网络管理系统的结构
- 格式:ppt
- 大小:252.50 KB
- 文档页数:22
网络体系结构和基本概念1.OSI参考模型:OSI(开放式系统互联)参考模型是一个国际标准的概念框架,用于描述网络体系结构的各个层次和功能。
它将网络划分为七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
每个层次都有特定的功能和任务,通过层层递进的方式协同工作,最终实现可靠的数据传输和通信。
2.TCP/IP协议族:TCP/IP是一种网络协议族,它是网络通信的基础。
TCP/IP协议族由传输控制协议(TCP)和网络互联协议(IP)构成,它们分别对应于OSI参考模型的传输层和网络层。
TCP/IP协议族还包括IP地址、域名系统(DNS)、用户数据报协议(UDP)等,它们协同工作,完成数据的传输和路由。
3.客户端-服务器模型:客户端-服务器模型是一种常见的网络体系结构,它通过将网络上的计算机划分为客户端和服务器来实现资源共享和服务提供。
客户端是用户通过网络访问服务器获取服务的终端设备,服务器是提供服务的主机。
客户端向服务器发送请求,服务器接收请求并回应,完成数据的交互和处理。
4.P2P网络:P2P(对等)网络是一种去中心化的网络体系结构,其中所有的计算机都既是客户端又是服务器。
P2P网络不依赖于专用的服务器设备,而是通过直接连接来交换数据。
P2P网络的一大特点是去中心化,它能够更好地抵抗单点故障和网络拥塞。
5.三层网络体系结构:三层网络体系结构是一种通用的网络设计架构,它由三层构成:核心层、分布层和接入层。
核心层负责数据的传输和路由,分布层负责网络的负载均衡和安全策略,接入层则负责用户与网络的连接。
这种分层结构能够提高网络的性能和可管理性。
上述是网络体系结构的基本概念和主要内容。
网络体系结构的设计和实现对于网络的性能和安全至关重要。
通过合理地利用和组织网络资源,可以提高网络的性能、可靠性和可扩展性,同时还能够保障数据的安全和隐私。
在日益发展的信息时代中,网络体系结构的研究和创新将继续推动着网络技术的进步和应用的发展。
浅谈对电力通信网络管理系统结构的探讨1、电力通信网管系统方案1.1 需求分析在选择网管系统方案时各种因素都会影响最终的决定,如网络管理要求、通信系统规模、通信网络结构、技术经济指标等。
网络管理要求应是确定网管系统方案的首要因素。
并不是在任何情况下网管的配置越高、功能越全越好,如果管理要求只关心对通信设备的实时监控,那么最佳方案是选择监控系统。
在完成监控功能方面,监控系统的实时性能、准确程度都较复杂的网管系统要高。
同样如果管理要求只关心通信设备的信息,只需要建立网元管理系统即可。
但如果是一个管理一定规模的通信网络而且提供通信服务的管理单位,那么就应该选择能够涵盖整个通信网的网管系统。
1.2 网络设计初期的网管系统一般只注重网络某些部分(如通信设备)的管理,其主要原因是通信网管系统在发展初期一般依赖于通信设备生产厂商。
真正的网络管理系统应包括以下各个层次:网元数据采集层:网元(设备)的数据接入、数据采集系统。
网元管理层:直接管理单个的网元(设备),同时支持上级的网络管理层。
这一层主要是面向设备、单条电路,是网络管理系统的基础内容。
其直接的结果实现设备的维护系统。
网络管理层:在网元管理的基础上增加对网元之间的关系、网络组成的管理。
主要功能包括:从网络的观点、互联关系的角度协调网元(设备)之间的关系;创建、中止和修改网络的能力;分析网络的性能、利用率等参数。
网络管理层的另一个重要的功能是支持上层的服务管理。
服务管理层:管理网络运行者与网络用户之间的接口,如物理或逻辑通道的管理。
管理的内容包括用户接口的提供及通道的组织;接口性能数据的记录统计;服务的记录和费用的管理。
业务管理层:对通信调度管理人员关于运行等事项所需的一些决策、计划进行管理。
对运行人员关于网络的一些判断的管理。
这一层管理往往与通信企业的管理信息系统密切相关。
其功能包括:日志记录,派工维护记录,停役、维护计划,网络发展规划等。
网络管理系统应当是全网络的,对于面向用户服务的规模较大的通信网络,管理的重点应放在网络、服务、业务等层次的管理上。
网络体系结构网络体系结构,简称网络架构,指的是互联网整体架构的逻辑架构、物理架构和协议架构,它决定了互联网的功能、性能、可靠性和安全性,同时也为互联网的拓展和发展提供了基础支持。
一、逻辑架构网络逻辑架构是指网络系统中各个部分的功能和互相之间的关系。
它是网络系统最基本的部分,以分层的方式进行组织,从上至下分别是:应用层、传输层、网络层、数据链路层和物理层。
1. 应用层应用层是网络体系结构中最靠近用户的一层,它主要负责处理和管理用户与网络之间的信息交互。
在这一层上,包括了很多常见的协议,如HTTP、FTP、SMTP等。
2. 传输层传输层主要负责网络数据的传输和速率的控制,它负责把数据分成若干个数据包,并负责传输和接收。
这一层也包括了两个主要的协议:TCP和UDP。
3. 网络层网络层主要负责寻找最佳的路径,实现不同网络之间的数据传输,强调数据包在网络中的传输。
在这一层上最常见的协议是IP协议。
4. 数据链路层数据链路层位于物理层和网络层之间,主要负责将网络层传过来的数据包转换成适合物理层传输的数据包。
最常见的协议是以太网协议。
5. 物理层物理层负责传输和接收网络中的数据以及硬件的控制。
它决定了数据的传输速率、数据的格式和传输媒介等。
最常见的传输媒介是有线和无线两种。
二、物理架构网络物理架构是指网络系统中各个设备之间的连接方式和传输媒介等硬件设备的布局、位置和组成。
物理架构包括以下几种架构方式:1. 局域网(LAN)局域网是指在一个较小范围内的计算机网络,其覆盖范围通常在一个建筑物或者一个校园内。
局域网的传输速率非常快,最常常用的网线是双绞线。
2. 城域网(MAN)城域网是指在一个城市或者地理范围比较大的区域内的计算机网络。
城域网常用的传输媒介是光纤。
3. 广域网(WAN)广域网是指在一个大范围的区域内的计算机网络,它由多个局域网和城域网组成。
广域网的传输媒介是电话线路或者无线电波。
三、协议架构网络协议架构是指网络系统中使用的通信协议以及协议之间的关系。
学校校园网络安全管理的网络拓扑与架构设计在现代社会中,网络安全已成为一个举足轻重的问题,特别是在学校校园中。
为保护师生的个人信息安全以及学校网络系统的正常运行,学校校园网络安全管理显得尤为重要。
本文将针对学校校园网络安全管理,探讨网络拓扑与架构设计的相关问题。
一、概述学校校园网络安全管理的目标是保障网络系统的机密性、完整性和可用性,并防范各类网络攻击威胁。
为实现这一目标,必须从网络拓扑与架构设计入手,构建安全可靠的网络基础。
二、网络拓扑设计通常,学校校园网络拓扑设计可采用分层结构,包括以下几个层次:核心层、汇聚层和接入层。
1. 核心层核心层是学校网络的中枢,承载着数据中心和主干网络的功能。
在核心层上,应有强大的处理能力和高速的链路容量,以应对高并发的流量传输。
同时,为了保证网络的高可用性,核心层应采用冗余设计,具备备份和自动切换功能。
2. 汇聚层汇聚层连接核心层和接入层,负责实现不同网络子系统的集成。
在汇聚层上,可以设置防火墙、入侵检测系统(IDS)等安全设备,对网络流量进行监测和过滤,以提高网络的安全性。
3. 接入层接入层是学校校园网络的终端用户接入点,为学生和教职员工提供接入网络的服务。
在接入层上,应配置安全认证和访问控制机制,确保只有合法用户才能接入网络,并对用户进行身份验证和授权管理。
此外,接入层也应设置流量控制和网页过滤等安全措施,防范网络威胁和恶意行为的发生。
三、网络架构设计学校校园网络架构设计需要综合考虑可用性、安全性和扩展性等方面的要求,确保网络系统的稳定运行。
1. 网络分段为了避免单点故障和减少攻击面,学校校园网络可以划分为多个虚拟局域网(VLAN),每个VLAN可以独立配置访问控制列表(ACL),限制不同子网之间的互访。
同时,可以根据用户组别和敏感性需求,为每个子网设定不同的安全策略和权限控制,提高网络的安全性。
2. 安全设备部署在学校校园网络架构中,应适当部署安全设备,如防火墙、入侵检测系统、虚拟专用网络(VPN)等,以实现对入侵行为、恶意软件和数据泄露的实时监测和防范。