人教版中学七年级数学1[1]21_有理数
- 格式:ppt
- 大小:1.17 MB
- 文档页数:18
《1.2.1 有理数》学历案(第一课时)一、学习主题本课主题为“有理数”,是初中数学课程的重要一环。
通过本课的学习,学生将掌握有理数的概念、性质及运算,为后续学习奠定基础。
二、学习目标1. 理解有理数的概念,能正确区分有理数和无理数。
2. 掌握有理数的表示方法,能运用正负号表示相反意义的量。
3. 学会进行有理数的加、减法运算,并能够利用有理数解决一些简单的实际问题。
三、评价任务1. 通过课堂问答及课后小测,评价学生对有理数概念的掌握程度。
2. 通过学生的作业和课堂表现,评价其运算能力及解决问题的能力。
3. 观察学生对于概念及知识点的理解及运用,以及学习过程中的积极性及态度表现,并进行形成性评价。
四、学习过程1. 导入新课:通过回顾实数概念,引出有理数的定义及特点,激发学生兴趣。
2. 新课讲解:(1)定义与分类:讲解有理数的定义及分类,通过实例加深学生对概念的理解。
(2)表示方法:介绍有理数的表示方法,包括正负号的使用等。
(3)加法与减法:通过具体实例,讲解有理数的加法与减法运算规则,并强调运算的注意事项。
3. 学生活动:(1)小组讨论:学生分组讨论有理数的实际应用,如温度的表示、财务的收支等。
(2)互动问答:教师提出问题,学生回答,检验学生对新知识的掌握情况。
(3)练习巩固:学生独立完成课后习题,加深对知识的理解与运用。
4. 课堂总结:回顾本课重点内容,强调有理数的重要性及实际应用。
五、检测与作业1. 课堂小测:进行简单的有理数加法、减法运算测试,检验学生的运算能力。
2. 课后作业:布置相关习题,包括有理数的加法、减法运算及实际问题的解决等,要求学生独立完成并思考解题方法。
3. 学习反思:学生课后进行学习反思,总结本课学习的收获与不足。
六、学后反思学生应在学习完本课后进行反思,包括对知识的理解程度、学习方法的运用及学习态度的调整等。
教师也可根据学生的反思情况,调整教学方法及策略,以更好地帮助学生掌握知识。
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.按如图所示的运算程序,能使输出的结果为12的是()A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=03.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍4.计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.12 5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24 6.2--的相反数是()A.12-B.2-C.12D.27.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|8.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比()A.提高20元B.减少20元C.提高10元D.售价一样9.下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个10.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.1011.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个12.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5±13.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107 14.下列分数不能化成有限小数的是()A.625B.324C.412D.11615.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0二、填空题16.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.17.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.18.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.19.一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.20.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.21.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.22.下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b与a ﹣b,互为相反数的有__.23.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.24.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.25.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 26.绝对值小于4.5的所有负整数的积为______.三、解答题27.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 28.计算题:(1)3×(﹣4)﹣28÷(﹣7); (2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 29.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 30.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算)。
人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。
2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。
过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】正确理解有理数的概念。
【教学难点】正确理解分类的标准和按照定的标准进行分类。
【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数?-12, 73-, -0.33, •-3.5. 【教学过程】 1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.②借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览有理数课时划分内容本质与研究方法1.1正数和负数通过提出问题,根据问题归纳正数和负数的概念;培养学生观察、发现问题的能力,培养学生积极思考、合作交流的意识和能力续表有理数课时划分内容本质与研究方法1.2有理数及其大小比较1.2.1有理数的概念提出问题,根据问题归纳有理数的概念,并对有理数进行分类;培养学生观察、发现问题的能力,培养学生分类讨论的数学思想1.2.2数轴提出问题,根据问题归纳数轴的概念,让学生积极参与探究数轴的活动,并学会与他人交流合作;让学生感受在特定的条件下数与形是可有理数课时划分内容本质与研究方法以互相转化的,让学生体验生活中的数学1.2.3相反数通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;渗透数形结合思想,感受事物之间的对应统一的辩证思想1.2.4绝对值提出问题,通过探索求一个数绝对值的方法让学生通过观察,发现规律,总结方法;培养学生积极参与数学活动,在数学活动中体验成功的乐趣1.2.5有理数的大小比较经历用数轴比较有理数大小的方法和形成过程,体会负数的大小比较与自己原有认知体系的不同;经历形式多样的数学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
人教版七年级上册数学知识点知识是嘈杂的,智慧是宁静的。
知识总是在卖弄,智慧却深藏不露;知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。
下面小编给大家分享一些人教版七年级上册数学知识,希望能够帮助大家,欢迎阅读!人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
第1课时正数和负数(1)第2课时正数和负数(2)第3课时 有理数教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学重点 正确理解分类的标准和按照一定的标准进行分类 教学难点 正确理解有理数的概念教 学 互 动 设 计设计意图一、创设情境 导入新课在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个不同类型数(同时请3个同学在黑板上写出). 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与二、合作交流 解读探究【问题1】观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”.正整数:如1,2,3 …; 零:0;负整数:如-1,-2,-3 …正分数:如21,32,715,0.1,5.3… 负分数:如-0.5,25-,32-,-715,-0.1,-150.25…; 所有的正整数组成正整数集合,所有的负整数组成负整数集合。
正整数、0、负整数统称为整数。
把一些数放在一起,就组成了一个集合,简称数集,在表示数集时要注意:⑴数集可以用大括号表示,也可用圆圈表示。
1.2.1 有理数方法和集合思想,让学生理解整数和分数的概念.】3.有理数的分类〔1〕按定义分类强调零的特殊性.〔0既不是正整数也不是负整数,是整数〕正整数、零、负整数统称整数;正分数、负分数统称分数.我们规定,把上面两种数合在一起,就成了有理数,即整数和分数统称有理数.正整数整数 0负整数有理数正分数分数负分数【设计意图:消除学生对有理数称谓的疑惑,让学生理解有理数的意义,进一步加深对有理数概念的理解,突出本堂课的教学重点.】〔2〕按正负性分类问题:有理数可以分成正数和负数两类吗?为什么?要让学生明确:① 0既不是正数也不是负数,0是有理数,是整数.②还存在一些正数和负数是我们没有学习的,但它们不是有理数.〔如圆周率π〕③我们把有理数中的正数局部叫做正有理数,负数局部叫做负有理数.④我们把有理数中的正数局部包括正整数、正分数.负数局部包括负整数、负分数.正整数正有理数正分数有理数 0负整数负有理数负分数【设计意图:应使学生理解分类的标准不一样时,分类的结果也不同.所以分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类〔即要不重不漏〕.同时注意由浅入深,使学生在头脑当中逐步认识问题.这样一步一个台阶的教学过程,符合学生认识问题的一般规律.】三、释疑解难、精讲点拨1.将以下各数填在相应的集合中〔1〕正整数集合{}〔2〕负整数集合{}〔3〕正分数集合{}〔4〕负分数集合{}〔5〕整数集合{}〔6〕分数集合{}〔7〕正有理数集合{}〔8〕负有理数集合{}此题关键是要按有理数的分类方法将各数对号入座,填入时要做到不重不漏,最后要加上省略号.【设计意图:在此练习中出现了集合的概念,可对学生作简单的说明:把一些数放在一起,就做成了一个数的集合,简称数集.所有有理数组成的数集叫做有理数集,所有分数组成的数集叫做分数集,所有作业设计最正确解决方案根底:1.把以下各数填在相应的大括号里:-4,3/2、0.001,0,-1.7,-15,+7,-5,1 61,-217,79,,32,-0.67,315,+5.1 .正整数集合{}分数集合{}正数集合{}负数集合{}整数数集合{}负分数集合{}正有理数{}负分数集合{}综合:2.0是整数吗?自然数一定是整数吗?一定是正数吗?整数一定是自然数吗?举例说明3.以下说法正确有:〔〕A.0是整数B.-1/3是负分数C. 3.2不是正数教学设计说明:对于本节课的设计,仍以探究性活动为主线,通过对教材进展深化的挖掘和适当的整合,设计生动有趣的教学活动激发学生的学习兴趣,借助形象直观的教学模型启迪学生的思维,为学生提供充分的活动时空,引导学生主动参与,积极探究,体验知识的形成过程,开展原有的知识构造,构建新的知识体系,让学生对知识的理解更加深化全面.?数学课程标准?提出:数学学习应使学生获得适应将来社会生活和进一步开展所必需的重要数学知识以及根本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重浸透分类的方法和集合思想,为后继学习奠定了良好的根底.。
初中数学1-6册各章知识点大全七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成q(p, q为整数且pp0) 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ①有理数正有理数零负有理数正整数正分数负整数负分数②有理数正整数整数零负整数分数正分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是0;(2)相反数的和为0 a+b=0 a、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:a a ( a0 ( aa (a0)0) 或a0)a ( a 0)a (a 0);绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0 大,负数永远比0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数- 大数<0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若a≠0,那么a 的倒数是b 互为倒数;若ab=-1 a、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+ (b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;1;若ab=1 a、a(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,13.有理数乘方的法则:(1)正数的任何次幂都是正数;a即无意义.(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n 或(a -b)n=-(b-a) n , 当n 为正偶数时: (-a) n=a n 或(a-b) n=(b-a) n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10 的数记成a3 10n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。