2017-2018学年高中物理第十六章动量守恒定律第1节实验:探究碰撞中的不变量教学案新人教版选修3-5
- 格式:doc
- 大小:652.00 KB
- 文档页数:10
1 实验:探究碰撞中的不变量共同成长见仁见智关于碰撞前后的守恒量和不守恒量,下列同学发表了自己的观点:人物甲:在某些特定的碰撞中,m1v12+m2v22=m1v1′2+m2v2′2成立,但它不具有普遍性,在碰撞过程中产生的形变不能完全恢复时,这一关系就一定不成立.人物乙:关于碰撞前后的守恒量,经过验证带有普遍性的关系是m1v1+m2v2=m1v1′+m2v2′.人物丙:验证碰撞前后的守恒量和不守恒量,可以有多套验证方案.我的观点:___________________________________________________________________. 读书做人罗伯特·迈尔,1814年11月25日生于德国的海尔布隆.他的父亲是位药剂师.少年时代的迈尔,经常跟着父亲去看制作各种药品的试验,最后在父亲的鼓励下,他走上了学医的道路.1838年,迈尔在蒂宾根大学获得学位.25岁的迈尔正式在汉堡开业行医.迈尔把他对能量守恒定律的最初发现写成了一篇题为《论力的量和质的测定》的论文.1845年,迈尔又发表了第二篇论文《与有机运动相联系的新陈代谢》.这篇文章进一步发展了他的观点.迈尔进一步把能量守恒定律应用于非生物界、生物界和宇宙.1848年他又发表了《对天体力学的贡献》等论文.根据迈尔的意见,植物一边接受太阳的力,一边把它变成化学力使之成为自己的生长之源.动物吃植物是把复杂的营养物分解成为燃料物而使它发生热,热的一部分变成了体温,其他部分转化成为肌肉的机械功能.那么,动物体内的燃烧热的发生源在哪里呢?是肌肉么?迈尔提出了这个课题,他用计算热功当量的方法,说明是一种别的东西——“血”.阅读以上材料,请你思考以下问题:(1)作为一名医生的迈尔为什么会在能量守恒理论体系的完善中起到重要的作用?(2)你认为迈尔的探索精神有哪些值得你学习的地方?1。
1 实验:探究碰撞中的不变量自主广场我夯基 我达标1.在用气垫导轨进行验证实验时,所用到的实验仪器除了光电门、滑块、挡光片外还有_____________。
思路解析:在验证过程中非常关键的一点就是确定滑块的运动时间,这就需要一个计时装置,而在本实验中所用到的计时装置应该是光电计时器.答案:光电计时器2.在用气垫导轨进行验证实验时,首先应该做的是( )A 。
给气垫导轨通气B 。
对光电计时器进行归零处理C 。
把滑块放到导轨上D 。
检验挡光片通过光电门时是否能够挡光计时 思路解析:为保护气垫导轨,在一切实验步骤进行之前首先应该给导轨通气。
答案:A3.在用气垫导轨进行验证实验时,不需要测的物理量是( )A 。
滑块的质量 B.挡光时间C.挡光片间的距离 D 。
光电门的高度思路解析:从实验原理出发进行分析,得A 、B 、C 项中的各个量都为必须测量的量。
答案:D4.某一滑块通过光电门时,双挡光片两次挡光的记录为284。
1 ms 、294。
6 ms ,测得挡光片的挡光距离为5 cm ,则此滑块的速度为多大?思路解析:两次挡光时间之差Δt=t 2—t 1=294。
6 ms —284。
1 ms=10。
5 ms据v=32105.10105--⨯⨯=∆∆t d m/s=4。
76 m/s 。
答案:4。
76 m/s我综合 我发展5.两个质量相同的小钢球,按如图16—1—2所示的样式悬挂,让一小球保持静止,把另一小球拉开一定角度,然后自由释放.下列说法正确的是( )图16-1-2A 。
碰撞后,两球相互交换速度,运动的球变为静止,静止的小钢球以两球相碰前瞬间运动球的速度运动B 。
碰撞后,运动小钢球反弹回来,静止小钢球以两倍两球相碰前瞬间运动小球的速度运动C.碰撞前后系统mv 1=mv 2(m 为小球质量,v 1、v 2分别为碰撞前后瞬间两球的速度) D 。
碰撞前后系统mv 1≠mv 2(m 为小球质量,v 1、v 2分别为碰撞前后瞬间两球的速度)思路解析:由于钢球的弹性非常好,两个小球相碰时,作用时间非常短,故可以得到:两球相撞前后相互交换速度,运动的小球静止,静止的小球以原来的运动小球的速度运动,故A 、C 正确.答案:AC6.在气垫导轨上有两个质量都为m 的滑块,两个滑块都带有尼龙卡搭扣,使一滑块以速度v 运动,和静止的另一滑块相碰,碰后两滑块以共同速度v′运动。
1 实验:探究碰撞中的不变量1.实验目的(1)明确探究碰撞中的不变量的基本思路。
(2)探究一维情况下的碰撞中的不变量。
2.实验原理(1)碰撞中的特殊情况——一维碰撞:两个物体碰撞前后均在一条直线上。
(2)追寻不变量:碰撞前后哪个物理量是不变的呢?质量不变,但质量不是描述运动状态的物理量。
速度在碰撞前后是变化的,速度跟质量的乘积是不是我们要寻找的不变量呢?猜测与假想一下通过实验研究下列哪个关系式成立?①碰撞前后的不变量可能是速度和质量的乘积之和:____________________; ②可能是质量与速度二次方的乘积之和:____________________;③也许是物体的速度与自己质量的比值之和:________________________。
(3)需要考虑的问题。
质量可以用____测量,速度怎样来测量呢?不同的方案有不同的测量方法。
(4)实验方案设计。
方案一:用气垫导轨完成两个滑块的一维碰撞。
实验装置如图所示。
不同的质量可以通过在滑块上加重物的办法实现。
应用气垫导轨很容易控制滑块碰撞前的速度或使它在碰撞前静止。
气垫导轨①速度的测量:v =ΔxΔt ,式中的Δx 为滑块上挡板的____,Δt 为数字计时显示器显示的滑块挡板经过光电门的____。
②各种碰撞情景:滑块上装弹性片、贴胶布或橡皮泥等,达到碰撞后弹开或粘在一起的效果。
方案二:利用等长悬线挂等大球实现一维碰撞。
实验装置如下所示。
把两个小球用线悬起来,一个小球静止,拉起另一个小球,放开后它们相碰。
①速度的测量:可以测量小球被拉起的____,计算出碰撞前小球的速度,测量被撞小球摆起的____,计算碰撞后的速度。
②可采用在小球上贴胶布的方式来改变碰撞中的能量损失。
方案三:利用小车在光滑桌面碰撞另一个静止的小车实现一维碰撞情况。
实验装置如图所示。
将打点计时器固定在光滑桌面的一端,把纸带穿过打点计时器,连在小车A的后面。
让小车A运动,小车B静止。
第十六章第一节实验:探究碰撞中的不变量1.(山东青岛市部分重点中学2016~2017学年高二下学期检测)气垫导轨工作时能够通过喷出的气体使滑块悬浮从而基本消除掉摩擦力的影响,因此成为重要的实验器材,气垫导轨和光电门、数字毫秒计配合使用能完成许多实验。
现提供以下实验器材:(名称、图象、编号如图所示)利用以上实验器材还可以完成“探究一维碰撞中的守恒量”的实验。
为完成此实验,某同学将实验原理设定为:m1v0=(m1+m2)v(1)针对此原理,我们应选择的器材编号为:__ABC__。
(2)在我们所选的器材中:__B__器材对应原理中的m1(填写器材编号)。
解析:该实验的原理为m1v0=(m1+m2)v,两个物体最终粘在一起,一起运动,通过光电门可以测量速度的大小,所以应选择的器材为A、B、C。
因为m1应该是先运动的滑块,不是静止的滑块,所以对应的器材是B。
2.(河北省冀州中学2016~2017学年高二下学期期中)某同学设计了一个用打点计时器探究碰撞过程中不变量的实验:在小车甲的前端粘有橡皮泥,推动小车甲使之做匀速直线运动。
然后与原来静止在前方的小车乙相碰并粘合成一体,而后两车继续做匀速直线运动,他设计的具体装置如图所示。
在小车甲后连着纸带,打点计时器打点频率为50Hz,长木板下垫着小木片用以平衡摩擦力。
(1)若已得到打点纸带如图所示,并测得各计数点间距并标在图上,A为运动起始的第一点,则应选__BC__段计算小车甲的碰前速度,应选__DE__段来计算小车甲和乙碰后的共同速度(以上两格填“AB”、“BC”、“CD”或“DE”)。
(2)已测得小车甲的质量m 甲=0.40kg ,小车乙的质量m 乙=0.20kg ,由以上测量结果可得:碰前m 甲v 甲+m 乙v 乙=__0.420__kg·m/s;碰后m 甲v 甲′+m 乙v 乙′=__0.417__kg·m/s。
(3)通过计算得出的结论是__在误差允许范围内,碰撞前后两个小车的mv 之和是相等的。
1 实验:探究碰撞中的不变量2 动量守恒定律疱丁巧解牛知识·巧学一、实验:探究碰撞中的不变量1.一维碰撞两物体碰撞前沿同一条直线运动,碰撞后仍沿同一条直线运动,这种碰撞叫做一维碰撞.要点提示一维磁撞是碰撞中最为简单的情景.2.实验探究的基本思路(1)与物体运动有关的物理量有哪些?(质量和速度)(2)碰撞前后哪个物理量可能是变化的?哪个物理量是不变化的?(速度的大小和方向可能变化;质量是不变化的)(3)新的不变量可能的形式是怎样的?(比如:两个物体各自的质量与速度的乘积之和;两个物体各自的质量与速度的二次方的乘积之和;两个物体各自的质量与速度的比值之和等等)(4)碰撞的情形可能有哪些?(两个质量相同的物体相碰撞;两个质量悬殊很大的物体相碰撞;两个速度方向相同的物体相碰撞;两个速度方向相同的物体相碰撞;两物体碰撞后可能分开,也可能不分开等等)深化升华在设计实验前应充分考虑到各种不同的情景,以便于我们得到的结论具有普适性.3.需要考虑的问题(1)怎样保证两个物体在碰撞之前沿同一直线运动,在碰撞之后还沿同一直线运动?(可以用气垫导轨或其他)(2)怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度?(质量可用天平测量,速度可用与气垫导轨配套的光电计时装置测量或用打点计时器或其他原理,如平抛运动等)4.实验探究(1)实验器材:气垫导轨、光电计时器、两个质量相同的小车、弹簧、细线、砝码、双面胶.(2)探究过程:①调整导轨使之处于水平状态,并使光电计时器系统开始工作;②导轨上一小车静止,用另一小车与其碰撞,观察两小车的速度变化;③将两小车用压缩的弹簧连接在一起,烧断细线,观察两小车的运动速度;④在一小车上贴上双面胶,用另一小车碰撞它,使两小车随后粘在一起.观察小车碰撞前、后速度的变化;⑤改变其中某一小车的质量,重复以上步骤.(3)分析论证:两车在碰撞过程中所受合外力为零,碰撞前后小车的质量与速度的乘积的矢量和不变.二、动量1.定义:运动物体的质量和它的速度的乘积叫做物体的动量.联想发散引入动量这一物理量的目的.运动的物体能够产生一定的机械效果,如迎面飞来的足球我们可以用手接,若是铅球呢.这说明这个效果的强弱取决于物体的质量和速度两个因素,这个效果只能发生在物体运动方向上,为描述运动物体的这一特性而引入动量这一概念.2.表达式:p=mv.3.单位:千克米每秒,符号kg·m·s-1.4.方向:动量是矢量,它的方向与速度的方向相同.其方向表示了运动物体在哪个方向上能产生机械效果,运动物体在某一时刻的动量方向,就是该时刻物体运动的方向,即瞬时速度方向,如做圆周运动的物体其速度方向时刻在改变,故动量也是时刻在变化.学法一得动量的运算服从矢量运算法则,即要按平行四边形法则进行运算.深化升华 (1)动量是状态量,我们讲物体的动量,总是指物体在某一时刻的动量,因此计算时相应的速度应取这一时刻的瞬时速度;(2)动量具有相对性,选用不同参考系时,同一运动物体的动量可能不同,通常在不说参考系的情况下,指的是物体相对于地面的动量.在分析有关问题时要指明相应的参考系.5.动量的变化量(1)动量是矢量,它的大小p=mv,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量p1=mv1,末动量p2=mv2,则物体动量的变化Δp=p2-p1=mv2-mv1由于动量是矢量,因此,上式一般意义上是矢量式.深化升华动量改变有三种情况:①动量的大小和方向都发生变化,对同一物体而言p=mv,则物体的速度的大小和方向都发生变化;②动量的方向改变而大小不变,对同一物体来讲,物体的速度方向发生改变而速度大小没有变化,如匀速圆周运动的情况;③动量的方向没有发生变化,仅动量的大小发生变化,对同一物体来说,就是速度的方向没有发生变化,仅速度的大小改变.(2)动量的变化量Δp是用末动量减去初动量.(3)动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同.学法一得动量的变化量的计算遵循矢量合成法则,要用平行四边形法则进行计算.若在同一直线上,先规定正方向,再用正、负表示初末动量,即可将矢量运算转化为代数运算.三、动量守恒定律1.几个相关概念系统:相互作用的几个物体所组成的整体叫做系统.内力:系统内各物体之间的相互作用力叫做内力.外力:外部其他物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,那么这个系统的总动量保持不变.(2)表达式:①p=p′,表示系统的总动量保持不变;②Δp1=Δp2,表示一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相同;③Δp=0,表示系统的总动量增量为零,即系统的总动量保持不变;④m1v1+m2v2=m1v1′+m2v2′,表示相互作用前的总动量等于相互作用后的总动量.动量守恒定律的表达式是矢量式,解题时选取正方向为正、负来表示方向,将矢量运算转换为代数运算.学法一得动量守恒定律表达式中各速度应对应同一参考系,一般以地面为参考系.在利用动量守恒定律的表达式解题时,一定要先规定正方向.在利用动量守恒定律解题时要掌握把矢量运算转化为标量运算的方法:选定一正方向,速度方向与其相同的取正值,相反的取负值.在计算时一定要把正确的正、负号代入,对于结果中的正、负号也要理解其表示的物理意义.(3)适用条件:①系统不受外力或者所受外力之和为零则系统的动量守恒;②系统内力远大于外力,可以忽略外力,系统总动量守恒;③系统在某一方向上不受外力或所受合外力为零,或所受外力比内力小得多,该方向上的动量守恒.学法一得动量守恒定律是对应于某一系统,系统的选取是否恰当,直接影响动量守恒定律能否成立,因此系统的正确选取是利用动量守恒定律解题的前提.典题·热题知识点一动量例1 下列关于动量的说法中,正确的是( )A.速度大的物体,它的动量不一定大B.动量大的物体,它的速度不一定大C.只要物体速度大小不变,则物体的动量也保持不变D.竖直上抛的物体(不计空气阻力)经过空中同一点时动量一定相同解析:动量的大小由质量和速度的乘积决定,p=mv ,故A 、B 两项正确,动量是矢量,其方向与速度方向相同,竖直上抛的物体两次经过同一点,方向相反,故C 、D 两项错误. 答案:AB方法点拨 动量总是与物体的瞬时速度相对应,这一点可记作动量的瞬时性. 例2 有一质量为0.1 kg 的小钢球从5 m 高处自由下落,与水平钢板碰撞后反弹跳起,若规定竖直向下的方向为正方向,碰撞过程中钢球动量的变化为-1.8 kg·ms -1,求钢球反弹跳起的最大高度(g 取10 m/s 2,不计空气阻力).解析:由动量的变化求出钢球与水平钢板碰撞后反弹跳起时的初速度,再据竖直上抛运动规律求出反弹跳起的最大高度. 小钢球与水平钢板碰前速度为 v=gh 2=5102⨯⨯ m/s=10 m/s 方向竖直向下,此时其动量 p=mv=0.1×10 kg·m/s=1 kg·m/s设小钢球与水平钢板碰撞后的速度为v′,选向下为正. 因为 Δp=mv′- mv 所以v=m 1(Δp+mv)=1.01×(-1.8+1) m/s=-8 m/s 负号表示方向竖直向上.小钢球反弹跳起的最大高度为h′h′=g v 22'=102(-8)2⨯ m=3.2 m.方法归纳 将题中小球的运动分为三个过程:自由落体,与钢板的碰撞,竖直上抛.注意这三个过程的转折点.和解其他的动力学问题一样,都应从受力分析和运动分析入手.深化升华 动量的变化也是矢量,且一定为末动量减初动量,如初、末动量的方向沿一条直线,可先规定一个正方向,将矢量运算变成代数运算,用正、负号表示方向.知识点二动量守恒定律成立的条件例3 在光滑水平面上A、B两小车中间有一弹簧,如图16-1-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是( )图16-1-1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的,系统总动量都保持不变,但系统的总动量不一定为零解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,所以选项A正确.先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,所以选项B错误.先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统所受合外力也为零,即系统的动量仍守恒,即此后的总动量向左,所以选项C正确.其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开的总动量就与放开最后一只手系统所具有的总动量相等,即不为零,所以选项D正确.答案:ACD巧解提示判断系统的动量是否守恒时,要注意动量守恒的条件是系统不受外力或所受外力之和为零.因此,要区分清系统中的物体所受的力哪些是内力,哪些是外力.应选准系统,并且紧紧抓住动量守恒的条件.例4 试判断下列作用过程系统的动量是否守恒.A.如图16-1-2(a)所示,水平地面上有一大炮,斜向上发射一枚弹丸的过程;B.如图16-1-2(b)所示,粗糙水平面上有两个物体,压紧它们之间的一根轻弹簧,在弹簧弹开的过程中;C.如图16-1-2(c)所示,光滑水平面上有一斜面体,将另一物体从斜面的顶端释放,在物体下滑的过程中.图16-1-2解析:对于(a),大炮发射弹丸的过程中,弹丸加速上升,系统处于超重状态,地面对于系统向上的支持力大于系统的重力,所以系统在竖直方向动量不守恒.在水平方向上系统不受外力,或者说受到的地面给炮身的阻力远小于火药爆发过程中的内力,故系统在水平方向上动量守恒.对于(b)来说,在弹簧弹开的过程中,地面给两物体的摩擦力方向相反且是外力,若两个摩擦力大小相等,则系统无论在水平方向上还是在竖直方向上所受合外力为零,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c)来说,物体在斜面上加速下滑的过程处于失重状态,系统在竖直方向上受到的合外力竖直向下,系统的动量增加,不守恒,而在水平方向上系统不受外力作用,故系统在水平方向上动量守恒.答案:对于(a)系统在水平方向上动量守恒;对于(b),若两个摩擦力大小相等,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c),系统在水平方向上动量守恒.方法归纳分析动量守恒时要着眼于系统,要在不同的方向上研究系统所受外力的矢量和;系统动量严格守恒的情况是很少的,在分析守恒条件是否满足时,要注重对实际过程的理想化.知识点三动量守恒定律的应用例5 如图16-1-3所示,水平面上有两个木块,两木块的质量分别为m1、m2,且m2=2m1.开始两木块之间有一根用轻绳缚住的压缩轻弹簧,烧断细绳后,两木块分别向左右运动,若两木块m1和m2与水平面间的动摩擦因数为μ1、μ2=2μ2,则在弹簧伸长的过程中,两木块( )图16-1-3A.动量大小之比为1∶1B.速度大小之比为2∶1C.通过的路程之比为2∶1D.通过的路程之比为1∶1解析:以两木块及弹簧为研究对象,绳断开后,弹簧将对两木块有推力作用,这可以看成是内力;水平面对两木块有方向相反的滑动摩擦力,且F 1=μ1m 1g ,F 2=μ2m 2g.因此系统所受合外力F 合=μ1m 1g-μ2m 2g=0,即满足动量守恒定律条件.设弹簧伸长过程中某一时刻,两木块速度分别为v 1、v 2,由动量守恒定律有(以向右为正方向): -m 1v 1+m 2v 2=0, 即m 1v 1=m 2v 2.即两物体的动量大小之比为1∶1,故A 项正确. 则两物体的速度大小之比为21v v =12m m =12,故B 项正确,由于木块通过的路程正比于其速度,两木块通过的路程之比21s s =21v v =12,故C 项正确,D 项错误,故本题应选A 、B 、C 三项. 答案:ABC误区警示 本题若水平面光滑,就很容易想到动量守恒定律求解.现在两木块受到了摩擦力作用,不少人就想不到要用动量守恒定律求解.原因:一是没有认真分析受力;二是误认为系统受摩擦力作用.实际上系统所受摩擦力之和为零,因此动量守恒的条件是满足的.例6 质量为3 kg 的小球A 在光滑水平面上以6 m/s 的速度向右运动,恰遇上质量为5 kg 的小球B 以4 m/s 的速度向左运动,碰撞后B 球恰好静止,求碰撞后A 球的速度.解析:两球都在光滑水平面上运动,碰撞过程中系统所受合外力为零,因此系统动量守恒.碰撞前两球动量已知,碰撞后B球静止,取A球初速度方向为正,由动量守恒定律有:mA vA+mBvB=mAvA′v′A=AB BAAmv mvm+=3(-4)563⨯+⨯m/s≈-0.67 m/s即碰后A球速度大小为0.67 m/s,方向向左.误区警示动量守恒定律是矢量式,应特别注意始末状态动量的方向.很多同学在解题时没有注意到这一点而导致出错,或在解出速度数值后没有说明方向.问题·探究方案设计探究问题试用平抛运动规律来探究碰撞中的动量守恒.探究过程:实验装置如图16-1-4所示.让一个质量较大的小球m1从斜槽上滚下来,跟放在斜槽末端的另一质量较小的小球(半径相同)m2发生碰撞(正碰).图16-1-4小球的质量可以用天平称出.测出两个小球碰撞前后的速度.两球碰撞前后的速度方向都是水平的,因此两球碰撞前后的速度,可以利用平抛运动的知识求出.在这个实验中,做平抛运动的小球落到地面,它们的下落高度相同,飞行时间t也就相同,它们飞行的水平距离x=vt与小球开始做平抛运动时的水平速度v成正比.设小球下落的时间为t,质量为m1的入射小球碰前的速度为v1,碰撞后,入射小球的速度是v1′,被碰小球的速度是v2′.则在图16-1-5中图16-1-5OP=v1t v1=tOPOM=v′1t v1′=tOMON=v′2t v2′=tON具体实验操作如下:安装好实验装置.将斜槽固定在桌边,使槽的末端点的切线是水平的.被碰小球放在斜槽前端边缘处.为了记录小球飞出的水平距离,在地上铺一张白纸,白纸上铺放复写纸,当小球落在复写纸上时,便在白纸上留下了小球落地的痕迹.在白纸上记下重垂线所指的位置O.先不放上被碰小球,让入射小球从斜槽上某一高处滚下,重复10次.用尽可能小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.把被碰小球放在斜槽前端边缘处,让入射小球从原来的高度滚下,使它们发生碰撞.重复实验10次.用同样的方法标出碰撞后入射小球的落点的平均位置M和被碰小球的落点的平均位置N.线段ON的长度是被碰小球飞出的水平距离;OM是碰撞后小球m1飞行的距离;OP则是不发生碰撞时m1飞行的距离.用刻度尺测量线段OM、OP、ON的长度.注意事项:①斜槽末端的切线必须水平;②入射球与被碰球的球心连线与入射球的初速度方向一致;③入射球每次都必须从斜槽上同一位置由静止开始滚下;④地面须水平,白纸铺好后,实验过程中不能移动,否则会造成很大误差.探究结论:碰撞中动量守恒(本实验设计思想巧妙之处在于用长度测量代替速度测量).交流讨论探究问题动量守恒定律与机械能守恒定律的区别有哪些?探究过程:龚小明:研究对象都是由两个或两个以上的物体组成的力学系统,若系统中存在重力做功过程应用机械能守恒定律时,系统中必包括地球,应用动量守恒定律时,对象应为所有相互作用的物体,并尽量以“大系统”为对象考虑问题.冯崇:守恒条件有质的区别:=0,在系统中的每一对内力,无论动量守恒的条件是系统所受合外力为零,即∑F外其性质如何,对系统的总冲量必为零,即内力的冲量不会改变系统的总动量,而内力的功却有可能改变系统的总动能,这要由内力的性质决定.保守内力的功不会改变系统的总机械能;耗散内力(滑动摩擦力、爆炸力等)做功,必使系统机械能变化. 张强:两者守恒的性质不同:动量守恒是矢量守恒,所以要特别注意方向性,有时可以在某一单方向上系统动量守恒,故有分量式,而机械能守恒为标量守恒,即始、末两态机械能量值相等,与方向无关.白小艳:应用的范围不同:动量守恒定律应用范围极为广泛,无论研究对象是处于宏观、微观、低速、高速,无论是物体相互接触,还是通过电场、磁场而发出的场力作用,动量守恒定律都能使用,相比之下,机械能守恒定律应用范围是狭小的,只能应用在宏观、低速领域内机械运动的范畴内.刘青青:适用条件不同:动量守恒定律不涉及系统是否发生机械能与其他形式的能的转化,即系统内物体之间相互作用过程中有无能量损失均不考虑,相反机械能守恒定律则要求除重力、弹簧弹力外的内力和外力对系统所做功代数和必为零.探究结论:二者对照,各自的守恒条件、内容、意义、应用范围各不相同,在许多问题中既有联系,又有质的区别.从两守恒定律进行的比较中可以看出:(1)动量守恒定律适用范围更宽泛;(2)两者都是物体在相互作用中系统的不变量,研究对象都是系统;(3)两者都遵守各自成立的条件,互不影响.。
第十六章 动量守恒定律1 实验:探究碰撞中的不变量1.(多选)对于实验最终的结论m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,下列说法正确的是( )A .仅限于一维碰撞B .任何情况下m 1v 21+m 2v 22=m 1v 1′2+m 2v 2′2也一定成立C .式中的v 1、v 2、v ′1、v ′2,都是速度的大小D .式中的不变量是m 1和m 2组成的系统的质量与速度乘积之和解析: 这个实验是在一维碰撞情况下设计的实验.系统的质量与速度的乘积之和在碰撞前后为不变量是实验的结论,其他探究的结论情况不成立,而速度是矢量,应考虑方向.故选项A 、D 正确.答案:AD2.如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的瞬时力时,随即启动打点计时器,甲车运动一段距离后,将与静止的乙车发生正碰并连在一起运动,纸带记录下碰撞前甲车和碰撞后两车的运动情况如图(b)所示,电源频率为50 Hz ,则碰撞前甲车速度大小为______m/s ,碰撞后的共同速度大小为________m/s.(a)(b)解析:由题图知碰前在0.02 s 内甲车位移约为1.2×10-2 m ,故碰前速度v 1=1.2×10-20.02 m/s =0.6 m/s ;碰后在0.02 s 内两车位移约为0.8×10-2m ,故碰后速度v 2=0.8×10-20.02m/s =0.4 m/s. 答案:0.6 0.43.如图所示为气垫导轨上两个滑块A 、B 相互作用后运动过程的频闪照片,频闪的频率为10 Hz.开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用细绳连接,细绳烧断后,两个滑块向相反方向运动.已知滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,细绳烧断后,A 滑块做________运动,其速度大小为________m/s ,本实验得出的结论是___________________________.解析:由题图可知,细绳烧断后A 、B 均做匀速直线运动,开始时:v A =0,v B =0,A 、B 被弹开后,v ′A =0.09 m/s ,v ′B =0.06 m/s ,m A v ′A =0.2×0.09 kg ·m/s =0.018 kg ·m/s ,m B v ′B =0.3×0.06 kg ·m/s =0.018 kg ·m/s , 由此可得:m A v ′A =m B v ′B ,即0=m B v ′B -m A v ′A .结论:两滑块组成的系统在相互作用前后质量与速度乘积的矢量和守恒.答案:匀速直线 0.09 两滑块组成的系统在相互作用前后质量与速度乘积的矢量和守恒4.用如图所示装置探究碰撞中的不变量,质量为m A 的钢球A 用细线悬挂于O 点,质量为m B 的钢球B 放在小支柱N 上,离地面高度为H ,O 点到A 球球心距离为L ,使悬线在A 球释放前伸直,且线与竖直方向的夹角为α.A 球释放后摆到最低点时恰好与B 球正碰,碰撞后,A 球把轻质指示针OC 推移到与竖直方向夹角为β处,B 球落到地面上,地面上铺一张盖有复写纸的白纸D ,保持α角度不变.多次重复上述实验,白纸上记录到多个B 球的落点.(1)图中s 应是B 球初始位置到________的水平距离.(2)实验中需要测量的物理量有哪些?(3)实验中不变量遵循的关系式是怎样的?解析:由机械能守恒定律可知:m A gL (1-cos α)=12m A v 2A ,则A 球向下摆到与B 球相碰前的速度为 v A =2gL (1-cos α),碰后A 球的速度v ′A =2gL (1-cos β),碰后B 球做平抛运动,v ′B =s t =s 2H g=s g 2H. 在碰撞中物体质量与速度的乘积之和不变,则m A v A =m A v ′A +m B v ′B .故有m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B sg 2H . 答案:(1)落地点(2)L 、α、β、H 、s 、m A 、m B (3)m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B s g 2H5.某同学用图甲所示装置通过半径相同的a 、b 两球的碰撞来探究碰撞中的不变量.实验时把无摩擦可转动支架Q 放下,先使a 球从斜槽上某一固定位置P 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把支架Q 竖起,放上b 球,让a 球仍从位置P 由静止开始滚下,到达水平槽末端时和b 球碰撞,a 、b 分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端点在记录纸上的垂直投影点,O ′为支架上b 球球心在记录纸上的垂直投影点.图甲 图乙(1)碰撞后b 球的水平射程应取图中________段.(2)(多选)在以下选项中,属于本次实验必须进行的测量是( )A .支架上未放b 球时,测量a 球落点位置到O 点的距离B .a 球与b 球碰撞后,测量两球落点位置到O 点(或O ′点)的距离C .测量a 球或b 球的直径D .测量a 球和b 球的质量M 和mE .测量P 点相对于水平槽面的高度 (3)实验中若某同学测量了小球直径,使用千分尺所得的结果如图乙所示,则球的直径D =________cm.(4)结合课堂实验结论,按照本实验方法,探究不变量的表达式应是:____________________________________________________.解析:题图甲中B 点是不发生碰撞时小球a 的落点,A 点是发生碰撞后小球a 的落点,C 点是碰后小球b 的落点,设小球a 运动到轨道末端时的速度大小为v 0,与小球b 发生碰撞后瞬间小球b 的速度大小为v b ,碰后小球a 的速度大小为v a .如果碰撞过程满足质量和速度的乘积mv 守恒,则关系式“Mv 0=Mv a +mv b ”一定成立,因为小球做平抛运动的高度相同,下落时间相同,它们在水平方向上位移与水平方向上的速度成正比,所以本实验中关系式“M ·— OB =M ·— OA +m ·— O ′C ”一定也成立.(1)两球碰撞后,a 球的落点比原来不放b 球时的落点B 要近些,即落在A 点处,而b 球被碰后的落点肯定比B 大,即落在C 点,所以碰撞后b 球的水平射程应取图中O ′C 段.(2)根据实验原理分析可知,本实验需要测量的物理量有M 、m 、OB 、OA 和O ′C ,即选项A 、B 、D.(3)球的直径D =10.5 mm +40.5×0.01 mm =10.905 mm =1.090 5 cm.(4)根据实验原理分析可知,本实验得到的守恒量的表达式是M ·— OB =M ·— OA +m ·— O ′C . 答案:(1)O ′C (2)ABD (3)1.090 5(1.090 3~1.090 7都对) (4)M ·— OB =M ·— OA +m ·— O ′C。
第1节 实验:探究碰撞中的不变量一、实验目的1.明确探究物体碰撞中的不变量的基本思路。
2.探究一维碰撞中的不变量。
二、实验原理在一维碰撞中,测出物体的质量m 和碰撞前后物体的速度v 、v ′,找出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前后动量是否守恒。
[实验方案一] 利用气垫导轨完成一维碰撞实验[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。
图1611[实验步骤]1.测质量:用天平测出滑块质量。
2.安装:正确安装好气垫导轨。
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量。
②改变滑块的初速度大小和方向)。
4.验证:一维碰撞中的动量守恒。
[数据处理]1.滑块速度的测量:v =Δx Δt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间。
2.验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′[实验方案二] 利用等长悬线悬挂等大小球完成一维碰撞实验[实验器材] 带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。
[实验步骤]1.测质量:用天平测出两小球的质量m 1、m 2。
2.安装:把两个等大小球用等长悬线悬挂起来。
3.实验:一个小球静止,拉起另一个小球,放下时它们相碰。
图16124.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
[数据处理]1.摆球速度的测量:v =2gh ,式中h 为小球释放时(或碰撞后摆起的)高度,h 可用刻度尺测量(也可由量角器和摆长计算出)。
2.验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′[实验方案三] 在光滑桌面上两车碰撞完成一维碰撞实验[实验器材] 光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
图1613[实验步骤]1.测质量:用天平测出两小车的质量。
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
4.测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt算出速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
[数据处理]1.小车速度的测量:v =Δx Δt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出。
2.验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′[实验方案四] 利用斜槽上滚下的小球验证动量守恒定律[实验器材] 斜槽、小球(两个)、天平、复写纸、白纸等。
图1614[实验步骤]1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球。
2.安装:按照图1614所示安装实验装置。
调整固定斜槽使斜槽底端水平。
3.铺纸:白纸在下,复写纸在上且在适当位置铺放好。
记下重垂线所指的位置O。
4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用圆规画尽量小的圆把所有的小球落点圈在里面。
圆心P就是小球落点的平均位置。
5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次。
用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N。
如图1615所示。
图16156.验证:连接ON,测量线段OP、OM、ON的长度。
将测量数据填入表中。
最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立。
7.结束:整理好实验器材放回原处。
[数据处理] 验证的表达式:m1·OP=m1·OM+m2·ON三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”。
2.方案提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应注意利用水平仪确保导轨水平。
(2)若利用摆球进行验证,两摆球静止时球心应在同一水平线上,且刚好接触,摆线竖直,将摆球拉起后,两摆线应在同一竖直面内。
(3)若利用两小车相碰进行验证,要注意平衡摩擦力。
(4)若利用平抛运动规律进行验证,安装实验装置时,应注意调整斜槽,使斜槽末端水平,且选质量较大的小球为入射小球。
四、误差分析1.系统误差:主要来源于装置本身是否符合要求。
(1)碰撞是否为一维。
(2)实验是否满足动量守恒的条件,如气垫导轨是否水平,两球是否等大,用长木板实验时是否平衡掉摩擦力。
2.偶然误差:主要来源于质量m 和速度v 的测量。
[例1] 利用如图1616所示的实验装置,可探究碰撞中的不变量,由于小球的下落高度是定值,所以,小球落在地面上的水平位移就代表了平抛运动时水平初速度的大小,这样碰前速度和碰后速度就可以用平抛运动的水平位移来表示。
图1616(1)(多选)为了尽量准确找到碰撞中的不变量,以下要求正确的是________。
A .入射小球的半径应该大于被碰小球的半径B .入射小球的半径应该等于被碰小球的半径C .入射小球每次应该从斜槽的同一位置由静止滑下D .斜槽末端必须是水平的(2)(多选)关于小球的落点,下列说法正确的是________。
A .如果小球每次从斜槽的同一位置由静止滑下,重复几次的落点一定是完全重合的B .由于偶然因素存在,重复操作时小球的落点不会完全重合,但是落点应当比较密集C .测定落点P 的位置时,如果几次落点的位置分别为P 1、P 2、…P n ,则落点的平均位置OP =OP 1+OP 2+…+OP n nD .尽可能用最小的圆把各个落点圈住,这个圆的圆心位置就是小球落点的平均位置[解析] (1)只有两个小球的半径相等,才能保证碰后小球做平抛运动,所以A 错误,B 正确;入射小球每次应该从斜槽的同一位置由静止滑下,才能使得小球平抛运动的落点在同一位置,所以C 正确;斜槽末端必须水平也是保证小球碰后做平抛运动的必要条件,所以D 正确。
(2)为了提高实验的准确性,需要重复多次,找到小球平抛落地的平均位置,只有这样,才能有效减小偶然误差,因此B 、D 选项正确。
[答案] (1)BCD (2)BD[例2] 如图1617所示为气垫导轨上两个滑块A、B相互作用后运动过程的频闪照片,频闪的频率为10 Hz。
开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用绳子连接,绳子烧断后,两个滑块向相反方向运动。
已知滑块A、B的质量分别为200 g、300 g,根据照片记录的信息,A、B离开弹簧后,A滑块做________运动,其速度大小为________m/s,本实验中得出的结论是_______________________________________________________ ________________________________________________________________________。
图1617[思路点拨][解析] 由题图可知,A、B离开弹簧后,均做匀速直线运动,开始时v A=0,v B=0,A、B被弹开后,v A′=0.09 m/s,v B′=0.06 m/s,m A v A′=0.2×0.09 kg·m/s=0.018 kg·m/sm B v B′=0.3×0.06 kg·m/s=0.018 kg·m/s由此可得:m A v A′=m B v B′,即0=m B v B′-m A v A′结论是:两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒。
[答案] 匀速直线0.09 两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒[例3] 把两个大小相同、质量不等的金属球用细线连接起来,中间夹一被压缩的轻弹簧,置于摩擦可以忽略不计的水平桌面上,如图1618所示。
现烧断细线,观察两球的运动情况,进行必要的测量,探究物体间发生相互作用时的不变量。
图1618测量过程中:(1)还必须添加的器材有_____________________________________________。
(2)需直接测量的数据是_________________________________________________。
(3)需要验算的表达式如何表示? ____________________________________。
[解析] 本实验是在“探究物体间发生相互作用时的不变量”时,为了确定物体速度的方法进行的迁移。
两球弹开后,分别以不同的速度离开桌面做平抛运动,两球做平抛运动的时间相等,均为t =2h g(h 为桌面离地的高度)。
根据平抛运动规律,由两球落地点距抛出点的水平距离x =vt 知,两球水平速度之比等于它们的射程之比,即v 1∶v 2=x 1∶x 2,所以本实验中只需测量x 1、x 2即可,测量x 1、x 2时需准确记下两球落地点的位置,故需要刻度尺、白纸、复写纸、图钉、细线、铅锤、木板等。
若要探究m 1x 1=m 2x 2或者m 1x 21=m 2x 22或者x 1m 1=x 2m 2…是否成立,还需用天平测量两球的质量m 1、m 2。
[答案] (1)刻度尺、白纸、复写纸、图钉、细线、铅锤、木板、天平(2)两球的质量m 1、m 2,两球碰后的水平射程x 1、x 2(3)m 1x 1=m 2x 21.(多选)在用打点计时器做“探究碰撞中的不变量”实验时,下列哪些操作是正确的( )A .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量B .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起C .先接通打点计时器的电源,再释放拖动纸带的小车D .先释放拖动纸带的小车,再接通打点计时器的电源解析:选BC 车的质量可以用天平测量,没有必要一个用钉子而另一个用橡皮泥配重。