锅炉过热汽温系统的控制
- 格式:pdf
- 大小:624.76 KB
- 文档页数:20
影响锅炉汽温的因素及汽温的控制措施1.燃料类型:不同燃料的燃烧特性不同,燃烧温度也不同,因此不同燃料的锅炉汽温也不同。
2.燃烧配比:燃烧配比决定了燃烧时所需的空气量,过量空气会降低燃烧温度,不足空气会导致燃烧不完全,从而影响锅炉汽温。
3.锅炉负荷:锅炉负荷的大小直接影响燃料燃烧速度和燃烧温度。
负荷过小会导致燃料在炉膛内停留时间过长,燃烧不充分;负荷过大会导致燃烧速度过快,影响燃烧温度。
4.锅炉结构:不同类型的锅炉结构、加热面积和布置方式等因素对锅炉汽温有一定的影响。
例如当流速过高时,可能会导致吹灰效果不佳,从而影响燃烧效果,进而影响锅炉汽温。
5.空气预热温度:空气预热温度的高低影响燃料燃烧温度。
预热空气可以降低燃料的燃烧温度,提高锅炉热效率。
锅炉汽温的控制措施:1.控制燃烧配比:合理控制过量空气量,确保燃烧充分,避免影响锅炉汽温。
可以通过调整燃烧器的供气量、燃气与空气的混合比例等方式来实现。
2.控制燃烧温度:调节燃料供应量、风门开度或调整燃烧器调制比等措施,控制燃烧温度在设计范围内。
3.控制锅炉负荷:根据实际需要调整锅炉负荷,以保持锅炉运行在设计负荷附近,避免过大或过小的负荷对锅炉汽温造成影响。
4.锅炉烟气侧升压:通过增加烟气侧的阻力,增加锅炉炉排气流量,从而增加烟气中的热量传递,提高汽温。
5.控制空气预热温度:通过调整燃气与空气的换热器的布置和工作参数,控制空气预热温度,确保燃料燃烧温度在设计范围内。
6.测量和监控:安装合适的仪表,实时监控锅炉汽温、燃烧温度、烟气温度等参数,并进行数据分析和处理,及时采取调整和控制措施。
综上所述,影响锅炉汽温的因素有很多,包括燃料类型、燃烧配比、锅炉负荷、锅炉结构和空气预热温度等,而锅炉汽温的控制措施主要包括控制燃烧配比、控制燃烧温度、控制锅炉负荷、锅炉烟气侧升压、控制空气预热温度和测量和监控等。
通过合理的控制和调整,可以确保锅炉汽温在设计范围内稳定运行,提高锅炉的热效率。
锅炉安全控制技术——过热蒸汽温度安全控制现代锅炉的过热器在高温高压条件下工作。
过热器出口温度是全厂工质温度的最高点,也是金属壁温的最高处,在过热器正常运行时已接近材料允许的最高温度。
如果过热蒸汽温度过高,容易烧坏过热器,也会引起汽轮机内部零件过热,影响安全运行;温度过低则会降低全厂热效率,所以电厂锅炉一般要求过热蒸汽温度偏差保持在±5℃以内。
过热蒸汽温度自动控制系统是锅炉控制中的难点。
目前,很多实际系统并没有达到控制指标的要求。
其主要原因有下述两方面。
(1)扰动因素多变化大表18—1列出了各种扰动因素对过热蒸汽温度的静态影响关系。
(2)控制通道滞后大控制过热蒸汽温度的手段总是调节减温水量。
控制通道的动特性与减温器的安装位置有关。
假若能将减温器装于过热器的出口,显然控制通道的滞后要小得多。
但是这样的工艺流程对过热器的安全是不利的。
为了保护过热器不超温,工艺上总是将减温器安装在过热器的人口,这将带来控制对象较大的滞后。
过热蒸汽控制对象特性可用一阶加线滞后来近似。
线滞后r和时间常数丁的大小还与减温器的形式有很大关系。
表面式减温器的滞后较大,,约为60s,T约为130s;混合式减温器滞后较小,t约为30s,T约为100s。
过热蒸汽温度安全控制系统的基本方案见图18—15和图18—16。
图18—15的方案是两个温度的串级控制。
设计该方案的前提是减温器到过热器之间有预留孔,允许安装测温元件测取θ2。
图18—16方案用减温水流量作副回路。
由于锅炉进水系统往往合用一根总管,然后分两路:一路作为锅炉汽包的进水;另一路是减温水,这就造成锅炉液位控制系统和过热蒸汽温度系统的严重关联。
而设置这种流量副回路可大大削弱这种关联的影响。
烟道气温度日,往往是该温度系统的重要扰动,在这里通过设置前馈控制减少它的影响。
需要指出的是,由于不同的工艺情况,过热蒸汽温度被控过程的难控程度具有极大差异。
假若减温器采用混合器,而且在减温器出口又允许安装测温元件,对这种情况只要采用图18—15方案,即能得到很满意的控制效果。
汽包锅炉蒸汽温度自动调节系统一、蒸汽温度自动调节系统锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。
调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。
1、过热汽温调节任务和特点过热汽温是锅炉运行质量的重要指标之一。
过热汽温过高或过低都会显著地影响电厂的安全性和经济性。
过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。
过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。
所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。
过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。
过热器的传热形式、结构、布置都将直接影响过热器的静态特性。
对流式过热器和辐射式过热器的过热汽温静态特性完全相反。
对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。
而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。
我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。
引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。
归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。
过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。
在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。
锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。
锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。
在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。
在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。
本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。
考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。
在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。
关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。
同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。
这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。
为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。
火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。
安全技术/特种设备
锅炉运行时怎样控制和调节汽温
对于饱和蒸汽锅炉,其蒸汽温度随蒸汽压力的变化而变化;对于过热蒸汽锅炉,其蒸汽温度的变化主要取决于过热器烟气侧的放热和蒸汽侧的吸热。
当流经过热器的烟气温度、烟气量和烟气流速等变化时,都会引起过热蒸汽温度的上升或下降。
当过热蒸汽温度过高时,可采用下列方法降低汽温:
(1)有减温器的,可增加减温器水量。
(2)喷汽降温。
在过热蒸汽出口,适量喷入饱和蒸汽,可降低过热蒸汽温度。
(3)对过热器前的受热面进行吹灰。
如对水冷壁吹灰,可增加炉膛蒸发受热面的吸热量,降低炉膛出口烟温,从而降低过热器传热温度。
(4)在允许范围内降低过剩空气量。
(5)提高给水温度。
当负荷不变时,增加给水温度,势必减弱燃烧才能不使蒸发量增加,燃烧的减弱使烟气量和烟气流速减小,使过热器的吸热量降低,从而使过热蒸汽温度下降。
(6)使燃烧中心下移。
适当减小引风和鼓风,使炉膛火焰中心下移,使进入过热器的烟气量减少,烟温降低,使过热蒸汽温度降低。
当过热蒸汽温度过低时,可采用下列方法升高汽温:
(1)对过热器进行吹灰,提高其吸热能力;
(2)降低给水温度;
(3)增加风量,使燃烧中心上移;
(4)有减温器的,可减少减温水量。