3用列举法求概率(1)一一列举法和列表法
- 格式:ppt
- 大小:500.00 KB
- 文档页数:24
25.2.1 用列举法求概率例1.同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上,一枚硬币反面向上.练习:1.如图,随机闭合开关S1,S2,S3中的两个,求能让灯泡发光的概率.2.如图,有一条电路AB由图示的开关控制,任意闭合两个开关.(1)请你列举出所有等可能的结果.(2)请你求出使电路形成通路的概率.3.一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木成等腰三角形的概率.25.2.2 用列表法求概率例2.同时掷两枚质地均匀的骰子,求下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.例题(放回问题)(2017年省卷19题)在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求两次取出的小球上的数字相同的概率P.例题(不放回问题)(2018年省卷19题)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求取出的两张卡片上的数字之和为偶数的概率P.练习:1.(2020年省卷19题)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游。
课题:运用干脆列举或列表法求概率【学习目标】1∙会用干脆列举法求简洁事务的概率.2•能利用列表法求简洁事务的概率.【学习重点】学习运用列表法计算事务发生的概率.【学习难点】能依据不同的状况,选择恰当的方法列举,解决实际问题概率的计算问题.【导学流程】一、情景导入感受新知同时抛掷两枚质地匀称的硬币或骰子,会出现哪些可能的结果?怎样才能不重不漏地列举全部可能出现的结果呢?本节课我们学习用列表法列举全部可能出现的结果并求概率.(板书课题)二、自学互研生成新知【自主探究】阅读教材丹36例1,完成下面的问题:①掷两枚硬币会出现哪些不同的结果?你能列举出来吗?有两种不同的结果:正正、正反、反正、反反.②两枚硬币全部正面朝上记为事务A,则P(八)=/③两枚硬币全部反面朝上记为事务B,则P(B)=尢④两枚硬币不同而记为事务C,则P(C)=/⑤先后两次掷硬币和一次同时掷下两枚硬币有什么区分?出现的可能性发生改变了吗?没有区分.出现的可能性没有改变.归纳:通过一一列举的方式将试验的全部笠亘能的结果排列出来,再看看所探讨的事务有多少种,求出随机事务发生的概率.【合作探究】一张圆桌旁有四个座位,A先生坐在如图座位上,B,C,D三人随机坐到其他座位上,求A与B不相邻而坐的概率.解:因为B,C,D三位先生按顺时针依次坐,共有6种方法(BCD,BDC,CBD,CDB,DBC,DCB).其21中有2种方法(CBD、DBC)A与B不相邻.所以,A与B不相邻的概率为名=京师生活动:①明白学情:深化课堂了解学生是否理解列举这几种结果的方法.②差异指导:对共性问题进行适时点拨引导.③生生互助:学生小组内沟通帮助解疑难.三、典例剖析运用新知【合作探究】典例:同时掷两枚质地匀称的骰子,会出现哪些可能的结果?列表列举全部可能的结果:思索:①由表可知:同时掷两枚骰子,可能出现的结果有毁种,并且它们出现的可能性相等.两枚骰子的点数相同的结果有6种,所以P(两枚骰子的点数相同)=/两枚骰子的点数和是9的结果有生种,所以P(两枚骰子的点数和是9)=/至少有一枚骰子的点数为2的结果有11种,所以P(至少有一枚骰子的点数为2)=萤.②假如把例2中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,所得的结果有改变吗?为什么?没有改变,因为试验的条件是相同的.师生活动:①明白学情:了解学生是否驾驭了列表法.②差异指导;分类指导与集中辅导相结合.③生生互助:学生之间相互沟通帮助认知理解.四、课堂小结回顾新知(1)干脆列举法求概率.(2)列表法求简洁事务的概率.五、检测反馈落实新知1 •掷两枚一般骰子,所得点数之和为11的概率为(八)λ∙⅛β36c⅛d⅛2 •一个不透亮的布袋中,有四个完全相同的小球,分别标着数字1,2,3,4,随机地摸出一个小球,不放回,再随机地摸出一个小球,则两次摸出的小球标号的数字之和等于4的概率是E3 •合作小组的4位同学坐在课桌旁探讨问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位的概率.解:六、课后作业巩固新知(见学生用书)。
第二十五章概率初步15.3用列举法求概率第1课时一、教学目标1.会用直接列举法和列表法求简单事件的概率;2.能利用概率知识解决涉及两个因素的事件的概率问题;3.经历试验、列表、统计、运算等活动,渗透数形结合,分类讨论、特殊到一般的思想,培养学生在具体情境中分析问题和解决问题的能力;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:会用直接列举法和列表法求简单事件的概率.难点:当可能出现的结果很多时,会用列表法列出所有可能得结果.三、教学用具多媒体等.四、教学过程设计可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).所以()61. 366P A==(2)两枚骰子点数的和是9 (记为事件B)的结果有4种,即(3,6),(4,5),(5,4),(6,3).所以()41. 369P B== (3)至少有一枚骰子的点数为2 (记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(2,1),(2,3),(2,4),( 2,5),(2,6).所以()11. 36P C=【归纳】1.用列举法(列表法)求简单随机事件的概率.2.用列表法求概率的步骤:①列表;②通过表格计数,确定所有等可能的结果数n和关注的结果数m的值;③利用概率公式()mP An=计算出事件的概率.3.适用条件:如果事件中各种结果出现的可能性相等,含有两次操作(如掷骰子两次)或两个条件(如掷两个骰子)的事件.【思考】教师活动:教师提出问题“若上一题的情景‘同时掷两枚质地均匀的骰子’换成‘把一枚掷质均匀的骰子投两次’,所有可能的结果有变化吗?”给学生思考时间,最后给出答案,没有变化,只是列表的时候表头变为第1次,第2次即可.【随堂练习】教师活动:通过Pk作答的形式,让学生独立思考,再由老师带领整理思路过程.练习1从1,2,−3三个数中,随机抽取两个数相乘,积是正数的概率是______.答案:1 3 .练习2小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16B.13C.12D.23答案:B .追问:请用列表法写出所有可能的结果.答案:小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为31 93 =.以思维导图的形式呈现本节课所讲解的内容. 巩固例题练习。
.求概率的方法在新课标实施以来,中考数学试题中加大了统计与概率局部的考察,表达了“学以致用〞这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:〔05济南〕如图1所示,打算了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;假设可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?假设不是,有利于谁? .分析:这个游戏不公平,因为抽取两张纸片,全部时机均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为41. 取出的一张纸片画有半圆、一张画有正方形的概率为2142=,因为二者概率不等,所以游戏不公平. 说明: 此题采纳了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.此题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:〔06临安市〕不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都相同〕,其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.〔1〕试求袋中蓝球的个数.〔2〕第一次任意摸一个球〔不放回〕,第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个,则由题意得21122=++x , 1=x答:蓝球有1个. 〔2〕树状图如下:∴ 两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是时机均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 此题是考查用树状图来求概率的方法,这种方法比拟直观,把全部可能的结果都一一排列出来,便于计算结果. 三、列表法 例3:〔06晋江市〕如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三局部,装置A 上的数字是3、6、8;装置B 上的数字是4、5、7;这两个装置除了外表数字不同外,其他构造均相同,小东和小明分别同时转动A 、B 两个转盘〔一人转一个〕,如果我们规定箭头停留在较大数字的一方获胜〔如:假设A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,假设箭头恰好停在分界图1 5 4 B768A 3图2.线上,则重新转一次〕,请用树状图或列表加以分析说明这个游戏公平吗? 解析:〔方法一〕画树状图: 由上图可知,全部等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.由上表可知,全部等可能结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.说明:用树状图法或列表法列举出的结果一目了然,当事件要经过屡次步骤〔三步以上)完成时,用这两种方法求事件的概率很有效.6开始。