7+2x —6y = .12. 已知方程2x ﹣y =5,用含有x 的式子表示y 为 .13. 一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为 . 14. 如果0)4(223=--+-+y x y x ,则y x -= .15. 一棵树上有乌鸦和老鹰共18只,其中乌鸦比老鹰的3倍还多2只,这棵树上有乌鸦 只, 有老鹰 只.16. 若关于x ,y 的二元一次方程组231,22x y k x y +=-⎧⎨+=-⎩的解满足2=x ,则k 的值是 .17. 图中的两条直线,21,l l 的交点坐标可以看作方程组 的解.二、解答题17. 解方程(每小题5分,共20分)(1)(2)⎩⎨⎧=+=-1432823y x y x⎩⎨⎧-==+73825x y y x(3) ⎩⎨⎧=-=-73452y x y x (4)⎪⎩⎪⎨⎧-=-+=+1322132y x y x18. (8分)一张桌子由桌面和四条桌腿组成,1立方米木材可制作桌面50张或制作桌腿条300.现有5立方米的要木材,问应如何分配木材,可以使桌面与桌腿配套,共能配成多少张桌子?解:设分配x 立方米制作桌面,y 立方米制作桌腿,可列方程组:⎩⎨⎧解得:⎩⎨⎧所以:答:共能配成 张桌子.19. (8分)某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?解:设甲、乙分别买了x 张、y 张,填写下表,并求出x 、y 的值. 由表格可列方程组:⎩⎨⎧解得:⎩⎨⎧答:甲、乙两种票各买 , 张20. (8分)某商店从某公司批发部购100件A 种商品,80件B 种商品,共花去3000元.在商店零售时,每件A 种商品加价20%,每件B 种商品加价10%,这样全部卖出后共收入3400元,问A 、B 两种商品买入时的单价各为多少元?解:设A 、B 两种商品买入时的单价各为x 元、y 元.列方程组:⎩⎨⎧解得:⎩⎨⎧答:A 、B 两种商品买入时的单价各为 元 , 元 .21. (8分)甲、乙两工程队共同修建150km 的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?22. (10分)如图,1l ,2l •分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出1l ,2l 的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?参考答案1 2 3 4 5 6 7 8 9 10 B ADCBDCACA12. 52-=x y 13. 35 14. 4 15. 14, 4 16. 1 17. ⎩⎨⎧+-=+=412x y x y(1)⎩⎨⎧-==12y x (2)⎩⎨⎧==24y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==34y x18. ⎩⎨⎧÷==+4300505y x y x 解得⎩⎨⎧==23y x 3×50=150(张) 19. ⎩⎨⎧=+++=+3400%)101(80%)201(100300080100y x y x解得⎩⎨⎧==2510y x 20. ⎩⎨⎧=+=+2506835y x y x 解得:⎩⎨⎧==1520y x21. 解:设甲、乙两工程队原计划平均每月分别修建x 千米,y 千米[]⎩⎨⎧=++-=+150%)501()530(150)(30y x y x 解得:⎩⎨⎧==32y x 答:·········· 22. (1)210031+=x y 2025032+=x y (2)20250321003+=+x x 解得x=1000。
初二数学第五章《二元一次方程》单元检测题
班级 学号 姓名 得分
一、选择题(每小题3分,共24分)
1、下列方程组中,是二元一次方程组的是 ( )
A.
3x +y=5 B. x -2y=1 C. x+xy=2 D. x+2
y
=3 X -3z=7 4x -5y=2 y=1 x
1
-y=-3
2、二元一次方程3x+y=7的正整数解有( ) A.一组 B.二组 C.三组 D.四组
3、下列方程组的解中是二元一次方程组22
5x y x y +=⎧⎨-+=⎩ 的解是( )
A.16x y =⎧⎨=⎩
B.14x y =-⎧⎨=⎩
C.32x y =-⎧⎨=⎩
D.32x y =⎧⎨=⎩
4、若2,
1x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( )
A 、35,1x y x y +=⎧⎨+=⎩
B 、3,25x y y x =-⎧⎨+=⎩
C 、2,31x y x y =⎧⎨=+⎩
D 、25,1x y x y -=⎧⎨+=⎩
5、我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( ) A 、⎩⎨⎧=++=x y x y 5837 B 、⎩⎨⎧=-+=x y x y 5837 C 、⎩⎨⎧+=-=5837x y x y D 、⎩⎨
⎧+=+=5837x y x y
6、以方程组2
1
y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 7、已知5|x+y -3|+(x -y)2=0,则 ( )
A. x=1
B. x=2
C. x=0
D. x=
23 y=0 y=2 y=0 y=2
3
8、某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( ) A、20kg B、25kg C、28kg D、30kg
二、填空题(每小题4分,共20分)
9、已知2x -3y =1,用含x 的代数式表示y ,则y = . 10、已知x+y=5,且x-y=1,则xy=_________。
11、已知⎩⎨
⎧==5
,3y x 是方程ax -2y =2的一个解,那么a 的值是 . 12一次函数y=x-1 与 y=2x-1的交点坐标是 .
13、一个三位数,他们的个位、十位、百位数字分别是a 、b 、c ,则这个三位数是 。
三、解答题(共56分)
14、用指定的方法解下列方程组:(每小题4分,共8分)
(1) ⎩⎨⎧=+=-524y x y x (代入法) (2) ⎩⎨⎧-=--=-.2354,42y x y x (加减法)
15、(6分)⎩⎨⎧==31y x 和 ⎩⎨
⎧-==2
y x 都是方程 b y ax =-的值与的解,求b a
16、(6分)某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.大、小宿舍各有多少间?
x
17、(6分)用作图象的方法解方程组⎩⎨⎧=-=+.
52,
02y x y x
18、(6分)A 、B 两地相距80km ,一艘船从A 出发,顺水航行4 h 到B ,而从B 出发逆水航行5h 到A ,已知船顺水航行、逆水航行的速度分别是船在进静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度。
19、(8分)如图,直线L1,L2相交于点A ,试求出点A 的坐标。
人, (二)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元. (1)两班各有多少名学生?
(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?
21、(8分)
(1)求函数的坐标的交点的图象与的图象P l x y l x y 2112
1
22-=
-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.。