尼龙66合成工艺学参考幻灯片
- 格式:ppt
- 大小:1.20 MB
- 文档页数:33
尼龙66工艺流程讲解Nylon 66 is a type of synthetic polymer that is widely used in various industries due to its exceptional strength, durability, and heat resistance. The process of manufacturing Nylon 66 involves several steps, starting from the raw materials to the final product.尼龙66是一种合成聚合物,由于其出色的强度、耐久性和耐热性,在各个行业广泛使用。
尼龙66的制造过程涉及多个步骤,从原材料到最终产品。
The first step in the production of Nylon 66 is the polymerization of adipic acid and hexamethylene diamine. These two chemicals reactto form a nylon salt, which is then polymerized to produce Nylon 66. This polymerization process can be carried out using different methods, such as batch polymerization or continuous polymerization.尼龙66生产的第一步是将己二酸和己二胺聚合。
这两种化学物质反应形成尼龙盐,然后聚合生产尼龙66。
这种聚合过程可以用不同的方法进行,如批量聚合或连续聚合。
After the polymerization process, the Nylon 66 is then extruded through a spinneret to form long strands of nylon filaments. These filaments are then stretched and cooled to align the polymer chains and improve the strength and durability of the nylon.聚合过程后,尼龙66通过纺丝口挤出形成长条尼龙丝。
尼龙66 生产工艺尼龙66是一种合成纤维,具有优异的力学性能、耐磨性和耐高温性能,被广泛应用于汽车、航空航天、轴承等领域。
下面介绍尼龙66的生产工艺。
尼龙66的生产工艺主要包括原料准备、聚合反应、纺丝、拉伸、纺纱、整理等步骤。
首先是原料准备。
尼龙66的主要原料为己内酰胺(己内酰胺是尼龙66的单体)和亚硫酸铵等辅助材料。
这些原料需要经过筛选、粉碎、干燥等处理,以保证原料质量的稳定性。
接下来是聚合反应。
将己内酰胺和亚硫酸铵等原料加入反应釜中,控制温度和压力等条件进行聚合反应。
通过聚合反应,原料分子间的化学键断裂并重新连接,形成聚合物链长。
然后是纺丝。
将聚合后的尼龙66挤出聚合反应釜,在纺丝机上进行纺丝。
纺丝是通过将高分子物质加热到熔化状态,然后通过纺丝孔进行拉伸,形成纤维。
接着是拉伸。
纺丝出来的尼龙66纤维还需要进行拉伸以提高强度和耐磨性。
拉伸是将纤维在一定温度和湿度条件下经过拉伸机械设备进行机械拉伸,使纤维的分子间结合更加紧密,提高纤维的物理性能。
然后是纺纱。
将拉伸后的尼龙66纤维传送到纺纱机上,通过纺纱机的梳理、牵伸、加捻等运动,将纤维集中成线。
纱线可以根据不同的用途进行不同的加工,如编织成布料、纺织成绳索等。
最后是整理。
将纺纱成线的纱线进行整理,包括去杂、捻合、染色等工艺处理,以提高纱线的质量和外观。
这就是尼龙66的生产工艺,通过以上步骤可以得到优质的尼龙66纤维,用于各种领域的应用。
随着科技的不断进步,尼龙66的生产工艺也在不断改进,以满足不断增长的市场需求。
尼龙66聚合过程与工艺己二酸和己二胺发生缩聚反应即可得到尼龙-66。
工业上为了己二酸和己二胺以等摩尔比进行反应,一般先制成尼龙-66盐后再进行缩聚反应。
在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。
所以体系内水的扩散速度决定了反应速度,因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。
上述缩聚过程既可以连续进行也可以间歇进行。
在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66的分子量降低的副反应。
尼龙-66盐的制备尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35,结构式:[+H3N(CH2)6NH3+-OOC(CH2)4COO-]。
尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。
室温下,干燥或溶液中的尼龙-66盐比较稳定,但温度高于200?时,会发生聚合反应。
尼龙-66盐在水中的溶解度很大,且随着温度上升而增大,其溶解度cs与温度的关系可描述为:cs=-376.3286+1.9224 T-0.001149T2尼龙-66盐在水中的溶解度温度,K 273.16 283.16 293.16 303.16 313.06 323.16 333.16 343.16 353.16溶解度,g/ml 37.00 43.00 47.00 50.50 52.50 54.00 56.00 58.5061.50(1)水溶液法以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。
工艺流程:1-己二酸配制槽2-己二胺配制槽3-中和反应器4-脱色罐5-过滤器6、9、11、12-贮槽7-泵8-成品反应器10-鼓风机13-蒸发反应器将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50?、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。
在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。
尼龙66的聚合过程与工艺
尼龙66是一种合成纤维,也被称为聚己内酰胺纤维。
它是通过将己
内酰胺和对苯二胺在一定的条件下进行反应,形成聚己内酰胺(尼龙66)的聚合过程得到的。
尼龙66是一种重要的合成纤维,在纺织工业中得到
广泛应用。
1.原料准备:己内酰胺和对苯二胺作为重要的原料,需要进行精细加
工和准备。
这些原料通常经过粉碎、筛选和干燥等处理,以保证其质量和
纯度。
2.聚合反应:将己内酰胺和对苯二胺加入到聚合反应釜中,同时加入
一定比例的催化剂。
常用的催化剂包括有机碱或贵金属催化剂,它们可以
促使聚合反应的发生。
反应釜中通常需要控制一定的温度和压力条件,以
确保反应的进行。
3.聚合过程控制:聚合反应一般需要经历两个阶段,开环聚合和闭环
聚合。
开环聚合是指通过加热和催化剂的作用,使己内酰胺和对苯二胺之
间发生开环反应,形成中间产物。
闭环聚合是指通过控制温度和压力等条件,使中间产物进一步聚合,形成尼龙66大分子链。
4.聚合产物处理:聚合完成后,产生的尼龙66聚合物通常以颗粒形
式存在。
为了提高纤维的质量,通常需要对颗粒进行加工处理。
这一过程
包括挤出、纺丝、冷却等步骤,并通过拉伸、热定型等处理方法,进一步
改善纤维的性能。
以上是尼龙66的主要聚合过程和工艺。
尼龙66以其优良的物理性能
和耐磨性,在纺织、汽车、航空航天、电子和船舶等领域得到广泛应用。
随着科学技术的发展,尼龙66的制备工艺也在不断改进和改良,以提高产量和降低生产成本。
尼龙66编辑词条目录1基本内容目录1基本内容收起编辑本段基本内容尼龙66为聚己二酸己二胺热性质(1)熔点(Tm)熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。
通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。
实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来:尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。
如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。
接近理论熔解温度259℃。
(2)玻璃化温度(Tg)高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。
在这一温度附近,模量、振动频率、介电常数等也开始发生变化。
尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。
Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ]。
结晶和结晶度(1)结晶构造Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]。
Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73。
从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。
相邻的分子以氢键连成平面的片状,其模型如图01-68所示。
表01-68 尼龙-66 稳定晶形的晶格常数晶体 a b c(纤维轴) αβγα型结晶(三斜晶系)4.9×10-4μm 5.4×10-4μm 17.2×10-4μm 48½° 77° 63½°计算密度=1.24g/cm3图01-44 尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ]线条:链状分子;○:氧原子从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。