2000年全国高考数学试题理科数学(江西、天津)卷
- 格式:doc
- 大小:823.00 KB
- 文档页数:12
2000年高考江西、天津卷数 学(新课程卷/理工农医类)一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是(A )()1 ,3 (B )⎪⎭⎫ ⎝⎛21 ,23 (C )⎪⎭⎫⎝⎛-21 ,23 (D )()3 ,1(2) 在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是(A )23 (B )i 32- (C )i 33- (D )3i 3+(3) 一个长方体共一项点的三个面的面积分别是2,3,6,这个长方体 对角线的长是(A )23 (B )32 (C )6 (D )6 (4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则①()()0=⋅-⋅b a c c b a ; ②b a b a -<-③()()b a c a c b ⋅-⋅不与c 垂直 ④()()22492323b a b a b a ==-⋅+中,是真命题的有(A )①② (B )②③ (C )③④ (D )②④ (5)函数x x y cos -=的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税 款按下表分段累进计算:(A ) 800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元 (7)若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则 (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q (8)右图中阴影部分的面积是 (A )32 (B )329- (C )332 (D )335 (9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直 线的方程是(A )x y 3= (B )x y 3-= (C )x 33 (D )x 33- (11)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则qp 11+等于 (A )a 2 (B )a 21 (C )a 4 (D )a4 (12)如图,OA 是圆锥底面中心O 到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)321arccos(B )21arccos(C )21arccos (D )421arccos二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横 线上。
2000年全国高考数学试题(新课程/理工农医类)江西、天津卷一、选择题:本大题共12小题;每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的.(1)设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是 ( )(A )()1 ,3 (B )⎪⎭⎫ ⎝⎛21 ,23 (C )⎪⎭⎫⎝⎛-21 ,23 (D )()3 ,1(2)在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是 ( )(A )23 (B )i 32- (C )i 33- (D )3i 3+ (3)一个长方体共一项点的三个面的面积分别是2,3,6,这个长方体 对角线的长是 ( )(A )23 (B )32 (C )6 (D )6 (4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ( )①()()0=⋅-⋅b a c c b a ; ②b a b a -<-③()()b a c a c b ⋅-⋅不与c 垂直 ④()()22492323b a b a b a ==-⋅+中,是真命题的有(A )①② (B )②③ (C )③④ (D )②④ (5)函数x x y cos -=的部分图象是 ( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于( )(A ) 800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元 (7)若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则(A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q (8)右图中阴影部分的面积是(A )32 (B )329- (C )332 (D )335 (9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直 线的方程是 ( )(A )x y 3= (B )x y 3-= (C )x 33 (D )x 33- (11)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( ) (A )a 2 (B )a 21 (C )a 4 (D )a4 (12)如图,OA 是圆锥底面中心O 到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A )321arccos (B )21arccos (C )21arccos(D )421arccos二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2000年普通高等学校招生全国统一考试理科数学(江西、天津卷)一、选择题:本大题共12小题;第每小题5分,共60分.在每小题给出的 四个选项中,只有一项是符合题目要求的.1. 设集合A 和B 都是坐标平面上的点集{(,),}x y x R y R ∈∈,映射:f A B →把集合A 中的元素(,)x y 映射成集合B 中的元素(,)x y x y +-,则在映射f 下,象(2,1)的原象是A.(3,1)B.31(,)22C.31(,)22- D.(1,3)2.在复平面内,把复数3-对应的向量按顺时针方向旋转3π,所得向量对应的复数是A..- C3i D.3 3.,这个长方体对角线的长是A.64.设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①()()0a b c c a b ⋅--=; ②a b a b -<-③()()b c a c a b ⋅-⋅不与c 垂直 ④22(32)(32)94a b a b a b +⋅-=- 中,是真命题的有A .①②B .②③C .③④D .②④ 5.函数cos y x x =-的部分图象是6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800 元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 A.800900元 B.9001200元 C.12001500元 D.15002800元7.若1a b >>,P ,1(lg lg )2Q a b =+,lg()2a bR +=,则A.R P Q <<B.P Q R <<C.Q P R <<D.P R Q << 8.右图的阴影的面积为A.9-323 D.3539.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是A.122ππ+B.144ππ+ C.12ππ+ D.142ππ+10.过原点的直线与圆22430x y x +++=相切,若切点在第三象限,则该直线的方程是A .y = B.y = C .y x =D .y x = 11.过抛物线2y ax =(0a >)的焦点F 作一条直线交抛物线于P ,Q 两点,若2x线段PF 与FQ 的长分别是p 、q ,则11p q+等于 A.2a B.12a C.4a D.4a12.二项式50)的展开式中系数为有理数的项共有A.6项B.7项C.8项D.9项 二、填空题:本大题共4小题;每小题4分,共16分.13.某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2次,其中次品ξ的分布列为:14.椭圆22194x y +=的焦点为1F 、2F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是 .15.设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na na a +++-+=(n =1,2,3,…),则它的通项公式是n a = . 16.如图,E 、F 分别为正方体的面11ADD A 、面11BCC B 的中心,则四边形1BFD E在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)AB CDA 1B 1C 1D 1EF①②③④三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或 演算步骤.17.(本小题满分12分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少? (Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少? 18.(甲)(本小题满分12分)如图,直三棱柱111ABC A B C -A ,底面ABC ∆中,1CA CB ==,90BCA ∠=,棱12AA =,M 、N 分别是11A B 、1A A 的中点.(Ⅰ)求BN 的长;(Ⅱ)求11cos ,BA CB <>的值;(Ⅲ)求证11A B C M ⊥.18.(乙)(本小题满分12分)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且1C CB ∠=60BCD ∠=.(Ⅰ)证明:1C C BD ⊥; (Ⅱ)当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明.ABCDA 1B 1C 1D 1GOABCMNA 1B 1C 118.(本小题满分12分)设{}n a 为等差数列,n S 为数列{}n a 的前项的和,已知77S =,1575S =,n T 为数列{}nS n的前项的和,求n T . 20.(本小题满分12分)设函数()f x ax =,其中0a >. (Ⅰ)解不等式()1f x ≤;(Ⅱ)求a 的取值范围,使函数()f x 在区间[0,)+∞上是单调函数. 21.(本小题满分12分)用总长14.8m 的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积. 22.(本小题满分14分)如图,已知梯形ABCD 中2AB CD =,点E 分有向线段AC 所成的比为λ,双曲线过C ,D ,E 三点,且以A ,B 为焦点.当2334λ≤≤时,求双曲线离心率e的取值范围.ABCD E。
2024年普通高等学校招生全国统一考试(天津卷)数学第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是()A. B.C. D.4.下列函数是偶函数的是()A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x x y x -=+ D.||sin 4e x x x y +=5.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c>> B.b a c>> C.c a b>> D.b c a>>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n⊥ D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.32-B.32-C.0D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B.33142+ C.32D.33142-第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i ⋅=______.11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uur uuu r λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥-在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学答案解析一、选择题.1.【答案】B【解析】因为集合{}1,2,3,4A =,{}2,3,4,5B =所以{}2,3,4A B = 故选:B 2.【答案】C【解析】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.【答案】A【解析】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 4.【答案】B【解析】对A,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B,设()22cos 1x x g x x +=+,函数定义域为R 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.5.【答案】B【解析】因为 4.2x y =在R 上递增,且0.300.3-<<所以0.300.30 4.2 4.2 4.2-<<<所以0.30.30 4.21 4.2-<<<,即01a b <<<因为 4.2log y x =在(0,)+∞上递增,且00.21<<所以 4.2 4.2log 0.2log 10<=,即0c <所以b a c >>故选:B 6.【答案】C【解析】对于A,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C,//,αα⊥m n ,过m 作平面β,使得s βα= 因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.【答案】A【解析】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω=即()sin2f x x =-,当,126⎡⎤∈-⎢⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦画出()sin2f x x =-图象,如下图由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减所以,当π6x =时,()min πsin 32f x =-=-故选:A 8.【答案】C【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m=211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得12sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=21sin 5θ=由正弦定理可得:121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===由1212112822PF F S PF PF m m =⋅=⋅= 得2m =则21122,2,210,10PF PF F F c c =====由双曲线第一定义可得:1222PF PF a -==222,8a b c a ==-=所以双曲线的方程为22128x y -=.故选:C 9.【答案】C【解析】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===则形成的新组合体为一个三棱柱该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=2132211311422ABC DEF ABC HIJ V V --==⨯⨯⨯⨯=.故选:C.第Ⅱ卷二、填空题.10.【答案】7【解析】))i 2i 527+⋅=+-+=-.故答案为:7.11.【答案】20【解析】因为63333x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rr r r r r r x T x r x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭令()630r -=,可得3r =所以常数项为0363C 20=.故答案为:20.12.【答案】45【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p =即2p =由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍)故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=故原点到直线AF 的距离为4455d ==故答案为:4513.【答案】①.35②.12【解析】设甲、乙选到A 为事件M ,乙选到B 为事件N则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.【答案】①.43②.518-【解析】因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r 可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅= 因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈ 则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭可得11111113232AF DG k BA k BC k BA BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;15.【答案】()(1- 【解析】令()0f x =,即21ax =--由题可得20x ax -≥当0a =时,x ∈R ,有211=--=,则2x =±,不符合要求,舍去;当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点由20x ax -≥,可得x a ≥或0x ≤当0x ≤时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得)()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =时,即410x +=,即14x =-当()0,2a ∈,12x a =-+或102x a =>-(正值舍去)当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去即当(]0,2a ∈时,210ax -+=在0x ≤时有唯一解则当(]0,2a ∈时,210ax -+=在x a ≥时需无解当(]0,2a ∈,且x a ≥时由函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫ ⎪⎝⎭上单调递增令()g x y ==,即2222142a x y a a⎛⎫- ⎪-⎭=⎝故x a ≥时,()g x 图象为双曲线()222214y x a a-=右支的x 轴上方部分向右平移2a 所得由()222214y x a a -=的渐近线方程为22a y x xa =±=±即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2又(]0,2a ∈,即()23,21,ax x a h x ax x a⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a +∞上单调递增故有13aaaa ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x aax ax x a⎧-≤⎪⎪=--=⎨⎪->⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点由20x ax -≥,可得0x ≥或x a ≤当0x ≥时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =-时,即410x -=,即14x =当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =-当(),2a ∈-∞时,102x a =->+或102x a =>-,有两解,舍去即当[)2,0a ∈-时,210ax --+=在0x ≥时有唯一解则当[)2,0a ∈-时,210ax --+=在x a ≤时需无解当[)2,0a ∈-,且x a ≤时由函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在21,a a ⎛⎫ ⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-又[)2,0a ∈-,即()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a -∞上单调递减故有13a a a a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(11,a ∈- .故答案为:()(1-⋃.三、解答题.16.【答案】(1)4(2)74(3)5764【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B=+-即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.【小问2详解】因为B 为三角形内角,所以57sin 16B ===再根据正弦定理得sin sin a b A B =,即4sin 5716A =,解得7sin 4A =【小问3详解】因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭由(2)法一知57sin 16B =因为a b <,则A B <,所以3cos 4A ==则7337sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()19573757cos 2cos cos 2sin sin 281616864B A B A B A -=+=⨯+⨯=.17.【答案】(1)证明见解析(2)22211(3)21111【小问1详解】取1CB 中点P ,连接NP ,MP由N 是11B C 的中点,故1//NP CC ,且112NP CC =由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC 则有1//D M NP 、1D M NP=故四边形1D MPN 是平行四边形,故1//D N MP又MP ⊂平面1CB M ,1D N ⊄平面1CB M故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C 则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = 设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z = 则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ 分别取121x x ==,则有13y =、11z =、21y =,20z =即()1,3,1m = 、()1,1,0n =则cos ,11m n m n m n ⋅===⋅ 故平面1CB M 与平面11BB CC 的夹角余弦值为22211;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =则有111BB m m ⋅== 即点B 到平面1CB M 的距离为21111.18.【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距所以()()32,0,0,,0,2A c B C ⎛⎫-- ⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△故c =所以a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-设()()()1122,,,,0,P x y Q x y T t 由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k+==-++而()()1122,,,TP x y t TQ x y t =-=- 故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122k x x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -此时需33t -≤≤,两者结合可得332t ≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.19.【答案】(1)21n n S =-(2)①证明见详解;②()131419n n S i i n b =-+=∑【小问1详解】设等比数列{}n a 的公比为0q >因为1231,1a S a ==-,即1231a a a +=-可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去)所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k ∈≥当124k k n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-当且仅当2k =时,等号成立所以1n k n b a b -≥⋅;(ii )由(1)可知:1211n n n S a +=-=-若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=当1221k k i -<≤-时,12i i b b k --=可知{}i b 为等差数列可得()()()111211112221122431434429k k k k k k k k i i b k k k k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑所以()()()232113141115424845431434499n n S n n i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑且1n =,符合上式,综上所述:()131419n n S i i n b =-+=∑.20.【答案】(1)1y x =-(2){}2(3)证明过程见解析【小问1详解】由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g ⎛⎫-=-=-=⋅ ⎪⎭⎝.当()0,x ∞∈+时的取值范围是()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥.一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤--=--=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a -+<<+-.证明:前面已经证明不等式1ln t t -≥,故ln ln ln ln ln ln ln 1ln 1b b b a a a b a a a b b b b b a b a a--=+=+<+---且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b ⎛⎫--- ⎪--⎝⎭=+=+>=+----所以ln ln ln 1ln 1b b a a a b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10e x <<时()0f x '<,当1ex >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211e x x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=--则()ln 1x x ϕ=++'由于()x ϕ'单调递增,且有1111111ln 1ln 11102e 2e e c c ϕ⎛⎫ ⎪=++<+=-= ⎪⎝⎭'且当2124ln 1x c c ≥-⎛⎫- ⎪⎝⎭,2c x >时,2ln 1c ≥-可知()2ln 1ln ln 102c x x c ϕ⎛⎫=++>++=-≥ ⎪⎝⎭'.所以()x ϕ'在()0,c 上存在零点0x ,再结合()x ϕ'单调递增,即知00x x <<时()0x ϕ'<,0x x c <<时()0x ϕ'>.故()x ϕ在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ≤≤时,有()()0x c ϕϕ≤=;②当00x x <<时,112221e e f f c ⎛⎫=-≤-=< ⎪⎝⎭,故我们可以取1,1q c ⎫∈⎪⎭.从而当201c x q <<-时,>可得()1ln ln ln ln 0x x x c c c c c c q c ϕ⎫=--<--<--=-<⎪⎭.再根据()x ϕ在(]00,x 上递减,即知对00x x <<都有()0x ϕ<;综合①②可知对任意0x c <≤,都有()0x ϕ≤,即()ln ln 0x x x c c ϕ=--.根据10,e c ⎛⎤∈ ⎥⎝⎦和0x c <≤的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x --≤.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-≤.情况三:当12101ex x <≤≤<时,根据情况一和情况二的讨论,可得()11e f x f ⎛⎫-≤≤ ⎪⎝⎭,()21e f f x ⎛⎫-≤≤ ⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.。
2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.已知,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,线性相关性系数最大的是()A. B.C. D.4.下列函数是偶函数的为()A.22eexxxyx-=+B.22cos1x xyx-=+C.eexxxyx-=+D.2sin1x xyx-=+5.设0.20.2 4.24.2 4.2log0.2a b c-===,,,则a b c,,的大小关系为()A.a b c<< B.a c b<< C.c b a<< D.c a b<<6.已知,m n是两条直线,α是一个平面,下列命题正确的是()A.若//mα,m n⊥,则nα⊥ B.若,m m n⊥α⊥,则nα⊥C.若//,αα⊥m n,则m n⊥ D.若,m n⊥αα⊥,则m n⊥7.已知函数()()π3sin03f x xωω⎛⎫=+>⎪⎝⎭的最小正周期为π.则()f x在区间ππ,126⎡⎤-⎢⎥⎣⎦上的最小值是()A.2- B.32- C.0 D.328.双曲线22221()00ax ya bb>-=>,的左、右焦点分别为12,.F F点P在双曲线右支上,直线2PF的斜率为2.若12PF F是直角三角形,且面积为8,则双曲线的方程为()A.22128x y-= B.22148x y-= C.22182x y-= D.22184x y-=9.在如图五面体ABC DEF-中,棱,,AD BE CF互相平行,且两两之间距离均为1.若123AD BE CF ===,,.则该五面体的体积为()A.6B.142+ C.2D.142-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数))i 2i ⋅-=______.11.在62233x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.已知圆22(1)25-+=x y 的圆心与抛物线22y px =的焦点F 重合,且两曲线在第一象限的交点为A ,则原点到直线AF 的距离为______.13.某校组织学生参加农业实践活动,期间安排了劳动技能比赛,比赛共5个项目,分别为整地做畦、旱田播种、作物移栽、田间灌溉、藤架搭建,规定每人参加其中3个项目.假设每人参加每个项目的可能性相同,则甲同学参加“整地做畦”项目的概率为______;已知乙同学参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为______.14.已知正方形ABCD 的边长为1,2,DE EC = 若BE BA BC λμ=+,其中,λμ为实数,则λμ+=______;设F 是线段BE 上的动点,G 为线段AF 的中点,则AF DG ⋅的最小值为______.15.设R a ∈,函数()21f x ax =--+.若恰有一个零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC V 中,角,,A B C 所对的边分别为s s ,已知92cos 5163a Bbc ===,,.(1)求a 的值;(2)求sin A 的值;(3)求()cos 2B A -的值.17.如图,在四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,,//AB AD AB DC ⊥,12,1AB AA AD DC ====.,M N 分别为111,DD B C的中点,(1)求证:1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB C C 夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>的离心率为12.左顶点为A ,下顶点为B C ,是线段OB 的中点(O 为原点),ABC 的面积为332.(1)求椭圆的方程.(2)过点C 的动直线与椭圆相交于P Q ,两点.在y 轴上是否存在点T ,使得0TP TQ ⋅≤恒成立.若存在,求出点T 纵坐标的取值范围;若不存在,请说明理由.19.已知为公比大于0的等比数列,其前n 项和为n S ,且1231,1a S a ==-.(1)求的通项公式及n S ;(2)设数列{}n b 满足11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,其中*k ∈N .(ⅰ)求证:当()*1N ,1k n a k k +=∈>且时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.20.已知函数()ln f x x x =.(1)求曲线()y f x =在点1,1处的切线方程;(2)若()(f x a x ≥-对任意∈0,+∞成立,求实数a 的值;(3)若()12,0,1x x ∈,求证:()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+ .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B2.已知,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.下列图中,线性相关性系数最大的是()A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4.下列函数是偶函数的为()A.22e e x xx y x -=+ B.22cos 1x x y x -=+ C.e e x xxy x-=+ D.2sin 1x x y x -=+【答案】B 【解析】【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e e x x xf x x -=+,函数定义域为R ,但()11e 11e 1e 1e 1f -----==++,()e 11e 1f -=+,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x -=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -----===+-+,则()g x 为偶函数,故B 正确;对C ,设()e e x x x h x x -=+,()()11e 11e e 11,1e 11e e 1h h --++--===--+,()()11h h -≠,则()h x 不是偶函数,故C 错误;对D ,设()2sin 1x xx x ϕ-=+,函数定义域为R ,因为()()()()()22sin sin 11x x x xx x x x ϕϕ---+-===-+-+,且()x ϕ不恒为0,则()x ϕ不是偶函数,故D 错误.故选:B.5.设0.20.2 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c <<B.a c b<< C.c b a<< D.c a b<<【答案】D 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.200.2-<<,所以0.200.20 4.2 4.2 4.2-<<<,所以0.20.20 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+∞上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以c a b <<,故选:D6.已知,m n 是两条直线,α是一个平面,下列命题正确的是()A.若//m α,m n ⊥,则n α⊥B.若,m m n ⊥α⊥,则n α⊥C.若//,αα⊥m n ,则m n ⊥D.若,m n ⊥αα⊥,则m n⊥【答案】C 【解析】【分析】根据线面位置关系的判定与性质,逐项判断即可求解.【详解】对于A ,若//m α,m n ⊥,则,n α平行或相交,不一定垂直,故A 错误.对于B ,若,m m n α⊥⊥,则//n α或n ⊂α,故B 错误.对于C ,//,αα⊥m n ,过m 作平面β,使得s βα= ,因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D ,若,m n αα⊥⊥,则m ,故D 错误.故选:C .7.已知函数()()π3sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则()f x 在区间ππ,126⎡⎤-⎢⎥⎣⎦上的最小值是()A.2-B.32-C.0D.32【答案】D 【解析】【分析】结合周期公式求出ω,得()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭,再整体求出当ππ,126x ⎡⎤∈-⎢⎥⎣⎦时,π23x +的范围,结合正弦三角函数图象特征即可求解.【详解】因为函数()f x 的最小正周期为π,则2ππT ω==,所以2ω=,即()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭,当ππ,126x ⎡⎤∈-⎢⎥⎣⎦时,ππ2π2336,x ⎡⎤+∈⎢⎥⎣⎦,所以当26ππ3x +=,即π12x =-时,()min π33sin 62f x ==故选:D8.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12,.F F 点P 在双曲线右支上,直线2PF 的斜率为2.若12PF F 是直角三角形,且面积为8,则双曲线的方程为()A.22128x y -= B.22148x y -= C.22182x y -= D.22184x y -=【答案】A 【解析】【分析】可利用12PF F 三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin θ=121212::sin :sin :sin 902:1:PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =⋅=⋅= 得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:A9.在如图五面体ABC DEF -中,棱,,AD BE CF 互相平行,且两两之间距离均为1.若123AD BE CF ===,,.则该五面体的体积为()A.B.3142+ C.32D.33142-【答案】C 【解析】.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,21221111422ABC DEF ABC HIJ V V --==⨯⨯⨯=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i是虚数单位,复数))i 2i ⋅-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+⋅=+-+=-.故答案为:7.11.在62233x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为62233x x ⎛⎫+ ⎪⎝⎭的展开式的通项为626124626213C 3C ,0,1,,63rrr r r rr x T xr x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令1240r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12.已知圆22(1)25-+=x y 的圆心与抛物线22y px =的焦点F 重合,且两曲线在第一象限的交点为A ,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为1,0,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ,故直线()4:13AF y x =-即4340x y --=,故原点到直线AF 的距离为4455d ==,故答案为:4513.某校组织学生参加农业实践活动,期间安排了劳动技能比赛,比赛共5个项目,分别为整地做畦、旱田播种、作物移栽、田间灌溉、藤架搭建,规定每人参加其中3个项目.假设每人参加每个项目的可能性相同,则甲同学参加“整地做畦”项目的概率为______;已知乙同学参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为______.【答案】①.35②.12【解析】【分析】结合列举法或组合公式和概率公式可求解第一空;采用列举法或者条件概率公式可求第二空.【详解】解法一:列举法给这5个项目分别编号为,,,,,A B C D E F ,从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲参加“整地做畦”的概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选择D 有3种可能性:,,ABD ACD ADE ,故乙参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到D 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择D 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.已知正方形ABCD 的边长为1,2,DE EC = 若BE BA BC λμ=+,其中,λμ为实数,则λμ+=______;设F 是线段BE 上的动点,G 为线段AF 的中点,则AF DG ⋅的最小值为______.【答案】①.43②.518-【解析】【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅ 的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅ 的最小值.【详解】解法一:因为12CE DE =,即13CE BA = ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.15.设R a ∈,函数()21f x ax =--+.若恰有一个零点,则a 的取值范围为______.【答案】()(1-⋃【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩,则两函数图象有唯一交点,分0a =、0a >与a<0进行讨论,当0a >时,计算函数定义域可得x a ≥或0x ≤,计算可得(]0,2a ∈时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a ∈时,在y 轴右侧无交点的情况即可得;当a<0时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -≥,当0a =时,∈,有11=--=,则12x =±,不符合要求,舍去;当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点,由20x ax -≥,可得x a ≥或0x ≤,当0x ≤时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =时,即410x +=,即14=-x ,当()0,2a ∈,12x a =-+或102x a=>-(正值舍去),当()2,a ∞∈+时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a ∈时,210ax --+=在0x ≤时有唯一解,则当(]0,2a ∈时,210ax --+=在x a ≥时需无解,当(]0,2a ∈,且x a ≥时,由函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数ℎ在12,a a ⎛⎫⎪⎝⎭上单调递减,在23,a a ⎛⎫⎪⎝⎭上单调递增,令()g x y ==,即2222214a x y a a ⎛⎫- ⎪⎝⎭-=,故x a ≥时,()g x 图象为双曲线()222214x y a a -=右支的x 轴上方部分向右平移2a 所得,由()222214x y a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x ⎛⎫=-⎪⎝⎭,其斜率为2,又(]0,2a ∈,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a ∞+上单调递增,故有13a aa a ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<符合要求;当0a <时,则23,2121,ax x a ax ax x a ⎧-≤⎪⎪=--=⎨⎪->⎪⎩,即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点,由20x ax -≥,可得0x ≥或x a ≤,当0x ≥时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =-时,即410x -=,即14x =,当()2,0a ∈-,102x a =-<+(负值舍去)或102x a=-,当(),2a ∞∈-时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a ∈-时,210ax --+=在0x ≥时有唯一解,则当[)2,0a ∈-时,210ax --+=在x a ≤时需无解,当[)2,0a ∈-,且x a ≤时,由函数()23,21,ax x ah x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数ℎ在21,a a ⎛⎫⎪⎝⎭上单调递减,在32,a a ⎛⎫⎪⎝⎭上单调递增,同理可得:x a ≤时,()g x 图象为双曲线()222214x y a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-,又[)2,0a ∈-,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a ∞-上单调递减,故有13a aa a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(1a ∈-⋃.故答案为:()(1-⋃.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16.在ABC V 中,角,,A B C 所对的边分别为s s ,已知92cos 5163a Bbc ===,,.(1)求a 的值;(2)求sin A 的值;(3)求()cos 2B A -的值.【答案】(1)4(2)74(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以57sin 16B ===,再根据正弦定理得sin sin a b A B =,即4sin 5716A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则7sin 4A ==【小问3详解】法一:因为9cos 016B =>,且∈0,π,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin 16B =,因为a b <,则A B <,所以3cos 4A ==,则7337sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()91573757cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:7337sin 22sin cos 2448A A A ==⨯⨯=,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=17.如图,在四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,,//AB AD AB DC ⊥,12,1AB AA AD DC ====.,M N 分别为111,DD B C 的中点,(1)求证:1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB C 夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2)22211(3)21111【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系,有0,0,0、()2,0,0B 、()12,0,2B 、()0,1,1M 、1,1,0、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB =,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z =,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m = 、()1,1,0n =,则222cos ,11m nm n m n ⋅===⋅,故平面1CB M 与平面11BB CC 的夹角余弦值为22211;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =,则有121111BB m m ⋅==,即点B 到平面1CB M的距离为11.18.已知椭圆22221(0)x y a b a b+=>>的离心率为12.左顶点为A ,下顶点为B C ,是线段OB 的中点(O 为原点),ABC 的面积为332.(1)求椭圆的方程.(2)过点C 的动直线与椭圆相交于P Q ,两点.在y 轴上是否存在点T ,使得0TP TQ ⋅≤恒成立.若存在,求出点T 【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤ 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()32,0,0,,0,2A c B C ⎛⎫--⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△,故c =,所以a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫-⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()(1122,,,TP x y t TQ x y t =-=-,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122k x x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+,因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫-⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -≤≤,两者结合可得332t -≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19.已知为公比大于0的等比数列,其前n 项和为n S ,且1231,1a S a ==-.(1)求的通项公式及n S ;(2)设数列{}n b 满足11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,其中*k ∈N .(ⅰ)求证:当()*1N ,1k n a k k +=∈>且时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS ii b =∑.【答案】(1)12,21n n n n a S -==-(2)①证明见详解;②()131419nn S ii n b=-+=∑【解析】【分析】(1)设等比数列的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121k n b k -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1212113143449k k i k k i b k k -=--⎡⎤∑=---⎣⎦,再结合裂项相消法分析求解.【小问1详解】设等比数列的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以1122,2112n n n n n a S --===--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k ∈≥,当124kk n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-,可得()()()()1112112122120kk k n k n b a b k k k k k k k ----⋅=--+=--≥--=-≥,当且仅当2k =时,等号成立,所以1n k n b a b -≥⋅;(ii )由(1)可知:1211nn S a +=-=-,若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=,当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211121221122431434429k k k k i k k k k ib k kk k k ---=-----⎡⎤∑=⋅+=⋅=---⎣⎦,所以()()()123213141115424845431434499n n i n n i S n b n n =--+⎡⎤∑=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦,且1n =,符合上式,综上所述:()131419n n i iS n b =-+∑=.【点睛】关键点点睛:1.分析可知当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1212113143449k k i k k i b k k -=--⎡⎤∑=---⎣⎦.20.已知函数()ln f x x x =.(1)求曲线()y f x =在点1,1处的切线方程;(2)若()(f x a x ≥-对任意∈0,+∞成立,求实数a 的值;(3)若()12,0,1x x ∈,求证:()()121212f x f x x x -≤-.【答案】(1)1y x =-(2)2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】由于()ln f x x x =,故()ln 1f x x '=+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t-'=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g ⎛⎫-=-=--=⋅ ⎪⎭⎝.当()0,x ∈+∞()0,∞+,所以命题等价于对任意()0,t ∈+∞,都有()0g t ≥.一方面,若对任意()0,t ∈+∞,都有()0g t ≥,则对()0,t ∈+∞有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭,取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ∈+∞都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的值是2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -≥,故lnln ln ln ln ln ln 1ln 1bb b a a a b a a a b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b⎛⎫--- ⎪--⎝⎭=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x '=+,可知当10e x <<时()0f x '<,当1e x >时()0f x '>.所以()f x 在10,e⎛⎤ ⎥⎝⎦上递减,在1,e ∞⎡⎫+⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<,结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=--()ln 1x x ϕ'=++由于()xϕ'单调递增,且有1111111ln1ln1110 2e2e ec cϕ⎛⎫⎪'=++++--+⎪⎝⎭,且当2124ln1x cc≥-⎛⎫-⎪⎝⎭,2cx>2ln1c≥-可知()2ln1ln1ln102cx xcϕ⎛⎫=++>++=-≥⎪⎝⎭'.所以()xϕ'在()0,c上存在零点x,再结合()xϕ'单调递增,即知0x x<<时()0xϕ'<,x x c<<时()0xϕ'>.故()xϕ在(]00,x上递减,在[]0,x c上递增.①当0x x c≤≤时,有()()0x cϕϕ≤=;②当00x x<<112221e ef fc⎛⎫=-≤-=<⎪⎝⎭,故我们可以取1,1qc⎫∈⎪⎭.从而当21cxq<<->()1ln ln ln ln0x x x c c c c c c qcϕ⎫=--<--<--=-<⎪⎭.再根据()xϕ在(]00,x上递减,即知对0x x<<都有()0xϕ<;综合①②可知对任意0x c<≤,都有()0xϕ≤,即()ln ln0x x x c cϕ=--.根据10,ec⎛⎤∈ ⎥⎝⎦和0x c<≤的任意性,取2c x=,1x x=,就得到1122ln ln0x x x x--.所以()()()()12121122ln lnf x f x f x f x x x x x-=-=-≤.情况三:当12101ex x<≤≤<时,根据情况一和情况二的讨论,可得()11ef x f⎛⎫-≤≤⎪⎝⎭()21e f f x ⎛⎫-≤≤ ⎪⎝⎭.而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.。
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。
2001年江西省、山西省、天津市高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设A ={x|x 2−x =0},B ={x|x 2+x =0},则A ∩B 等于( ) A 0 B {0} C ⌀ D {−1, 0, 1}2. 若S n 是数列{a n }的前n 项和,且S n =n 2则{a n }是( )A 等比数列,但不是等差数列B 等差数列,但不是等比数列C 等差数列,而且也是等比数列D 既非等比数列又非等差数列3. 过点A (1, −1)、B(−1, 1)且圆心在直线x +y −2=0上的圆的方程是( ) A (x −3)2+(y +1)2=4 B (x +3)2+(y −1)2=4 C (x +1)2+(y +1)2=4 D (x −1)2+(y −1)2=44. 若定义在区间(−1, 0)内的函数f(x)=log 2a (x +1)满足f(x)>0,则实数a 的取值范围是( )A (0, 12) B (0, 12] C (12, +∞) D (0, +∞)5. 若向量a →=(3, 2),b →=(0, −1),c →=(−1, 2),则向量2b →−a →的坐标是( ) A (3, −4) B (−3, 4) C (3, 4) D (−3, −4)6. 设A 、B 是x 轴上的两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为x −y +1=0,则直线PB 的方程是( )A x +y −5=0B 2x −y −1=0C 2y −x −4=0D 2x +y −7=0 7. 若0<α<β<π4,sinα+cosα=a ,sinβ+cosβ=b ,则( ) A a <b B a >b C ab <1 D ab >28. 若椭圆经过原点,且焦点为F 1(1, 0)F 2(3, 0),则其离心率为( ) A 34B 23C 12D 149. 某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( ) A 3种 B 4种 C 5种 D 6种10. 设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →⋅OB →=( ) A 34B −34C 3D −311. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则( )A P 3>P 2>P 1B P 3>P 2=P 1C P 3=P 2>P 1D P 3=P 2=P 112. 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A 传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()A 26B 24C 20D 19二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13. 定义在R上的函数f(x)=sinx+√3cosx的最大值是________.14. 一个工厂有若干个车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查,若某一车间这一天生产256件产品,则从这个车间抽取的产品件数为________.15. 在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________(把符合要求的命题序号都填上).16. 设{a n}是公比为q的等比数列,S n是它的前n项和.若{S n}是等差数列,则q=________.三、解答题:本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤.17. 已知等差数列前三项为a,4,3a,前n项的和为S n,S k=2550.(1)求a及k的值;(2)求limn→∞(1S1+1S2+⋯+1S n).18. 设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为k(k<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?19. 如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80、0.90、0.90.分别求系统N1、N2正常工作的概率P1、P2.20. 已知函数f(x)=x3−3ax2+2bx在点x=1处有极小值−1,试求a,b的值,并求出f(x)的单调区间.21. 设0<θ<π2,曲线x2sinθ+y2cosθ=1和x2cosθ−y2sinθ=1有4个不同的交点.(1)求θ的取值范围;(2)证明这4个交点共圆,并求圆半径的取值范围.四、选做题注意:考生在(22)、(23)两题中选一题作答,如果两题都答,只以(22)计分.22.如图,以正四棱锥V −ABCD 底面中心O 为坐标原点建立空间直角坐标系O −xyz ,其中Ox // BC ,Oy // AB .E 为VC 中点,正四棱锥底面边长为2a ,高为ℎ. (1)求cos <BE →,DE →>;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α−VC −β的平面角,求cos∠BED 的值.23. 如图,在底面是直角梯形的四棱锥S −ABCD 中,∠ABC =90∘,SA ⊥面ABCD ,SA =AB =BC =1,AD =12. (1)求四棱锥S −ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.2001年江西省、山西省、天津市高考数学试卷(文科)答案1. B2. B3. D4. A5. D6. A7. A8. C9. A 10. B 11. D 12. D 13. 2 14. 16 15. ②16. 117. 解:(1)设该等差数列为{a n},则a1=a,a2=4,a3=3a,S k=2550.由已知有a+3a=2×4,解得首项a1=a=2,公差d=a2−a1=2.代入公式S k=k⋅a1+k(k−1)2⋅d得k⋅2+k(k−1)2⋅2=2550∴ k2+k−2550=0解得k=50,k=−51(舍去)∴ a=2,k=50;(2)由S n=n⋅a1+n(n−1)2⋅d得S n=n(n+1),1 S1+1S2+⋯+1S n=11×2+12×3+⋯+1n(n+1)=(11−12)+(12−13)+⋯+(1n−1n+1)=1−1 n+1∴ limn→∞(1S1+1S2+⋯+1S n)=limn→∞(1−1n+1)=1.18. 解:设画面高为xcm,宽为kxcm,则kx2=4840设纸张面积为S,则有S=(x+16)(kx+10)=kx2+(16k+10)x+160,将x=√10√k代入上式得S=5000+44√10(8√k√k)当8√k=√k 即k=58(58<1)时,S取得最小值,此时高:x=√4840k=88cm,宽:kx=58×88=55cm19. P1=0.648,P2=0.792.20. 解:f′(x)=3x2−6ax+2b,由题意知{3×12−6a ×1+2b =0,13−3a ×12+2b ×1=−1,即{3−6a +2b =0,2−3a +2b =0, 解之得a =13,b =−12.此时f(x)=x 3−x 2−x ,f′(x)=3x 2−2x −1=3(x +13)(x −1).当f′(x)>0时,x >1或x <−13, 当f′(x)<0时,−13<x <1.∴ 函数f(x)的单调增区间为(−∞, −13)和(1, +∞),减区间为(−13, 1).21. (1)解:两曲线的交点坐标(x, y)满足方程组{x 2sinθ+y 2cosθ=1x 2cosθ−y 2sinθ=1即{x 2=sinθ+cosθy 2=cosθ−sinθ.有4个不同交点等价于x 2>0,且y 2>0,即{sinθ+cosθ>0cosθ−sinθ>0.又因为0<θ<π2,所以得θ的取值范围为(0,π4).(2)证明:由(1)的推理知4个交点的坐标(x, y)满足方程x 2+y 2=2cosθ(0<θ<π4), 即得4个交点共圆,该圆的圆心在原点,半径为r =√2cosθ(0<θ<π4). 因为cosθ在(0,π4)上是减函数,所以由cos0=1,cos π4=√22, 知r 的取值范围是(√24,√2).22.解:(1)由题意知B(a, a, 0),C(−a, a, 0),D(−a, −a, 0),E(−a2,a2,ℎ2),由此得BE →=(−3a 2,−a 2,ℎ2),DE →=(a 2,3a 2,ℎ2),∴ BE →⋅DE →=(−3a 2⋅a2)+(−a2⋅3a 2)+ℎ2⋅ℎ2=−3a 22+ℎ24,|BE →|=|DE →|=√(−3a 2)2+(−a 2)2+(ℎ2)2=12√10a 2+ℎ2.由向量的数量积公式有cos <BE →,DE →>=|BE →|⋅|DE →|˙=−3a 22+ℎ24⋅=−6a 2+ℎ210a 2+ℎ2.(2)若∠BED 是二面角α−VC −β的平面角,则BE →⊥CV →,即有BE →⋅CV →=0. 又由C(−a, a, 0),V(0, 0, ℎ),有CV →=(a,−a,ℎ)且BE →=(−3a 2,−a 2,ℎ2),∴ BE →⋅CV →=−3a 22+a 22+ℎ22=0,即ℎ=√2a ,这时有cos <BE →,DE →>=−6a 2+ℎ210a 2+ℎ2=2√2a)210a 2+(√2a)2=−13.∴ cos∠BED =−13.23. 解:(1)直角梯形ABCD 的面积是M 底面=12(BC +AD)⋅AB =1+0.52×1=34∴ 四棱锥S −ABCD 的体积是V =13×SA ×M 底面=13×1×34=14; (2)延长BA 、CD 相交于点E ,连接SE ,则SE 是所求二面角的棱 ∵ AD // BC ,BC =2AD ∴ EA =AB =SA , ∴ SE ⊥SB∵ SA ⊥面ABCD ,得面SEB ⊥面EBC , EB 是交线.又BC ⊥EB , ∴ BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角∵ SB =√SA 2+AB 2=√2,BC =1,BC ⊥SB ∴ tan∠BSC =BCSB =√22即所求二面角的正切值为√22.。
2001年全国高考文科数学(江西、山西、天津)卷参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(正棱锥、圆锥的侧面积公式cl S 21=锥侧 其中c 表示底面周长,l 表示斜高或母线长.棱锥、圆锥的体积公式sh V 31=锥体其中s 表示底面积,h 表示高. 第Ⅰ卷 (选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设A=B A x x x B x x x 则},0|{},0|{22=+==-等于 ( )(A )0(B ){0}(C )φ (D ){-1,0,1}(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是 ( )(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是 ( )(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是( )(A ))21,0( (B )]21,0((C )),21(+∞ (D )),0(+∞(5)若向量a=(3,2),b=(0,-1),c=(-1,2),则向量2b -a 的坐标是 ( )(A )(3,-4)(B )(-3,4)(C )(3,4) (D )(-3,-4)(6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是 ( ) (A )05=-+y x (B )012=--y x (C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα ( )(A )b a <(B )b a >(C )1<ab (D )2>ab(8)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0)则其离心率为 ( )(A )43(B )32 (C )21 (D )41 (9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分. 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有 ( )(A )3种(B )4种(C )5种 (D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅( ) (A )43(B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜, 记三 种盖法屋顶面积分别为P 1、P 2、P 3若屋顶斜面与水平面所成的角都是α,则 ( )(A )P 3>P 2>P 1 (B )P 3>P 2=P 1(C )P 3=P 2>P 1(D )P 3=P 2=P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量. 现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为 ( )(A )26(B )24(C )20(D )19第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. (13)定义在R 上的函数x x x f cos 3sin )(+=的最大值是 .(14)一个工厂在若干个车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查,若一车间这一天生产256件产品,则从该车间抽取的产品件数为 .(15)在空间中,①若四点不共面,则这四点中任何三点都不共线. ②若两条直线没有共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 .(把符合要求的命题序号都填上) (16)设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q= .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等差数列前三项为a ,4,3a ,前n 项的和为S n ,S k =2550. (Ⅰ)求a 及k 的值;(Ⅱ)求).111(lim 21nn S S S +++∞→(18)(本小题满分12分)设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为)1(<λλ,画面的上、下各有8cm 空白,左、右各有5cm 空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张的面积最小?(19)(本小题满分12分)如图,用A 、B 、C 三类不同的无件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2.注意:考生在(20甲)、(20乙)两题中选一题作答,如果两题都答,只以(20甲)计分. (20甲)(本小题满分12分)如图,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空 间直角坐标系O —xyz ,其中Ox//BC ,Oy//AB .E 为VC 中点,正四棱锥底面边长 为2a ,高为h .(Ⅰ)求;,cos ><(Ⅱ)记面BCV 为α,面DCV 为β,若∠BED 是 二面角α—VC —β的平面角,求cos ∠BED 的值.(20乙)(本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中, ⊥︒=∠SA ABC ,90面ABCD ,SA=AB=BC=1,AD=.21(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.(21)(本小题满分12分)已知函数bx ax x x f 23)(23+-=在点x=1处有极小值-1.试确定a 、b 的值.并求出 f (x )的单调区间.(22)(本小题满分14分)设,20πθ<<曲线1sin cos 1cos sin 2222=-=+θθθθy x y x 和有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.参考答案一、选择题:本题考查基本知识和基本运算(1)B (2)B (3)C (4)A (5)D (6)A (7)A (8)C (9)A (10)B (11)D (12)D 二、填空题:本题考查基本知识和基本运算 (13)2 (14)16 (15)② (16)1 三、解答题(17)本小题主要考查数列求和以及极限的基本概念和运算,考查综合分析的能力.解:(I )设该等差数列为{a n }, 则.2550,3,4,321====k S a a a a a由已知有,423⨯=+a a 解得首项,21==a a 公差.22412=-=-=a a d 代入公式d k k a k S k ⋅-+⋅=2)1(1得.255022)1(2=⋅-+⋅k k k 即,025502=-+k k 解得k=50,k=-51(舍去) 50,2==∴k a (II )由),1(2)1(1+=⋅-+⋅=n n S d n n a n S n n 得 )1(132121111121+++⨯+⨯=+++∴n n S S S n,111)111()3121()2111(+-=+-++-+-=n n n.1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n(18)本小题考查建立函数关系式,求函数最小值的方法和运用数学知识解决问题的能力.解:设画面高为xcm ,宽为λxcm ,则.48402=x λ 设纸张面积为S ,有160)1016()10)(16(2+++=++=x x x x S λλλ 将λ1022=x 代入上式得).58(10445000λλ++=S当,58λλ=即)185(85<=λ时,S 取得最小值.此时,高:,884840cm x ==λ宽:.558885cm x =⨯=λ答:画面高为88cm ,宽为55cm 时,能使所用纸张面积最小. (19)本小题考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件 P (A )=0.80, P(B)=0.90, P(C)=0.90.(I )因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率 P 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.故系统N 1正常工作的概率为0.648. (II )系统N 2正常工作的概率)],()(1[)()](1[)(2C P B P A P C B P A P P ⋅-⋅=⋅-⋅=,10.090.01)(1)(,10.090.01)(1)(=-=-==-=-=C P P B P P 792.099.080.0]10.010.01[80.02=⨯=⨯-⨯=P故系统N 2正常工作的概率为0.792.(20甲)本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.解:(I )由题意知B (a ,a ,0),C (―a ,a ,0),D (―a ,―a ,0),E ),2,2,2(h a a -由此得),2,23,2(),2,2,23(h a a h a a =--=,42322)232()223(22h a h h a a a a DE BE +-=⋅+⋅-+⋅-=⋅∴.1021)2()2()23(||||22222h a h a a +=+-+-==由向量的数量积公式有.10610211021423||||,cos 2222222222ha h a h a h a h a DE BE DE BE ++-=+⋅++-=⋅< (II )若∠BED 是二面角α—VC —β的平面角,则CV BE ⊥,即有CV BE ⋅=0. 又由C (-a ,a ,0),V (0,0,h ),有),,(h a a -=且),2,2,23(h a a --=,02223222=++-=⋅∴h a a 即,2a h =这时有.31)2(10)2(6106,cos 22222222-=++-=++->=<a a a a h a h a DE BE.31cos -=∠∴BED 即 (20乙)本小题考查线面关系和棱锥体积计算,考查空间想象能力和逻辑推理能力,满分12分. 解:(Ⅰ)直角梯形ABCD 的面积是 M 底面=,43125.01)(21=⨯+=⋅+AB AD BC∴四棱锥S —ABCD 的体积是 V=底面M SA ⨯⨯3143131⨯⨯= =41.(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱.∵AD ∥BC, BC=2AD, ∴EA=AB=SA, ∴SE ⊥SB ,∴ SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线,又BC ⊥EB ,∴BC ⊥面SEB ,故SE 是CS 在ES CADB面SEB 上的射影,∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角.∵,,1,222SB BC BC AB SA B S ⊥==+=∴.22tan ==∠SBBC BSC即所求二面角的正切值为.22(21)本小题考查函数和函数极值概念,考查运用导数研究函数性质的方法,以及分析和解决数学问题的 能力.解:由已知,可得,1231)1(-=+-=b a f ① 又,263)(2b ax x x f +-='.0263)1(=+-='∴b a f ②由①、②,可解得⎪⎪⎩⎪⎪⎨⎧-==.21,31b a 故函数的解析式为.)(23x x x x f --=由此得.123)(2--='x x x f根据二次函数的性质,当31-<x 或x >1时,;0)(>'x f当131<<-x 时,.0)(<'x f 因此,在区间)31,(--∞和),1(+∞上,函数f (x )为增函数;在区间)1,31(-内,函数f (x )为减函数.(22)本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力. 解:(I )两曲线的交点坐标(x ,y )满足方程组⎪⎩⎪⎨⎧=-=+,1sin cos ,1cos sin 2222θθθθy x y x 即⎪⎩⎪⎨⎧-=+=.sin cos ,cos sin 22θθθθy x 有4个不同交点等价于,02>x 且,02>y 即⎩⎨⎧>->+.0sin cos ,0cos sin θθϑθ 又因为,20πθ<<所以得θ的取值范围为(0,).4π(II )由(I )的推理知4个交点的坐标(x ,y )满足方程),40(cos 222πθθ<<=+y x即得4个交点共圆,该圆的圆心在原点,半径为).40(cos 2πθθ<<=r因为θcos 在)4,0(π上是减函数,所以由.224cos ,10cos ==π知r 的取值范围是).2,2(4。
2000年普通高等学校招生全国统一考试(文史类) (天津、江西卷)-、选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1) 设集合A="x|x ・Z且-1°乞x^_1;, B =:X |X ・Z 且|x 理L ,则A U B 中的元素个数是(A) 11( B ) 10(C ) 16( D ) 15(2) 设a 、b 、c 是任意的非零平面向量,且相互不共线,则①(a ,bc_(c ab=0 ;② a-b<a-b22③(b ca-(c ab 不与 c 垂直 ④(3a+2b ”0-213)=93 =4b中,是真命题的有 (A)①②(B )②③ (C )③④ (D )②④(3)—个长方体共一项点的三个面的面积分别是2, - 3,6,这个长方体 对角线的长是 (A ) 23(B ) 3 2 (C )6(D ) 6(4) 已知si・sin :,那么下列命题成立的是(A) 若]、:是第一象限角,则cos 〉.cos : (B) 若〉、:是第二象限角,则tg 「tg : (C) 若]、:是第三象限角,则cos 〉.cos : (D) 若〉、:是第四象限角,贝Ut^tg :(5)函数y = -xcosx 的部分图象是800(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税款按下表分段累进计算:(9 )一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是26.78元,则他的当月工资、薪金所得介于 某人一月份应交纳此项税款 (A) 800~900 元(B) 900~1200元 (C) 1200~1500元(D) 1500~2800元(7)若a汕〉1,"如9 b1lga lg blg,Q=2,R=a b2,则(A ) R : P : Q(B) P ::Q ::: R (C ) Q ::: P : R (D) P ::: R ::Q(8)已知两条直线h : y = x , 变动时,a 的取值范围是I 2 : ax - y =0,其中a 为实数。
2000年全国高考数学试题(新课程/理工农医类)江西、天津卷一、选择题:本大题共12小题;每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的.(1)设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是 ( )(A )()1 ,3 (B )⎪⎭⎫ ⎝⎛21 ,23 (C )⎪⎭⎫⎝⎛-21 ,23 (D )()3 ,1(2)在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是 ( )(A )23 (B )i 32- (C )i 33- (D )3i 3+ (3)一个长方体共一项点的三个面的面积分别是2,3,6,这个长方体 对角线的长是 ( )(A )23 (B )32 (C )6 (D )6 (4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ( )①()()0=⋅-⋅b a c c b a ; ②b a b a -<-③()()b a c a c b ⋅-⋅不与c 垂直 ④()()22492323b a b a b a ==-⋅+中,是真命题的有(A )①② (B )②③ (C )③④ (D )②④ (5)函数x x y cos -=的部分图象是 ( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税 款按下表分段累进计算:全月应纳税所得额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10% 超过2000元至5000元的部分 15%… …某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于( )(A ) 800~900元 (B )900~1200元 (C )1200~1500元 (D )1500~2800元 (7)若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则(A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q (8)右图中阴影部分的面积是(A )32 (B )329- (C )332 (D )335(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )(A )ππ221+ (B )ππ441+ (C )ππ21+ (D )ππ241+(10)过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直 线的方程是 ( )(A )x y 3= (B )x y 3-= (C )x 33 (D )x 33- (11)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( ) (A )a 2 (B )a21 (C )a 4 (D )a 4(12)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A )321arccos(B )21arccos(C )21arccos (D )421arccos二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
(13)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品ξ的概率分布是(14)椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是________.(15)设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a na na a n (n =1,2,3,…),则它的通项公式是n a =________。
(16)如图,E 、F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______。
(要求:把可能的图的序号都填上)三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或 演算步骤。
(17)(本小题满分10分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个。
甲、乙二人依次各抽一题。
(I )甲抽到选择题、乙抽到判断题的概率是多少?(II )甲、乙二人中至少有一人抽到选择题的概率是多少?(18甲)(本小题满分12分)如图,直三棱柱ABC -111C B A ,底面ΔABC 中,CA=CB=1,BCA=ο90,棱1AA =2,M 、N 分别是11B A 、A A 1的中点。
(I )求BN 的长;(II )求1cos BA <,1CB >的值; (III )求证M C B A 11⊥。
(18乙)(本小题满分12分)如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且CB C 1∠=BCD ∠=ο60。
(I )证明:C C 1⊥BD ;(II )假定CD=2,C C 1=23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值; (III )当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明。
(19)(本小题满分12分)设函数()ax x x f -+=12,其中0>a 。
(I )解不等式()1≤x f ;(II )求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数。
(20)(本小题满分12分)用总长14.8m 的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积。
(21)(本小题满分12分)(I )已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常 数p 。
(II )设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列。
(22)(本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当4332≤≤λ时,求双曲线离心率e 的取值范围。
参考答案一、选择题:本题考查基本知识和基本运算。
每小题5分,满分60分。
(1)B (2)B (3)C (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D二、填空题:本题考查基本知识和基本运算。
每小题4分,满分16分。
(13(14)55<<-x (15)n(16)②③三、解答题 (5)本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力。
满分10分。
解:(I )甲从选择题中抽到一题的可能结果有16C 个,乙依次从判断题中抽到一题的可能结果有14C 个,故甲抽到选择题、乙依次抽到判断题的可能结果有16C 14C 个;又甲、乙依次抽一题的可能结果有概率为110C 19C 个,所以甲抽到选择题、乙依次抽到判断题的概率为154191101416=C C C C ,所求概率为154; ——5分(II )甲、乙二人依次都抽到判断题的概率为191101314C C CC ,故甲、乙二人中至少有一人抽到选择题的概率为15131191101314=-C C C C ,所求概率为1513。
或 +191101516C C C C +191101416C C C C 191101614C C C C 151315415431=++=,所求概率为1513。
——10分(18甲)本小题主要考查空间向量及运算的基本知识。
满分12分。
如图,以C 为原点建立空间直角坐标系O xyz -。
(I )解:依题意得B ()0 ,1 ,0,N ()1 ,0 ,1, ∴()()()3011001222=-+-+-=——2分(II )解:依题意得1A ()2 ,0 ,1,B ()0 ,1 ,0,C ()0 ,0 ,0,1B ()2 ,1 ,0。
∴ ()2 ,1 ,11-=BA ,()2 ,1 ,01=CB 。
⋅1BA 31=CB 。
61=BA ,51=CB ——5分∴ <cos ⋅1BA 3010111111=⋅⋅=>CB BA CB BA CB ——9分 (III )证明:依题意得1C ()2 ,0 ,0,M ⎪⎭⎫⎝⎛2 ,21,21=B A 1()2 ,1 ,1--,=M C 1⎪⎭⎫ ⎝⎛0 ,21 ,21 ,∴ ⋅B A 1=M C 1002121=++-,∴⊥ 1B A M C 1 ——12分 (18乙)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力。
满分12分。
(I )证明:连结11C A 、AC ,AC 和BD 交于O ,连结O C 1。
∵ 四边形ABCD 是菱形, ∴ AC ⊥BD ,BC=CD 。
又∵ C C C C DCC BCC 1111 , =∠=∠, ∴ DC C BC C 11∆≅∆, ∴ D C B C 11=, ∵ DO=OB ,∴ ⊥O C 1BD , ——2分 但 AC ⊥BD ,AC ∩O C 1=O , ∴ BD ⊥平面1AC 。
又 ⊂C C 1平面1AC ,∴ ⊥C C 1BD 。
——4分 (II )解:由(I )知AC ⊥BD ,⊥O C 1BD , ∴ OC C 1∠是平面角βα--BD 的平面角。
在BC C 1∆中,BC=2,231=C C ,ο601=∠BCC , ∴ 41360cos 23222322221=⨯⨯⨯-⎪⎭⎫⎝⎛+=οB C 。
——6分∵ ∠OCB=ο30, ∴ OB=21BC=1。
∴ 49141322121=-=-=OB B C O C , ∴ 231=O C 即C C O C 11=。
作H C 1⊥OC ,垂足为H 。
∴ 点H 是OC 的中点,且OH 23=, 所以 33cos 11==∠O C OH OC C 。
——8分 (III )当11=CC CD时,能使C A 1⊥平面BD C 1。
证明一: ∵11=CC CD, ∴ BC=CD=C C 1,又 CD C CB C BCD 11∠=∠=∠, 由此可推得BD=D C B C 11=。
∴ 三棱锥C- BD C 1是正三棱锥。