新编仪器分析第四版第三章分子发光分析法综述
- 格式:ppt
- 大小:2.96 MB
- 文档页数:66
第12章分子发光分析法12.1.0发射光谱物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或基态时产生发射光谱,多余能量以光的形式发射出来:M*→M+hν通过测量物质的发射光谱的波长和强度来进行定性和定量分析的方法叫做发射光谱分析法。
分子荧光和磷光分析法属于发射光谱法。
12.1.1分子荧光和磷光分析法1.荧光和磷光的产生1)Jablonski能级图2)多重度:M=2s+1(s为电子自旋量子数的代数和,其值为0或1)单重态(S):分子中全部轨道里的电子自旋配对,即s=0,M=1三重态(T):电子在跃迁过程中自旋方向改变,分子中出现两个自旋不配对的电子,即s=1,M=3三重态能级比相应单重态能级略低。
3)去活化:处在激发态的不稳定分子返回基态的过程。
振动弛豫:分子吸收光辐射后从基态的最低振动能级跃迁到激发态的较高振动能级,然后失活到该电子能级的最低振动能级上。
内转换:相同多重度等能态间的无辐射跃迁。
外转换(猝灭):激发分子通过与溶剂或其他溶质间的相互作用导致能量转换而使荧光或磷光强度减弱或消失。
系间跨越:不同多重度等能态间的无辐射跃迁。
荧光发射:单重激发态最低振动能级至基态各振动能级的跃迁。
磷光发射:三重激发态最低振动能级至基态各振动能级的跃迁。
2.激发光谱和发射光谱及其特征激发光谱:以激发波长为横坐标,荧光强度为纵坐标作图。
发射光谱:以发射波长为横坐标,荧光强度为纵坐标作图。
荧光发射光谱的特点:1)Stokes位移:在溶液中,分子荧光的发射峰相比吸收峰位移到较长的波长。
2)荧光发射光谱与激发波长的选择无关。
3)镜像规则:荧光发射光谱和激发光谱镜像对称。
12.1.2荧光量子产率和分子结构的关系荧光量子产率(荧光效率/量子效率):表示物质发射荧光的能力,荧光量子产率与分子结构的关系:1.跃迁类型物质吸收紫外-可见光发生π→π*或n→π*跃迁,然后经振动弛豫或其他无辐射跃迁,再发生π*→π或π*→n跃迁而产生荧光。
01. 溶液有颜色是因为它吸收了可见光中特定波长范围的光。
若某溶液呈蓝色,它吸收的是什么颜色的光?若溶液无色透明,是否表示它不吸收光?答:溶液呈蓝色,表明其吸收了蓝光的互补光,即黄光(若答是吸收了黄光外的所有可见光,不能说错,但是这样的情况过于巧合,少见!)。
若溶液无色透明,仅能说明其不吸收可见波段的光。
2. 分别在己烷和水中测定某化合物UV-Vis 光谱,发现该化合物的某个吸收峰由285 nm (己烷)蓝移至275 nm (水),(1)判断产生该吸收峰的跃迁类型;(2)试估算该化合物与水生成氢键的强度。
答:(1)溶剂极性增大,λmax 蓝移,表明该吸收峰是由n →π*跃迁产生的。
(2)()()⎪⎪⎭⎫⎝⎛λ-λ⋅⋅=己烷氢键max O H max A 11hc N E 2 ⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯=--99834-23102851-102751100.31063.61002.61mol J 28.15-⋅=3. 按从小到大顺序对下列化合物的λmax 排序,并简单说明理由(不要想得太复杂)A. NO 2B. NO 2t-C 4H 9t-C 4H 9 C.NO 2CH 3 D. NO 2C 2H 5答:B<D<C<A (空间位阻依次减小,共轭程度依次增加,λmax 红移)4. 某化合物分子式为C 10H 16,用其他仪器方法已经证明有双键和异丙基存在,其紫外光谱λmax =230 nm (ε=9000),1mol 该化合物只能吸收2 mol H 2,加氢后得到1-甲基-4异丙基环己烷,试确定该化合物的可能结构。
答: 1mol 该化合物只能吸收2 mol H 2,且其紫外光谱λmax =230 nm (ε=9000)可知该化合物含两个共轭但非同环双键(同环共轭双键基值为253 nm );该化合物含异丙基(双键不会出现在异丙基上),根据加氢后产物结构可推出该化合物可能结构如下:根据Woodward 规则可计算出该化合物的λmax =214+5(环外双键)+5⨯2(烷基取代)=229 nm ,与所测值相符。
分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。
依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。
光致发光按激发态的类型又可分为荧光和磷光两种。
本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
早在16世纪,人们观察到当紫外和可见光照射到某些物质时。
这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。
到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。
斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。
1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。
进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。
荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。
虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。
使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。
二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。
根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。
当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。
《仪器分析》教案5-分子发光分析法第一篇:《仪器分析》教案5- 分子发光分析法第8章分子发光分析法8.1教学建议一、从光谱定性分析和定量分析的依据和方法入手,在了解分子发光分析特点的基础上,介绍分子荧光与磷光光谱分析法的基本原理、仪器结构组成、常规测定方法及应用。
二、在比较分子荧光与磷光光谱分析法的基础上,介绍化学发光分析方法的基本原理及分析特点与应用。
8.2主要概念一、教学要求:(一)、掌握分子荧光与磷光光谱分析方法的基本原理;(二)、掌握荧光与磷光分析仪器的结构组成、常规测定方法及应用;(三)、掌握化学发光法的基本原理及应用;二、内容要点精讲第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
荧光分析的特点:灵敏度高:视不同物质,检测下限在0.1~0.001mg/mL之间。
可见比UV-Vis的灵敏度高得多。
选择性好:可同时用激发光谱和荧光发射光谱定性。
结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。
应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。
二、基本原理1、分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。
这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。
单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。
辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。