锅炉过热汽温系统的控制
- 格式:pdf
- 大小:624.76 KB
- 文档页数:20
影响锅炉汽温的因素及汽温的控制措施1.燃料类型:不同燃料的燃烧特性不同,燃烧温度也不同,因此不同燃料的锅炉汽温也不同。
2.燃烧配比:燃烧配比决定了燃烧时所需的空气量,过量空气会降低燃烧温度,不足空气会导致燃烧不完全,从而影响锅炉汽温。
3.锅炉负荷:锅炉负荷的大小直接影响燃料燃烧速度和燃烧温度。
负荷过小会导致燃料在炉膛内停留时间过长,燃烧不充分;负荷过大会导致燃烧速度过快,影响燃烧温度。
4.锅炉结构:不同类型的锅炉结构、加热面积和布置方式等因素对锅炉汽温有一定的影响。
例如当流速过高时,可能会导致吹灰效果不佳,从而影响燃烧效果,进而影响锅炉汽温。
5.空气预热温度:空气预热温度的高低影响燃料燃烧温度。
预热空气可以降低燃料的燃烧温度,提高锅炉热效率。
锅炉汽温的控制措施:1.控制燃烧配比:合理控制过量空气量,确保燃烧充分,避免影响锅炉汽温。
可以通过调整燃烧器的供气量、燃气与空气的混合比例等方式来实现。
2.控制燃烧温度:调节燃料供应量、风门开度或调整燃烧器调制比等措施,控制燃烧温度在设计范围内。
3.控制锅炉负荷:根据实际需要调整锅炉负荷,以保持锅炉运行在设计负荷附近,避免过大或过小的负荷对锅炉汽温造成影响。
4.锅炉烟气侧升压:通过增加烟气侧的阻力,增加锅炉炉排气流量,从而增加烟气中的热量传递,提高汽温。
5.控制空气预热温度:通过调整燃气与空气的换热器的布置和工作参数,控制空气预热温度,确保燃料燃烧温度在设计范围内。
6.测量和监控:安装合适的仪表,实时监控锅炉汽温、燃烧温度、烟气温度等参数,并进行数据分析和处理,及时采取调整和控制措施。
综上所述,影响锅炉汽温的因素有很多,包括燃料类型、燃烧配比、锅炉负荷、锅炉结构和空气预热温度等,而锅炉汽温的控制措施主要包括控制燃烧配比、控制燃烧温度、控制锅炉负荷、锅炉烟气侧升压、控制空气预热温度和测量和监控等。
通过合理的控制和调整,可以确保锅炉汽温在设计范围内稳定运行,提高锅炉的热效率。
锅炉安全控制技术——过热蒸汽温度安全控制现代锅炉的过热器在高温高压条件下工作。
过热器出口温度是全厂工质温度的最高点,也是金属壁温的最高处,在过热器正常运行时已接近材料允许的最高温度。
如果过热蒸汽温度过高,容易烧坏过热器,也会引起汽轮机内部零件过热,影响安全运行;温度过低则会降低全厂热效率,所以电厂锅炉一般要求过热蒸汽温度偏差保持在±5℃以内。
过热蒸汽温度自动控制系统是锅炉控制中的难点。
目前,很多实际系统并没有达到控制指标的要求。
其主要原因有下述两方面。
(1)扰动因素多变化大表18—1列出了各种扰动因素对过热蒸汽温度的静态影响关系。
(2)控制通道滞后大控制过热蒸汽温度的手段总是调节减温水量。
控制通道的动特性与减温器的安装位置有关。
假若能将减温器装于过热器的出口,显然控制通道的滞后要小得多。
但是这样的工艺流程对过热器的安全是不利的。
为了保护过热器不超温,工艺上总是将减温器安装在过热器的人口,这将带来控制对象较大的滞后。
过热蒸汽控制对象特性可用一阶加线滞后来近似。
线滞后r和时间常数丁的大小还与减温器的形式有很大关系。
表面式减温器的滞后较大,,约为60s,T约为130s;混合式减温器滞后较小,t约为30s,T约为100s。
过热蒸汽温度安全控制系统的基本方案见图18—15和图18—16。
图18—15的方案是两个温度的串级控制。
设计该方案的前提是减温器到过热器之间有预留孔,允许安装测温元件测取θ2。
图18—16方案用减温水流量作副回路。
由于锅炉进水系统往往合用一根总管,然后分两路:一路作为锅炉汽包的进水;另一路是减温水,这就造成锅炉液位控制系统和过热蒸汽温度系统的严重关联。
而设置这种流量副回路可大大削弱这种关联的影响。
烟道气温度日,往往是该温度系统的重要扰动,在这里通过设置前馈控制减少它的影响。
需要指出的是,由于不同的工艺情况,过热蒸汽温度被控过程的难控程度具有极大差异。
假若减温器采用混合器,而且在减温器出口又允许安装测温元件,对这种情况只要采用图18—15方案,即能得到很满意的控制效果。
汽包锅炉蒸汽温度自动调节系统一、蒸汽温度自动调节系统锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。
调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。
1、过热汽温调节任务和特点过热汽温是锅炉运行质量的重要指标之一。
过热汽温过高或过低都会显著地影响电厂的安全性和经济性。
过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。
过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。
所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。
过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。
过热器的传热形式、结构、布置都将直接影响过热器的静态特性。
对流式过热器和辐射式过热器的过热汽温静态特性完全相反。
对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。
而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。
我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。
引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。
归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。
过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。
在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。
锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。
锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。
在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。
在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。
本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。
考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。
在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。
关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。
同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。
这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。
为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。
火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。
安全技术/特种设备
锅炉运行时怎样控制和调节汽温
对于饱和蒸汽锅炉,其蒸汽温度随蒸汽压力的变化而变化;对于过热蒸汽锅炉,其蒸汽温度的变化主要取决于过热器烟气侧的放热和蒸汽侧的吸热。
当流经过热器的烟气温度、烟气量和烟气流速等变化时,都会引起过热蒸汽温度的上升或下降。
当过热蒸汽温度过高时,可采用下列方法降低汽温:
(1)有减温器的,可增加减温器水量。
(2)喷汽降温。
在过热蒸汽出口,适量喷入饱和蒸汽,可降低过热蒸汽温度。
(3)对过热器前的受热面进行吹灰。
如对水冷壁吹灰,可增加炉膛蒸发受热面的吸热量,降低炉膛出口烟温,从而降低过热器传热温度。
(4)在允许范围内降低过剩空气量。
(5)提高给水温度。
当负荷不变时,增加给水温度,势必减弱燃烧才能不使蒸发量增加,燃烧的减弱使烟气量和烟气流速减小,使过热器的吸热量降低,从而使过热蒸汽温度下降。
(6)使燃烧中心下移。
适当减小引风和鼓风,使炉膛火焰中心下移,使进入过热器的烟气量减少,烟温降低,使过热蒸汽温度降低。
当过热蒸汽温度过低时,可采用下列方法升高汽温:
(1)对过热器进行吹灰,提高其吸热能力;
(2)降低给水温度;
(3)增加风量,使燃烧中心上移;
(4)有减温器的,可减少减温水量。
锅炉过热蒸汽温度控制系统课程设计过程控制课程设计说明书——锅炉过热蒸汽温度控制系统院系:化工学院化工机械系班级:10自动化(1)姓名:李正智学号:1 0 2 0 3 0 1 0 1 6日期:2013/12/2-2013/12/15指导老师:王淑钦老师引言蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。
过高的蒸汽温度会造成过热器、蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。
锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,并且可靠性也不高。
本次课程设计的主要目的是锅炉蒸汽温度控制系统的设计。
蒸汽过热系统包括一级过热器、减温器、二级过热器。
锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。
主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。
过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点,过热蒸汽温度过高或过低,对锅炉运行及蒸汽设备是不利的。
蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。
一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃【1】。
如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。
据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。
一般规定过热汽温下限不低于其额定值10℃。
通常,高参数电厂都要求保持过热汽温在540℃的范围内。
由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下三个方面:(1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。
影响锅炉汽温的因素及汽温的控制措施锅炉的汽温是指锅炉出口水蒸气的温度,这是锅炉运行过程中的一个关键参数,对锅炉的安全性、效率和耐久性都有重要影响。
本文将介绍影响锅炉汽温的因素及汽温的控制措施。
一、影响锅炉汽温的因素1.炉膛温度炉膛温度是影响锅炉汽温的重要因素之一。
如果炉膛温度过低,水蒸气在烟道内的冷凝水将难以蒸发,导致管道内水的积聚,从而引起管道堵塞,导致汽温下降。
而炉膛温度过高,则会导致受热面严重的高温氧化,加速设备的老化和损坏。
2.燃料种类和质量燃料种类和燃烧质量也是影响锅炉汽温的因素之一。
各种燃料的热值和燃烧特性不同,燃料的质量差异也会影响其燃烧效果。
如果燃料燃烧不完全,会导致锅炉内积聚大量的不完全燃烧产物,从而影响锅炉的热效率和汽温。
3.进口水温度和水质进口水温度和水质也是影响锅炉汽温的另一个关键因素。
如果进口水温度过低,将导致受热面上附着层厚度增加,减少热量传递效率,从而影响汽温升高。
水质的差异也会直接影响污垢的形成,从而影响锅炉受热面的热传递。
4.给水量和蒸汽排量给水量和蒸汽排量的大小也对锅炉汽温产生影响。
如果给水量过大,会导致锅炉排汽量不足,从而影响汽温的升高;如果蒸汽排量过大,则会使锅炉内的水蒸气不充分,也会导致汽温升高不足的问题。
二、汽温控制措施1.燃料预热为减少燃料的热损失,可在锅炉中加放加热器对燃气进行预热,从而提高燃料的燃烧效率,增加锅炉出口水蒸气的温度。
2.提高炉膛温度通过适当调整供氧量、提高风温和燃烧器的调节等方法,提高炉膛温度,从而增加锅炉出口水蒸气的温度。
3.控制进口水温和水量通过合理调节进口水温和水量,提高水蒸气的温度和排汽量,从而控制汽温的升高。
4.定期检修定期对锅炉进行检修和清洗,保持锅炉各系统的正常运行,避免管路破损或受损等问题,从而保证锅炉出口水蒸气的温度。
总的来说,控制汽温需要综合考虑多种因素的影响,对炉膛温度、燃料种类和质量、进口水温度和水质、给水量和蒸汽排量等关键因素进行合理的调节和控制。
摘要过热蒸汽温度控制系统是单元机组不可缺少的重要组成部分,其性能和可靠性已成为保证单元机组安全性和经济性的重要因素。
过热蒸汽温度较高时,机组热效率则相对较高,但过高时,汽机的金属材料又无法承受,气温过低则影响机组效率。
过热蒸汽温度的稳定对机组的安全经济运行非常重要,所以对其控制有较高的要求。
但是由于过热蒸汽温度是一个典型的大迟延、大惯性、非线性和时变性的复杂系统,本次设计采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键词:过热蒸汽温度,减温水,串级控制系统,PIDAbstractThe superheated steam temperature control system is an important and indispensable unit aircrew part, its performance and reliability has become ensure safety and economic behavior of the unit aircrew important factors. The superheated steam temperature is higher, the thermal efficiency is relatively high, but is high, the metal materials and the turbine unable to bear, the temperature is too low will influence the unit efficiency. The superheated steam temperature stability of the unit safe and economic operation is very important, so for the control have higher requirements. But because the superheated steam temperature is a typical time-delayed, large inertia, nonlinear and changeable complex system, this design USES the cascade control in order to improve the control performance of the system, in the system by the master-cascade control of switching device, make the system can be used in different working environment. By using this system, can make the boiler overheating export steam temperature in allowed within the scope of the change, and the protection of superheater wall temperature not more than allow the camp of working temperature.Key words: the superheated steam temperature, reduce warm water, cascade control system, PID目录摘要 (I)Abstract (II)1 绪论 (1)1.1 选题的背景及意义 (1)1.2 国内外研究现状 (2)1.3 本次设计的目的 (3)1.4 本次设计所做的工作 (3)2 汽温控制系统的组成与对象动态特性 (4)2.1汽温调节的概念和方法 (4)2.1.1 从蒸汽侧调节汽温 (4)2.1.2 从烟气侧调节汽温 (6)2.2过热器的分类及其基本结构 (8)2.2.1 过热器的分类 (8)2.2.2 过热器的基本结构 (11)2.3 过热蒸汽温度控制系统的基本结构和工作原理 (12)2.3.1 过热器一级减温控制系统 (12)2.3.2 过热器二级减温控制系统 (13)2.4 过热蒸汽温度控制对象的动静态特性 (15)2.4.1 静态特性 (15)2.4.2 动态特性 (15)3 过热汽温控制系统的基本方案 (19)3.1 串级汽温控制系统 (19)3.2 串级控制系统的基本结构和原理 (19)3.3 串级汽温控制系统的设计 (21)3.4 串级汽温控制系统的整定 (22)4 器件的选型 (25)4.1 温度检测变送器的选择 (25)4.2 控制器的选型 (27)4.3 执行器的选型 (28)4.4 阀门定位器的选型 (29)5 主蒸汽温度控制系统的仿真和改进 (31)5.1 串级PID系统仿真 (31)5.2 基于Smith预估计补偿器的串级汽温控制系统 (34)5.3 基于改进型Smith预估器的串级汽温控制系统 (38)结论 (42)致谢 (43)参考文献 (44)附录 (45)附录A (45)1 绪论1.1 选题的背景及意义过热汽温的控制就是维持过热出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。