土力学
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
1.土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。
2.任何建筑都建造在一定的地层上。
通常把支撑基础的土体或岩体成为地基(天然地基、人工地基)。
3.基础是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基。
4.地基和基础设计必须满足的三个基本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②基础沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。
5.地基和基础是建筑物的根本,统称为基础工程。
6.土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。
7.土的三相组成:固相(固体颗粒)、液相(水)、气相(气体)。
8.土的矿物成分:原生矿物、次生矿物。
9.黏土矿物是一种复合的铝—硅酸盐晶体。
可分为:蒙脱石、伊利石和高岭石。
10.土力的大小称为粒度。
工程上常把大小、性质相近的土粒合并为一组,称为粒组。
划分粒组的分界尺寸称为界限粒径。
土粒粒组分为巨粒、粗粒和细粒。
11.土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。
级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。
12.颗粒分析实验:筛分法和沉降分析法。
13.土中水按存在形态分为液态水、固态水和气态水。
固态水又称矿物内部结晶水或内部结合水。
液态水分为结合水和自由水。
自由水分为重力水和毛细水。
14.重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。
15.毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以下的透水层中自由水。
土的毛细现象是指土中水在表面张力作用下,沿着细的孔隙向上及向其他方向移动的现象。
16.影响冻胀的因素:土的因素、水的因素、温度的因素。
第一章土的组成1土的定义:土是岩石风化的产物。
常见的化学风化作用:水解作用,水化作用,氧化作用。
2土是由固体颗粒,水,和气体组成的三相体系。
3固体颗粒:岩石风化后的碎屑物质简称土粒,土粒集合构成土的骨架4土具有三个重要特点:散体性;多相性;自然变异性5粒组:介于一定粒度范围内的土粒。
土粒的大小叫做粒度。
6采用粒径累计曲线表示土的颗粒级配;不均匀系数Cu:反映大小不同粒组分布的均匀程度,Cu越大,越不均匀。
曲率系数Cc:反映了d10、d60之间各粒组含量的分布连续情况。
Cc过大或过小,均表明缺少中间粒组。
7土粒大小:也称为粒度,以粒径表示;8土体:9粘土矿物10液相11强结合水是指紧靠土粒表面的结合水膜,亦称吸着水弱结合水紧靠强结合水的外围而形成的结合水膜,也称薄膜水。
12自由水指土粒表面引力作用范围之外的水.自由水分为:重力水,毛细水。
重力水是存在于地下水位以下的透水土层中的自由水。
毛细水存在于地下水位以上,受水与空气交界面处表面张力作用的自由水。
13土的构造:指同一土层中的物质成分和颗粒大小都相近的各部分之间的相互关系的特征。
有层理构造,裂隙构造,分散构造14土的结构:指土粒大小、形状、相互排列及其联结关系、土中水性质及孔隙特征等因素的综合特征。
有单粒结构,蜂窝结构,絮状结构15承压水16潜水:17排水距离18双面排水19电泳:在电场作用下向阳极移动;电渗:水分子在电场作用下向负极移动,因水中含有一定量的阳离子(K+,Na+等),水的移动实际上是水分子随这些水化了的阳离子一起移动。
20双电层:反离子层与土粒表面负电荷层组成双电层。
第二章土的物理性质及分类1重度:单位体积土的重量,用γ表示密度:单位体积土的质量,用ρ表示2干密度ρd干容重γd:单位体积内土粒的质量或重量饱和密度ρsat与饱和容重γsat :土中孔隙完全被水充满,土处于饱和状态时单位体积土的质量或重量浮密度与浮容重:单位体积内土粒质量与同体积水质量之差3土粒相对密度:土的质量与同体积4℃时纯水的质量之比4土的含水率w :土中水的质量与土粒质量之比.测定方法:烘干法。
土力学几个基本概念1、 土:土是矿物或岩石碎屑构成的松软集合体,岩石是广义的土。
土是自然历史的产物,是岩石经风化、搬运、剥蚀、推挤形成的松散集合体。
2、 地基:支撑基础的土体或岩土称为地基,是受土木工程影响的地层。
分类:有天然地基和人工地基两种。
3、 基础:指墙、柱地面以下的延伸扩大部分。
作用:将结构所承受的各种作用传递到地基上的结构组成部分。
根据其埋置深度可以分为浅基础和深基础。
4、 基础工程:地基与基础的统称。
5、 持力层:埋置基础,直接支撑基础的土层。
6、 下卧层:卧在持力层下方的土层。
7、 软弱下卧层:f f 软持软弱下卧层的强度远小于持力层的强度。
8、 土的工程性质1. 土的散粒性2. 土的渗透性3. 土的压缩性4. 整体强度弱5.6. 土的性质及工程分类1、土的三相组成:在天然状态下,土体一般由固相(固体颗粒)、液相(土中水)和气相(气体)三部分组成,简称三相体系。
A 、 土的固体颗粒(固相)a 、土的矿物成分土的矿物成分主要取决于母岩的成分及其所经受的风化作用。
矿物颗粒成分有两大类:原生矿物,次生矿物。
(1) 原生矿物:即岩浆在冷凝过程中形成的矿物,如石英、云母、长石等。
其矿物成分于母岩相同,其抗水性和抗风化作用都强,故其工程性质比较稳定。
若级配好,则土的密度大、强度高,压缩性低。
(2) 次生矿物:原生矿物经风化作用后形成的新矿物。
如黏土矿物等。
黏土矿物主要由蒙脱石、伊利石和高岭石。
蒙脱石,它的晶胞是由两层硅氧晶片之间的夹一层铝氢氧晶片所组成称为2:1型结构单位层或三层型晶胞。
它的亲水性特强工程性质差。
伊利石它的工程性质介于蒙脱石与高岭石之间。
高岭石,它是由一层硅氧晶片和一层铝氢氧晶片组成的晶胞,属于1:1型结构单位层或者两层。
它的亲水性质差,工程性质好。
b 、土粒粒组土粒的大小称为粒度,在工程中,粒度的不同、矿物成分的不同,土的工程性质就不同,因此工程上常把大小、性质相近的土粒合并为一组,称为粒组。
土力学一、介绍土力学是土木工程中的一个重要学科,研究土壤力学和土木工程中土壤的应力、应变和变形等方面的规律。
土力学的研究对象是土壤及其力学性质,通过对土壤的特性和行为的研究,可以预测和控制土壤在工程中的行为,为土木工程的设计和施工提供科学依据。
二、土壤力学的基本概念1. 土壤物理性质土壤的物理性质包括土壤的颗粒组成、容重、孔隙比、相对密度等。
这些性质直接影响土壤的承载力、抗剪强度和渗透性等力学性质,是土壤力学研究的基础。
2. 土壤力学参数土壤力学参数包括土壤的压缩性、内摩擦角、剪切强度参数等。
这些参数描述了土壤在受力作用下的变形和破坏特性,是土壤力学分析和计算的重要依据。
3. 土壤应力状态土壤应力状态是指土壤中的应力分布情况,包括垂直应力、水平应力和剪应力等。
了解土壤的应力状态可以帮助工程师预测土壤的承载力、变形和破坏状态,从而设计出安全可靠的土木工程。
三、土壤力学的应用1. 土壤的承载力分析土壤的承载力是指土壤在承受外力作用下的最大抵抗能力。
工程师通过对土壤的颗粒组成、孔隙结构、内摩擦角等参数的分析,计算得出土壤的承载力,并根据承载力的大小来设计和选择合适的基础结构和土方工程。
2. 土壤的变形特性研究土壤在受力作用下会发生变形,包括压缩变形、剪切变形和液化等。
了解土壤的变形特性可以帮助工程师预测土壤的沉降和位移,并采取相应的补充措施,确保土木工程的安全和稳定。
3. 土壤的抗剪强度分析土壤的抗剪强度是指土壤在剪切作用下的抵抗能力。
通过对土壤的剪切试验和理论分析,工程师可以确定土壤的剪切强度参数,并结合实际工程条件进行抗剪强度的计算和分析,为土木工程的设计和施工提供重要依据。
四、土力学的挑战与发展土力学作为土木工程中的重要学科,正面临着一系列的挑战和发展机遇。
首先,随着城市化进程的加快和人口增长的需求,工程建设规模不断扩大,对土力学的研究和应用提出了新的要求。
其次,随着科技的进步和实验技术的发展,土力学研究手段和方法也将得到加强和完善,从而能够更加准确和全面地研究土壤的力学性质和行为规律。
土力学原理
土力学原理是土木工程中的一项基础原理,用于研究土体在外力作用下的力学行为。
在土壤力学中,有许多重要的原理被广泛应用在土壤的设计和分析中。
土力学的研究对象是土体,土体是由颗粒、水分和空气等组成的多相材料。
土力学采用连续介质力学的观点来研究土体的力学性质。
其中最重要的三个原理分别是:
1. 应力-应变关系:应力-应变关系描述了土体在外力作用下的应变响应。
根据弹性理论,土体的线性弹性行为可以用胡克定律来描述,即应力与应变成正比。
这一原理在土体的设计和分析中非常重要。
2. 塑性力学原理:塑性力学原理用于描述土体的塑性行为。
在土体达到一定的应力水平后,它会发生塑性变形,即应力超过了土体的弹性极限。
塑性力学原理可以用来解释土体的流动、变形和稳定性。
在土体的基础工程和边坡稳定性分析中,塑性力学原理是十分重要的。
3. 应力传递原理:应力传递原理是土力学中非常基础的原理,它描述了土体内部应力的传递方式。
根据这一原理,土体内部的应力是从上部施加的外力通过土体颗粒之间的相互作用而传递的。
应力传递原理在土体的承载力和排水性能的研究中起到了重要的作用。
这些原理为土壤力学的研究提供了基础理论和方法,为土木工
程师在设计和分析土体结构时提供了指导。
通过深入学习和应用这些原理,可以更好地理解土壤的行为特性,从而做出科学、合理的工程决策。
土力学(工程管理专业)一:名词解释1.管涌:在渗流作用下,土体中的细颗粒在粗颗粒形成的空隙中流失的现象称为管涌。
2.颗粒级配:土中所含各颗粒的相对含量,以土粒总含量的百分数表示。
3.临塑荷载:地基中将要出现但尚未出现塑性变形区,其相应的荷载。
4.被动土压力:当挡土墙在外力的作用下,向土体方向偏移至墙后土体达到极限平衡状态时,作用在墙背上的土压力。
5.主动土压力:当挡土墙向离开土体方向偏移至墙后土体达到极限平衡状态时,作用在墙背上的土压力。
6.静止土压力:当挡土墙静止不动,墙后土体处于弹性平衡状态时,作用在墙背上的土压力。
7.地基:支撑基础的土体或岩体。
8.基础:将结构承重的各种作用传递到地基上的结构组成部分。
9.流砂:当地下水流动,流动力的数值等于或大于土的浮重度时,土体发生浮起而随水流动,这种现象称为流砂。
10.无筋扩展基础:指用砖,毛石,混泥土,毛石混泥土,灰土和三合土等材料组成的墙下条形基础或柱下独立基础。
11.土的含水量:土中水的质量与土粒质量之比。
12.液限:土自可塑状态变化到流动状态的临界含水量。
13.压缩模量:土体在完全侧限条件下,竖向附加应力与相应的应变增量之比。
14.土的相对密度:土的固体颗粒质量与同体积4℃时纯水的质量之比。
ds=w sρρ/15.塑性荷载:指地基塑性区开展到一定深度对应的基底压力。
16.附加应力:由建(构)筑物荷载在地基中引起的应力增量。
17.土的抗剪强度:土体抵抗剪力破坏的极限能力。
二:选择与填空1.土中孔隙体积与土粒体积之比称为土的孔隙比。
2.土中水的体积与孔隙体积之比称为土的饱和度Sr。
3.实验室中可测的指标:重度,密度,含水量。
4.土中水的质量与土粒质量之比称为土的含水量。
5.土的颗粒级配曲线比较陡说明:级配不好。
6.常见的粘土矿物中,亲水性最好的是:蒙脱石。
7.粘土矿物可分为:蒙脱石,伊利石,高岭石。
8.土是在岩石的风化作用下形成的。
9.Cu>5,级配良好,Cu<5,级配不良。
目录第一章土的物理性质 (1)第二章土的渗透性和水的渗流 (11)第三章土中应力和地基应力分布 (14)第四章土的压缩性及地基沉降计算 (23)第五章土的抗剪强度 (34)第六章天然地基承载力 (43)第七章土压力 (51)第一章土的物理性质一、内容简介土的力学性质由其物理性质所决定,而土的物理性质又取决于土的成分、结构和形成过程等。
在本章中将介绍土的生成、矿物组成、结构及其联结、三相含量指标、土体状态、土(岩)的工程分类等。
二、基本内容和要求1 .基本内容( 1 )土的形成;( 2 )土的粒径组成及物质成分;( 3 )土中的水及其对土性的影响(粘粒与水的表面作用);( 4 )土的结构及联结;( 5 )土的三相含量指标及换算关系;( 6 )土的物理状态及有关指标;( 7 )土(岩)的工程分类。
2 .基本要求★ 概念及基本原理【掌握】土的粒径组成(或颗粒级配、粒度成分);粒组划分;粒径分析;粒径分布曲线(级配曲线)及其分析应用;土的三相含量指标;砂土及粘性土的物理状态及相应指标;砂土的相对密实度及状态划分;粘性土的稠度和可塑性;稠度和稠度界限;塑性指数及液性指数;【理解】土的形成过程;粒径分析方法(筛分法、比重计法);不均匀系数;曲率系数;土的矿物成分及相应的物理性质;土中水的形态及相应的性质;粗粒土、粉土、粘性土的结构及对土性的影响;重塑土;粘性土的灵敏度及触变性;标准贯入试验及标贯数;塑限及液限的确定方法;土(岩)的工程分类★ 计算理论及计算方法【掌握】土的三相含量指标关系的推导;土的三相含量指标的计算;相对密实度的计算;塑性指数及液性指数的计算;★ 试验【掌握】三个基本指标容重、比重、含水量的确定方法;塑限及液限的确定(搓条法及锥式液限仪法)三、重点内容介绍1 .土的生成土的多相性、分布不均匀性的主要原因就是因为其生成的原因和历史不同。
总的来说,土是由地壳表层的岩石(完整的)经长期的变为碎屑,原地堆积或经风力水流等搬运后沉积而形成。
土力学的概念土力学是土木工程中的一个重要分支学科,主要研究土壤的力学性质和行为规律。
土力学的研究对象是土体,即由颗粒状物质组成的地球表层覆盖物。
土力学的研究内容包括土体的物理性质、力学性质、变形性质以及与工程结构相互作用的规律等。
土力学的研究对象是土壤,土壤是地球表面由颗粒状物质组成的覆盖层。
土壤是由岩石经过风化、物理破碎和化学变质等作用形成的,具有一定的物理性质、化学性质和力学性质。
土壤的物理性质包括颗粒组成、颗粒间隙、孔隙水等;化学性质包括土壤中各种元素和化合物的含量和组成;力学性质包括土壤的强度、压缩性、剪切性等。
土力学主要研究土壤的力学性质和行为规律。
土壤在受到外力作用时会发生变形和破坏,土力学研究这种变形和破坏的机理和规律。
土力学通过实验和理论分析,研究土壤的强度特性、变形特性和稳定性特性,为工程结构设计和施工提供科学依据。
土力学的研究内容主要包括以下几个方面:1. 土壤的物理性质:包括土壤颗粒的大小、形状和组成,以及颗粒间隙的大小和分布等。
这些物理性质直接影响土壤的强度和变形特性。
2. 土壤的力学性质:包括土壤的强度特性、压缩特性、剪切特性等。
土壤的强度特性是指土壤在受到外力作用时能够承受的最大应力;压缩特性是指土壤在受到应力作用时发生压缩变形的特性;剪切特性是指土壤在受到剪切应力作用时发生剪切变形的特性。
3. 土壤的变形特性:包括土壤的压缩变形、剪切变形和膨胀变形等。
土壤在受到外力作用时会发生各种不同类型的变形,土力学研究这些变形的机理和规律。
4. 土壤与工程结构相互作用:包括土壤与地基、堤坝、边坡等工程结构之间的相互作用。
土力学研究土壤与工程结构之间的相互作用规律,为工程结构设计和施工提供科学依据。
土力学在工程实践中具有重要的应用价值。
在工程设计中,土力学可以用于确定地基承载力、地基沉降和变形、边坡稳定等问题;在工程施工中,土力学可以用于确定挖掘开挖深度、填筑填方高度、边坡夯实强度等问题。
土力学计算公式1.土壤颗粒级配不均匀程度可以用CU指数来表示,其中d60为小于某粒径颗粒含量占总土质量的60%时的粒径,d10为小于某粒径颗粒含量占总土质量的10%时的粒径,CU小于5时表示颗粒级配不良,大于10时表示颗粒级配良好。
2.土壤的密度ρ和重力密度γ可以表示土壤的湿密度和天然重度。
一般ρ为1.6-2.2(t/m3),γ为16-22(KN/m3)。
其中,ρ可以用土壤质量m和体积v表示,γ可以用ρ和重力加速度g表示。
3.土壤的含水量ω可以表示土壤中水分的含量,可以用质量m和干体积v表示。
常用的换算公式为ω=ms/mv×100%。
4.土壤的孔隙比e可以表示土壤中孔隙的比例,可以用孔隙体积vs和总体积v表示。
常用的换算公式为e=vs/v。
5.土壤的孔隙率n可以表示土壤中孔隙的比例,可以用孔隙体积vs和总体积v表示。
常用的换算公式为n=vs/v×100%。
6.土壤的饱和度Sr可以表示土壤中孔隙被水填满的程度,可以用水分质量ms和孔隙体积vs表示。
常用的换算公式为Sr=ms/mv×100%或Sr=vs/v。
7.土壤的干密度ρ可以表示土壤在干燥状态下的密度,可以用质量m和体积v表示。
常用的换算公式为ρ=dm/v或ρ=ρg。
8.土壤的饱和密度ρsat可以表示土壤在饱和状态下的密度,可以用质量m和体积v表示。
常用的换算公式为ρsat=(ms+mv)/v或ρsat=ρg。
9.土壤的有效密度ρ和有效重度γ可以表示土壤中有效颗粒的密度和重力密度。
常用的换算公式为ρ=(ms-mv)/v或ρ=ρsat-ρwv,γ=ρg或γ=γsat-γw。
10.砂的相对密度Dr可以表示砂颗粒的紧密程度,可以用极限孔隙比emax和实际孔隙比e表示。
常用的换算公式为Dr=(emax-e)/(emax-emin)。
11.塑性指数IP可以表示土壤的可塑性,包括液性指数IL和塑性指数IP。
IL可以用液限ωL和塑限ωP表示,常用的换算公式为IL=ωL-ωP。
一、名词解释土力学:利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。
基础:将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定的深度,进入较好的地层。
土的颗粒级配:土中所含各粒组的相对含量,以土粒总重的百分数表示。
土的结构:指土颗粒或集合体的大小和形状、表面特征、排列形式以及它们之间的连接特征。
包括单粒结构、蜂窝结构和絮凝结构。
土的触变性:黏性土结构遭到破坏,强度降低,但随时间发展土体强度恢复的胶体化学性质。
相对密度:土的固体颗粒质量与同体积4℃时纯水的质量之比,称为土粒的相对密度。
固结度:地基在荷载作用下,历经时间t 的固结沉降量ct s 与其最终沉降量c s之比。
临塑荷载:指地基土中将要而尚未出现塑性变形区时的基地压力。
土的抗剪强度:土体抵抗剪切破坏的极限能力。
最优含水量:在一定的压实功(能)下使土最容易压实,并能达到最大密实度时的含水量。
界限含水量:粘性土从一种状态转变为另一种状态的分界含水量。
液性指数:表征土的天然含水量与分界含水量之间相对关系的指标。
塑性指数:液限与塑限之差定义为塑性指数。
基底附加压力:引起地基沉降的那部分压力。
地基:支承基础的土体或岩体。
天然地基:未经人工处理就可以满足设计要求的地基。
人工地基:若地基软弱、承载力不能满足设计要求,则需对地基进行加固处理,称为人工地基。
桩侧摩阻力:在竖向荷载作用下,桩身材料将发生弹性压缩变形,桩与桩侧土体发生相对位移,桩侧土对桩身产生的向上摩阻力。
桩端阻力:桩侧摩阻力不足以抵抗竖向荷载,一部分竖向荷载传递到桩底,桩底持力层将产生压缩变形,桩底土对桩端产生的阻力。
桩的负摩阻力:桩土之间相对位移的方向决定了桩侧摩阻力的方向,当桩周土层相对于桩侧向下位移时,桩侧摩阻力方向向下,称为负摩阻力。
土的固结:土的压缩随时间增长的过程,主要指孔隙水压力消散,有效应力增长的过程。
一、土是岩石经过物理风化和化学风化作用后的产物,是由各种大小不同的土粒按照各种比例组成的集合体。
土的固相包括无机矿物颗粒和有机质。
无机矿物颗粒包括:原生矿物和次生矿物粘土矿物是很细小的扁平颗粒,表面具有极强的与水相互作用的能力,颗粒愈细,表面积愈大,亲水的能力愈强。
土粒的大小通常以平均直径表示,称为粒径又称为粒度(间接法描述>0.075mm用筛分析<0.075用沉降分析法)土的颗粒大小及组成情况通常用土中各个不同粒组相对含量(各粒组干土质量的百分比来表示)称为土的颗粒级配表示方法:表格法、累计曲线法和三角坐标法土隙中充满水而不含气体的土称为饱和土不均匀系数反应大小不同立足分配情况曲率系数描述累积曲线整体形状指标土的孔隙比是评价土的紧密程度的指标土的三相物质在体积和质量上比例关系称为土的三相比例指标是评价土的工程性质最基本物理性质指标土的三相比例指标分为实验指标(通过实验测定指标密度土粒比重土的含水率)和换算指标(通过计算求的指标干、饱和密度,干、饱和重度,有效重度,孔隙比,孔隙率,饱和度)土的含水率是描述土的干湿程度重要指标用国际单位制计算重力,土的质量产生单位体积重力称为重力密度简称重度土粒比重是土粒质量与同体积4℃纯水质量之比土的干密度越大,土越密实,强度越高,水稳定性越好,填土密实度的施工控制指标可塑性指土可以塑成任何形状而不发生裂缝,并在外力解除后能保持已有的形状而不恢复原状的性质土的密度环刀法土粒比重用比重瓶法土的含水率用烘干法黏性土从一种状态转到另一种状态的分界含水率称为界限含水率。
流动与可塑液限可塑与固态塑限半固与固缩限液限和塑限表征黏性土物理性质指标可塑性的大小可用黏土处在可塑状态的含水率变化范围来衡量,从液限到塑限的变化范围愈大,土的可塑性愈好,这个范围称为塑性指数可塑性是黏土区别于砂土的重要特征黏性土的天然含水率和塑限的差值与塑性指数之比叫做液性指数无粘性土的密实度是判定其工程性质的重要指标,它综合的反映了无粘性土颗粒的矿物组成、颗粒级配、颗粒形状和排列等对其工程性质的影响,无粘性土的密实度对其工程性质具有重要的影响密实的无粘性土具有较高的强度,且结构稳定,压缩性小;松散的无粘性土强度低,稳定性差,压缩性大。
土力学第四版知识点土力学是土土相互作用的一门学科,研究土壤力学性质、土壤力学行为以及土壤力学应用等内容。
它在土木工程、岩土工程和地质工程等领域中起着重要的作用。
土力学的核心概念之一是土体的物理性质。
土体是由颗粒、水和气体组成的多相介质,其物理性质包括颗粒间的空隙度、颗粒大小、颗粒形状等。
这些性质决定了土体的孔隙结构和孔隙水、孔隙气体的存在形式和分布。
通过研究土体的物理性质,可以了解土体的孔隙结构和孔隙水、孔隙气体的运动行为,为土体力学行为的研究提供基础。
土力学还研究土体的力学性质。
土体是一种非饱和多相介质,其力学性质受到颗粒间的相互作用、水分的存在和分布以及孔隙气体的存在和分布的影响。
土体的力学性质可以通过试验和理论分析来研究,包括土体的强度特性、应力应变关系、变形特性等。
研究土体的力学性质可以为土木工程和岩土工程的设计和施工提供依据。
土力学中的另一个重要概念是土体的力学行为。
土体的力学行为是指土体在受力作用下的变形和破坏特性。
土体的力学行为受到颗粒间的相互作用、水分的存在和分布以及孔隙气体的存在和分布的影响。
土体的力学行为可以通过试验和理论分析来研究,包括土体的压缩性、剪切性、强度和稳定性等。
研究土体的力学行为可以为土木工程和岩土工程的设计和施工提供依据。
土力学的应用十分广泛。
在土木工程中,土力学可以用于土体的基础设计、土体的稳定性分析、土体的承载力计算等。
在岩土工程中,土力学可以用于土体的边坡稳定性分析、土体的基坑支护设计、土体的地下工程设计等。
在地质工程中,土力学可以用于土体的地震响应分析、土体的岩土工程灾害预测等。
土力学的应用可以提高土木工程、岩土工程和地质工程的设计和施工水平,保障工程的安全和可靠性。
通过对土力学的学习,我们可以深入了解土体的力学性质和力学行为,为土木工程、岩土工程和地质工程的设计和施工提供科学依据。
土力学的研究不仅在理论上对土体的行为有了更深入的认识,也在工程实践中发挥了重要的作用。
土力学知识点总结PDF土力学是土木工程领域中的一个重要分支,它研究土体物理性质、力学性质和变形规律等内容。
土力学知识的掌握对于土木工程的设计、施工和管理具有重要意义。
本文将对土力学的相关知识进行总结,包括土体力学性质、土体压缩、土体强度等内容。
一、土体力学性质1. 土的物理性质:土体的物理性质包括密度、孔隙度、含水率等指标。
其中密度是土体的质量和体积之比,孔隙度是土体含水空隙的体积占总体积的比重,含水率是土体中水分的质量占总质量的比值。
2. 土的力学性质:土的力学性质包括固体土体和饱和土体的力学性质。
固体土体的力学性质由其颗粒间的摩擦力和粘聚力决定,而饱和土体的力学性质受到孔隙水的影响。
3. 土的变形规律:土体在外力作用下会发生变形,其变形规律可以用黏弹性理论进行描述。
土体的压缩变形和剪切变形是土体力学研究的重要内容。
二、土体压缩1. 土体压缩的原因:土体在受到外力作用时会发生压缩变形,其原因主要包括土颗粒间的调配和孔隙水的排出。
2. 土体压缩指标:土体压缩的指标包括压缩系数和压缩模量。
压缩系数表示单位压力下土体的体积变化量与初始体积的比值,压缩模量表示单位压力下土体的应变与应力之比。
3. 土体压缩计算:土体压缩的计算可以采用理论模型和实测数据相结合的方法。
一般通过试验和实测数据来确定土体的压缩系数和压缩模量,然后进行压缩计算。
三、土体强度1. 土体的强度指标:土体的强度指标包括内摩擦角和粘聚力。
内摩擦角是土体颗粒之间的摩擦阻力,粘聚力是土体颗粒间粘聚的力量。
2. 土体强度计算:土体的强度计算可以采用摩擦角和粘聚力的理论模型,通过实验和实测数据来确定土体的强度指标,然后进行强度计算。
4. 土体的抗剪强度:土体在受到剪切应力作用时会发生剪切破坏,其抗剪强度是土体的重要力学性质。
抗剪强度通过直剪试验来确定,它是土体强度的重要指标之一。
四、土体稳定性分析1. 土体的稳定性分析:土体在承受外部荷载作用下可能发生破坏,其稳定性分析是土力学研究的重要内容。
土力学原理知识点总结土力学是土木工程中的重要学科,它研究土壤在外力作用下的应力、应变及变形规律,为土木工程设计和施工提供了理论依据和技术支持。
土力学原理是土力学的基础理论,对土体的工程性质、变形特性、稳定性及承载能力等进行研究。
下面我们将对土力学原理的知识点进行总结,以便更好地理解和应用这一重要学科的理论知识。
一、土体的性质1.土体的构成及类型土体是由颗粒及其间隙以及粘聚物质等组成的,根据颗粒大小分为粗颗粒土和细颗粒土。
按颗粒形状分为角砾土和圆砾土。
土体还可分为坚固土体和塑性土体等。
不同类型的土体对外力的响应和承载能力有所不同。
2.土体的物理性质土体的物理性质包括密度、孔隙率、孔隙结构、含水量等。
这些物理性质直接影响了土体的强度和变形性能,因而在工程设计和施工中需要充分考虑。
3.土体的力学特性土体的力学特性包括土体的强度、刚度、变形性质等。
这些特性对土体的承载能力、稳定性及变形规律具有重要影响,是土力学研究的重点内容。
二、土体的应力状态1.土体的力学性质土体在外力作用下,会发生应力和应变,从而产生变形。
土体的力学性质是研究土体的应力、应变及变形规律的基础,也是土力学理论研究的核心内容。
2.土体的应力状态土体在外力作用下会产生不同的应力状态,包括轴向应力、切向应力、内聚力、摩擦力等。
这些应力状态对土体的稳定性和承载能力有重要影响。
3.土体的应力分布规律土体的应力分布规律是研究土体各点上的应力大小及方向的规律,为土体的稳定性和承载能力评价提供了重要的依据。
三、土体的变形规律1.土体的变形特性土体在外力作用下会发生弹性变形、塑性变形及破坏,其变形特性直接影响了土体的工程性质和使用性能。
因此,研究土体的变形规律对工程设计和施工具有重要意义。
2.土体的应变规律土体的应变规律是研究土体在外力作用下产生的变形及其规律,是土力学研究的重要内容。
3.土体的变形规律土体的变形规律包括弹性变形、塑性变形、破坏及孔隙压缩等,这些规律对工程设计和施工具有指导意义。
名词解释:绪论1、土力学:就是利用力学的一般原理,研究土的物理、化学与力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。
2、土:就是矿物或岩石碎屑构成的松软集合体。
由固体、液体与气体所组成的混合物。
3、土的性质:结构性质——生成与组成结构与构造物理性质——三相比例指标无粘性土的密实度粘性土的水理性质土的渗透性力学性质——击实性压缩性抗剪性4、地基、基础:地基就是直接承受建筑物荷载影响的那一部分地层。
基础就是将建筑物承受的各种荷裁传递到地基上的下部结构。
5、岩土工程:就是根据工程地质学、土力学及岩石力学理论、观点与方法,为了整治、利用与改造岩、土体,使其为实现某项工程目的服务而进行的系统工作。
第一章1、土的形成过程:地球表面的岩石经过风化、剥蚀、搬运、沉积作用形成的松散沉积物,称为“土”。
2、风化作用:风化作用主要包括物理风化与化学风化,物理风化就是指由于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解、碎裂的过程,这种作用使岩体逐渐变成细小的颗粒。
化学风化就是指岩体与空气、水与各种水溶液相互作用过程,这种作用不仅使岩石颗粒变细,更重要的就是使岩石成分发生变化,形成大量细微颗粒与可溶盐类。
3、搬运、沉积:4、土的组成:就是由固相、液相、气相组成的三相分散体系。
5、土中三相:固相、液相、气相6、粒径、粒组:土粒的大小称为粒度,通常以粒径表示。
介于一定粒度范围内的土粒,称为力组。
7、级配指标:不均匀系数、曲率系数8、矿物成分:原生矿物、次生矿物、有机质、粘土矿物、无定形氧化物胶体、可溶盐9、粘土矿物:由原生矿物经化学风化后所形成的新矿物。
10、结合水:当土粒与水相互作用时,土粒会吸附一部分水分子,在土粒表面形成一定厚度的水膜,成为结合水。
11、自由水:自由水就是存在于土粒表面电场影响范围以外的水。
12、土的结构:单粒结构、蜂窝结构、絮状结构13、土的结构性:14、粘性土灵敏度:就是指粘性土的原状土的无侧限抗压强度与重塑土的无侧限抗压强度比值。
土力学知识点1、课程性质土力学是一门专业基础课。
土力学研究的对象课概括为:研究土的本构关系以及土与结构的物相互作用的规律。
2、土的本构关系即土的应力、应变、强度和时间这四个变量之间的内在关系。
3、为确保建筑物的安全和使用良好,在地基与基础设计中必须满足哪两个技术条件?1、地基的强度条件:要求建筑物地基保持稳定型,不发生滑动破坏,必须有一定的地基强度安全系数2、地基的变性条件:要求建筑物的变形不能大于地基变形允许值。
4、组成岩石的矿物称为造岩矿物5、矿物的种类:原生矿物和次生矿物6、矿物的主要物理性质?形态、色泽、光泽、硬度、解理、断口解理:矿物在受外力作用时,能沿一定的方向裂开成光滑平面的性能。
断口:矿物在受外力打击后断裂成不规则的形态。
7、矿物的鉴定方法:肉眼鉴定法和偏光显微镜法8、岩石分类?按成因分:岩浆岩、沉积岩、变质岩按坚固性分:硬质岩石、软质岩石按风化程度分:未风化、微风化、中等风化、强风化9、第四纪沉积层:地表的岩石,经物理化学风化、剥蚀成岩屑、粘土矿物及化学溶解物质;又经搬运、沉积而成的沉积物,年代不长,未压密硬结成岩石之前,呈松散状态,称为第四级沉积层,即“土”10、第四纪沉积层分类:残积层、坡积层、洪积层、冲击层、海相沉积层、湖沼沉积层11、常见的不良地质条件有?断层、岩层节理发育的场地、滑坡、河床冲淤、岸坡失稳、河沟侧向位移12、地下水分类:上层滞水、潜水、承压水13、初见水位:工程勘察钻孔时,当钻头带上水时所测的水位稳定水位:钻孔完毕,讲将钻孔的孔口保护好,待二十四小时后再测得的水位14、土是由岩石,经物理化学风化、剥蚀、搬运、沉积,形成固体矿物、流体水和气体的一种集合体。
15、土的结构:土颗粒之间的互相排列和联结形式称为土的结构分类:单粒结构、蜂窝结构、絮状结构16、土的构造:同一层土中,土颗粒之间相互关系的特征称为土的构造。
分类:层状构造、分散构造、结核状构造、裂隙状构造17:土与其它连续介质的建筑材料相比,具有哪三个显著的工程特性?1、压缩性高2、强度低3、透水性大18、土粒中的矿物分为三类:原生矿物、次生矿物、腐殖质19、工程中常用的土中各粒径的含量占总质量的百分比称为土的粒径级配。
《土力学》知识点总结土力学(土木工程力学)是土木工程学中的一个重要分支,研究土体的力学性质和行为,为工程结构的设计、施工和维护提供依据。
下面是对土力学的知识点进行总结:一、土体的力学性质1.基本物理性质:包括土体的密度、含水量和孔隙度等。
2.英特尔以太网卡性质:包括土体的强度、变形特性和渗透性等。
3.变形特性:主要包括固结、压缩、膨胀和剪切等。
4.渗透特性:土体的渗透性是指水或气体通过土体的能力,主要影响土体的稳定性和渗透阻力。
5.特殊性质:热力学性质(热膨胀、热传导性等)、电性能(电阻率、电解质迁移等)和化学性能(酸碱性、腐蚀性等)等。
二、土体力学理论1.应力分布:土体中的应力分布受到多因素的影响,包括重力、土体的密度和孔隙度等。
2.应变特性:包括线弹性、松弛、蠕变和塑性等。
3.孔隙水力学:研究土体中的水分运动和水力特性,包括渗流、孔隙水压和渗透系数等。
4.孔隙水力固结和蠕变:研究土体中孔隙水位置和压力的变化对土体力学性质的影响。
5.刚性塑性力学:研究土体的强度和变形特性,包括内摩擦角、剪切强度和塑性指数等。
三、地基与基础工程1.增加地基承载力:通过加固地基、挖掘或替换土体等方法来提高土体的承载能力。
2.土的膨胀性:研究土体在含水量变化时的膨胀和收缩特性,对地基设计和施工起到重要作用。
3.土的稳定性:包括坡面稳定、边坡稳定和基坑的支护设计等。
4.地基沉降:研究地基在荷载作用下的沉降和沉降速度,对基础设计和施工起到重要作用。
四、土的试验与仪器设备1.土体取样与制样:包括岩土样品的卸样、取样和标本制作等。
2.土体力学试验:包括直剪试验、压缩试验和固结试验等,用于分析土体的强度和变形特性。
3.土体渗透性试验:包括渗透试验和渗透系数试验等,用于分析土体的渗透性和渗透阻力。
4.土体稳定性试验:包括坡度稳定试验和抗剪试验等,用于分析土体的稳定性和抗剪强度。
5.仪器设备:包括直剪仪、压实仪、渗透仪和测角仪等,用于方便进行土体力学试验。