2.2.1对数与对数运算(第二课时)公开课
- 格式:pdf
- 大小:1.68 MB
- 文档页数:18
2.2.1 第2课时对数的运算(一)教学目标1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答.2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想. (2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力.(3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程课后作业作业:习题2.2 学生独立完成巩固新知提升能力。
2.2.1 对数与对数运算(第二课时)本节课是《普通高中课程标准实验教科书数学》人教A版必修1第二章《基本初等函数(I)》中2.2.1节《对数与对数运算》的第二课时,主要内容是探究对数的运算性质及换底公式,并会用其进行简单的证明和计算.在此之前,学生已经学习过了对数的概念、指数与对数之间的关系,并且利用指数与对数的关系推导出了对数的运算性质,本节课就是在此基础上,探究讨论对数的换底公式.从指数与对数的关系出发,证明对数换底公式,有多种途径,在教学中要让学生去探究,对学生的正确证法要给予肯定;证明得到对数的换底公式以后,要引导学生利用换底公式得到一些常见的结果,并处理一些求值转化的问题.1.教学重点:对数运算性质及其推导过程.2.教学难点:对数的运算性质点的灵活运用(1)温故知新;复习:对数的定义及对数恒等式(>0,且≠1,N>0),指数的运算性质.设计意图:对数的概念和对数恒等式是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备.(2)问题探究:问题1:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道,那如何表示,能用对数式运算吗?提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?让学生探究,讨论;对数的运算性质:如果,那么(1);(积的对数)(2);(商的对数)(3).(幂的对数)2.换底公式:若,则。
进行探究换底公式。
设计意图:让学生明确由“归纳一猜想”得到的结论不一定正确,但是发现数学结论的有效方法,让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略.通过这一环节的教学,训练学生思维的广阔性、发散性,进一步加深学生对字母的认识和利用,体会从“变”中发现规律.通过本环节的教学,进一步体会上一环节的设计意图.例3、用换底公式化简:(1);(2).总结:同底的对数之间的运算利用对数的运算性质进行,但同一个式子中出现不同底的对数时,要善于利用对数的换底公式化为同底对数进行运算。