蛋白类药物生产
- 格式:doc
- 大小:394.50 KB
- 文档页数:39
蛋白质药物的研发与生产一、引言蛋白质是生命体系中同时担任结构和功能的重要分子。
许多疾病的发展都与蛋白质有关,蛋白质药物已成为临床治疗的主要手段之一。
本文将介绍蛋白质药物的研发和生产。
二、蛋白质药物的研发1.蛋白质药物的种类蛋白质药物主要包括单克隆抗体、重组蛋白和蛋白质表面结构模拟体等。
单克隆抗体主要用于肿瘤、自身免疫等疾病的治疗,重组蛋白主要用于代替人体中缺失的功能性蛋白质,如干扰素、转化生长因子等。
蛋白质表面结构模拟体主要用于感染病毒和细菌等疾病的治疗。
2.蛋白质药物的研发流程蛋白质药物的研发流程包括基因克隆、表达和纯化、药效评价、体内药动学评价、毒性评价等环节。
其中,基因克隆是研发蛋白质药物的第一步,需要对目标蛋白的基因进行克隆和序列分析,确定最佳表达载体和宿主菌株。
表达和纯化是研发蛋白质药物的关键环节,需要对目标蛋白进行大规模的表达和纯化,并进行各种质量控制和活性评价。
药效评价是评价蛋白质药物疗效的重要环节,需要进行体外和体内实验,确定药物的作用机制和药效。
体内药动学评价和毒性评价则是评价药物安全性和耐受性的重要环节。
3.蛋白质药物研发的挑战和解决方案蛋白质药物研发面临着多种挑战,如蛋白质稳定性、药效性和免疫原性等。
为应对这些挑战,研究人员需要采用多种策略和技术手段。
比如,通过改变蛋白质结构、构建哑变体等手段提高药物的稳定性和降低免疫原性;通过多肽标记等手段提高药物的生物利用度和半衰期;通过选择合适的表达系统和纯化技术等手段提高药物的纯度和活性。
三、蛋白质药物的生产1.蛋白质药物的生产流程蛋白质药物的生产流程包括菌种扩培、发酵、纯化和制剂等环节。
菌种扩培是生产蛋白质药物的第一步,需要对表达蛋白质的宿主菌株进行扩培,培养细胞达到一定密度后添加诱导剂。
发酵是蛋白质药物生产的核心环节,需要对表达蛋白的菌液进行大规模的发酵,借助于发酵罐和其他设备,控制温度、pH、氧气气体浓度及营养成分等因素,使细胞大量表达目标蛋白。
蛋白类药物的开发摘要】生物技术被认为是21世纪最具主导地位的高新技术,生物技术药物基本都是多肽蛋白类药物,对肿瘤遗传性和非遗传性疾病有着特殊的疗效。
随着科学与技术的不断发展以及人民对生活质量的要求在不断提高蛋白药物的制备必将发展成为21世纪我国最具吸引力的新技术产业之一。
本文从蛋白类药物的认识,蛋白类药物开发的技术研究,蛋白和多肽类药物给药方法,以及对蛋白类药物的研究前景等方面,对蛋白类药物的开发有了综合性的认识。
【关键词】蛋白类药物蛋白质多肽开发生物技术随着生物技术和基因工程的发展,越来越多的多肽和蛋白类药物用于临床治疗。
近年来,蛋白类药物使用虽呈现上升趋势,但因制备工艺复杂、投递效率低、生物利用度差等诸多原因而受到限制,其中给药途径最为关键。
随着生物物理学、生物化学以及材料学在药学中的应用,诸如脂质体、微球、微囊以及纳米囊等技术的出现为解决上述问题提供了新的思路,其中微球以制备工艺简便、生物利用度高、靶向性强等优点而备受关注。
迄今为止,蛋白类药物由于诸多原因未能得到广泛应用,主要原因之一是较低的生物利用度问题难以解决。
而可生物降解微球在药物投递过程中可有效改善上述问题,它特有的载药方式能够明显减少蛋白类药物被机体复杂生理环境以及酶类物质的破坏,另外缓释及靶向特性对发挥其生物学效应也会起到十分重要的作用。
目前,其优势主要在疫苗和少数几个蛋白药物上得到验证和肯定。
想要在蛋白类药物的开发上有更新的进展,必须对它的开发有一个全面的了解。
1 蛋白类药物的认识1.1蛋白类药物的概念多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。
多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。
N条多肽链按一定的空间结构缠绕纠结就构成了蛋白质。
大分子蛋白质水解会生成多肽。
1.2蛋白类药物的分类生物技术药物即通过生物技术获得的药物,主要包括:重组细胞因子药物、重组激素类药物、重组溶栓药物、基因工程药物等等,都是多肽蛋白类药物,对肿瘤遗传性和非遗传性疾病有着特殊的疗效。
生物技术药物制剂生物技术药物制剂是利用生物技术方法生产的药物,具有高效、高准确性、低毒副作用等特点。
这些药物种类繁多,主要包括蛋白质药物、生物工程制剂和核酸药物等。
随着生物技术的不断发展和进步,生物技术药物制剂已成为国际上最具发展潜力和前景的新型药物。
一、蛋白质药物蛋白质是一种大分子化合物,由氨基酸组成,且具有复杂的结构和功能。
蛋白质药物是利用生物技术生产的药物,广泛应用于抗肿瘤、治疗糖尿病、治疗类风湿性关节炎等领域。
1.1 重组蛋白重组蛋白是一种人工合成的蛋白质,可通过重组DNA技术将其生产出来,具有较高的活性和稳定性。
市场上最常见的重组蛋白药物包括利妥昔单抗、重组人胰岛素、重组干扰素等,具有疗效确切、作用迅速、不易反复等特点。
1.2 抗体药物抗体药物是一种利用生物技术创造出的抗体,可用于治疗多种疾病,包括癌症、肿瘤和自身免疫性疾病等。
目前市场上可供选择的抗体药物有多达数十种,但最为知名的恐怕是赫赛汀,它是人体细胞系生产的单克隆抗体,可用于治疗癌症等疾病。
1.3 生长激素生长激素是一种由垂体腺分泌的蛋白质激素,可用于治疗多种生长障碍和缺陷。
利用生物技术生产的人类生长激素(HGH)、瑞格利诺(RHGH)等,具有较高的生物活性和安全性,被广泛应用于医疗领域。
二、生物工程制剂生物工程制剂是指通过利用现代生物工程技术生产的一类药物,包括:蛋白质药物类、核酸药物类、免疫调节剂、疫苗等。
现已广泛应用于肿瘤治疗、细胞治疗、创伤修复等领域,具有优异的生物活性和安全性。
2.1 基因工程药物基因工程药物是利用基因重组技术生产的药物,主要包括生长激素、胰岛素、干扰素和重组细胞因子等,具有较高的活性和稳定性。
其中,最典型的基因工程药物为重组人胰岛素,这种药物由基因工程技术合成,不但可以提高胰岛素的生物效价,而且能够更好地控制血糖,减少并发症的发生。
2.2 细胞治疗药物细胞治疗药物是利用细胞工程技术研制的药物,主要包括干细胞疗法、细胞培养物及重组细胞等。
基因⼯程⽣产蛋⽩基因⼯程法⽣产多肽和蛋⽩类药物基因⼯程法⽣产多肽和蛋⽩类药物,系指将合成多肽或蛋⽩的基因分离纯化后,结合上合适的表达载体转⼊它种⽣物并稳定遗传和表达的过程。
基因⼯程法⽣产多肽和蛋⽩类药物包括基因⼯程菌(细胞)构建、发酵(或细胞培养)、分离纯化、检验及制剂等环节,其中基因⼯程菌(细胞)构建⾄为关键。
基因⼯程菌(细胞)常⽤的宿主菌(细胞)包括微⽣物和真核⽣物细胞,最常⽤的有⼤肠杆菌、酵母菌和中国仓⿏卵巢细胞,其中尤以⼤肠杆菌和酵母菌最为普遍,是本章介绍的重点。
⼀、⽣产⽤微⽣物的来源及发酵特性⽣产⽤微⽣物主要来源于两个⽅⾯,⼀是从⾃然界分离,⼆是⼈⼯改良。
从⾃然界分离到的微⽣物由于受⾃⾝代谢调节的控制,蛋⽩类药物的合成量⼗分低。
另外,⾃然界中的微⽣物合成的蛋⽩质药物各类也⼗分有限。
为了提⾼蛋⽩类药物的产量,丰富其种类,对⾃然界分离的微⽣物进⾏改良成为必然。
改良⽅法主要有⼈⼯诱变法和基因⼯程法,其中尤以基因⼯程⽅法⽤得最为普遍。
基因⼯程⽅法改良微⽣物,就是通过把某⼀特定的外源基因,通过⼀定的载体,放⼊宿主细胞内,使之随宿主细胞的⽣长和繁殖⼀起复制和表达。
外源基因的表达产物属于异已物质,并可能对宿主细胞有毒性。
⼤量的外源基因表达产物可能打破宿主细胞的⽣长平衡,如⼤量的氨基酸被⽤于合成与宿主细胞⽆关的蛋⽩质,从⽽影响其他代谢过程。
有的表达产物本⾝对细胞有害,表达产物的⼤量积累可能导致细胞⽣长缓慢甚⾄死亡。
由于基因⼯程产物在细胞内过量合成,必然会影响宿主的⽣长和代谢,⽽细胞⽣长受限,⼜反过来抑制了外源基因产物的合成。
所以必须合理调节这种消长关系,使宿主细胞的代谢负荷不⾄于过重,⼜能⾼效表达外源基因。
为了减轻宿主细胞的代谢负荷,提⾼外源基因的表达⽔平,可以采取当宿主细胞⼤量⽣长时,抑制外源基因表达的措施。
即将细胞的⽣长和外源基因的表达分成两个阶段,使表达产物不会影响细胞的正常⽣长,当宿主细胞的⽣物量达到饱和时,再进⾏基因产物的诱导合成,以减低宿主细胞的代谢负荷。
蛋白药物发展史全文共四篇示例,供读者参考第一篇示例:蛋白药物的发展史可以分为几个阶段。
最早期的蛋白药物是动物源性蛋白药物,如胰岛素、生长激素等。
这些药物是通过提取动物组织中的蛋白质而得到的,虽然在当时是一种重要的医疗手段,但存在免疫原性、不稳定性等问题。
随着分子生物学和基因工程技术的发展,人源蛋白药物逐渐取代了动物源蛋白药物,成为主流。
20世纪80年代初,第一个通过基因工程技术生产的蛋白药物——人类胰岛素(人胰岛素)上市。
这标志着蛋白药物进入了全新的阶段。
人胰岛素的成功推出,拉开了蛋白药物研究的序幕,也使得更多类型的蛋白药物开始投入研发。
而后,许多重要的蛋白药物相继问世,如重组人干扰素、重组人免疫球蛋白等,这些药物在治疗肿瘤、炎症性疾病等领域发挥了重要作用。
进入21世纪,蛋白药物的研究和发展进入了快速发展的阶段。
革命性的抗体工程技术的应用,使得单抗药物(单克隆抗体)成为蛋白药物的新宠。
单抗药物具有更高的特异性和选择性,更好的生物相容性,可以减少不良反应和副作用。
近年来,许多重要的单抗药物上市,如英格利莫单抗、特里姆特姆单抗等,广泛应用于肿瘤治疗、自身免疫性疾病等领域,取得了显著的临床效果。
除了单抗药物,越来越多的新型蛋白药物也在研究中得到应用。
例如长效蛋白药物、融合蛋白药物、多肽类药物等,都在蛋白药物研究中取得了一些突破。
随着基因编辑技术的不断发展,个性化蛋白药物的研究也逐渐受到重视,为未来蛋白药物领域的发展带来了更多可能性。
蛋白药物在医学领域的发展史可以说是层出不穷、源源不断。
从最早的动物源性蛋白药物到现在的单抗药物,蛋白药物在治疗疾病中发挥着越来越重要的作用,为医学领域的发展做出了巨大贡献。
随着科学技术的不断进步,相信蛋白药物将在未来发展出更多的新型药物,为人类的健康保驾护航。
第二篇示例:蛋白药物是一类广泛应用于医疗领域的药物,其主要成分为蛋白质。
蛋白质作为生物体内最重要的基本物质之一,具有多样性的功能和作用。
蛋白类药物生产工艺蛋白质类药物是生化药物中非常活跃的一个领域,目前的生化产品主要是从动物脏器或组织包括人的血液中分离而得。
20世纪70年代后,人们开始应用基因工程技术生产一些蛋白质药物,已实现工业化生产的产品如胰岛素、干扰素、白细胞介素、生长素、EPO、tPA、TNF等,现正从微生物和动物细胞的表达转向基因动植物发展。
第一节主要蛋白质类药物的制备蛋白质类药物主要包括蛋白质类激素、蛋白质细胞生长调节因子、血浆蛋白质类、黏蛋白、胶原蛋白及蛋白酶抑制剂等,其作用方式包括对机体各系统和细胞生长的调节、被动免疫、替代疗法等。
一、蛋白质激素类蛋白质类激素主要包括垂体蛋白质激素、促性腺激素和其他蛋白质激素。
其中垂体蛋白质激素包括生长素(GH)、催乳激素(PRL)、促甲状腺素(TSH)、促卵泡激素(FSH)等。
促性腺激素包括人绒毛膜促性腺激素(HCG)、血清促性腺激素( SGH )等。
其他蛋白质激素包括胰岛素、胰抗脂肝素、尿抑胃素等。
(一) 生长素(growthhormone,GH)生长素是动物脑垂体前叶外侧的特异分泌细胞分泌的一种促进生长的蛋白质激素,具有调节生长与发育的功能,对多种人类疾病有很好的疗效。
人生长素(human growth hormone,hGH)由一条191个氨基酸的多肽构成的一链多肽的球形蛋白质,分子中含两条二硫键,分子量为21700,等电点4.9,沉降系数S20,W 2.179,其活性不需要整个分子结构,N端1~134氨基酸为活性所必需,C端的肽链起到保护作用,其化学结构与催乳素近似,故生长素有弱催乳素作用,而催乳素有弱生长素作用。
生长素包含大小两个环,以亲水球蛋白的形式存在。
不同种类动物的生长素,其化学结构与免疫264性质等都有较大差别。
生长素的生产工艺有传统的方法和基因工程技术方法。
1.生长素的传统生产方法传统方法是从脑垂体前叶分离纯化,其生产工艺见图11-1所示。
提取分级沉淀传统的工艺过程如下:①材料获取处死动物,立即解剖,取出脑垂体,冰上速冻,-20℃冷冻保存。
②预处理脑垂体使用前,用蒸馏水冲洗数次,解冻,剥离前后叶。
③匀浆取动物垂体前叶,分割成小块,加水,用硫酸铵调pH至5.5,置组织捣碎机中匀浆。
④提取对匀浆以水抽提,10 000rpm离心30min;取沉淀,以pH 4.0的0.1mol/L硫酸铵溶液抽提,离心(同上),取沉淀,再用pH 5.5的0.25mol/L的硫酸铵溶液抽提,离心,取上清抽提液。
⑤沉淀调节抽提液pH 7.5,加饱和硫酸铵溶液至硫酸铵浓度为lmol/L,离心,取上清液。
⑥再沉淀对上清液再加饱和硫酸铵溶液至1.8mol/L,离心,得沉淀。
⑦除盐将沉淀溶于少量蒸馏水中,对蒸馏水进行透析,得透析内液。
⑧等电点沉淀将所得透析内液用HCL或NaOH分别依次于pH 4.0和pH 4.9进行等265电点沉淀以除去杂蛋白,离心、取上清液。
⑨盐析调上清液pH为4.0,加饱和硫酸铵溶液至浓度为1.25mol/L盐析,离心,得沉淀物。
⑩除盐将沉淀物溶于少量蒸馏水中,对含0.1mol/L氯化钠的Tris-HCL (pH 8.5) 缓冲溶液进行透析,得透析内液。
⑩凝胶过滤透析内液上Sephades G-75凝胶柱,用含0.1 mol/L氯化钠的50mmol/L Tris-HCL (pH 8.5 )缓冲溶液进行洗脱,分步收集,活性GH存在于第Ⅱ峰中。
⑩透析将活性峰部分对6.5mmol/L的硼砂-盐酸(pH 8.7)缓冲溶液进行透析,得透析内液。
⑩层析将透析内液上DEAE-C(DE-52)柱,用含0~0.3mol/L氯化钠的6.5mmol/L 硼砂-盐酸( pH 8.0 ) 缓冲溶液进行梯度洗脱,合并活性峰,脱盐,冻干得GH。
2.人生长素的基因工程法hGH的种属特异性很强,动物生长激素不能用于人,所以开始时hGH的惟一来源是从人尸体的脑垂体中取得,来源困难,价格昂贵,应用受到限制。
目前已利用基因工程技术生产出hGH,美国的Genentech公司利用枯草杆菌系统表达的hGH产量高达1.5g/L,这也是第一代重组人生长激素,商品名称为Protropin.生产路线如图11-2所示。
图11-2 利用基因工程菌生产生长素的工艺路线()(1)工艺过程如下:266①工程菌的构建利用基因工程技术构建高效分泌型基因工程菌株,在生长激素的N-端增加分泌信号肽序列,使表达合成的重组人生长激素结构和天然人生长激素完全一致。
②菌种繁殖采用M9培养基,添加CAA(酪蛋白氨基酸),调节pH 至7.0,置于摇床上,30℃,进行菌种培养繁殖。
③发酵培养基同菌种繁殖培养基,种子培养过夜,开始进行发酵,时间一般为16~18h,温度为37℃,pH7.0~7.5,溶解氧不能低于20%。
④补料发酵在发酵进行5~7 h后,需要适量补充葡萄糖、酵母浸出物、氮源、CAA、无机盐和微量无素,如PO43-、Fe2-、Co2-等离子,通过添加补料,可使菌体生长的对数期延,发酵菌体产量增加了一倍。
其余的发酵条件与上述条件相同,菌体生长至稳定期放罐。
⑤离心将发酵菌体进行冻融破碎,按一定比例,加入预冷的由10 mmol/L Tris和1mmol/L EDTA组成的缓冲溶液(pH 7.5),80rpm搅拌1h,离心,收集上清液。
⑥粗提在上清液中加入硫酸铵至饱和浓度45%,4℃放置2h,10000rpm离心30min,收集沉淀。
⑦脱盐沉淀用10 mmol/L Tris和1mmol/LEDTA组成的pH值为8.0的缓冲溶液溶解,用Sephadex -G25脱盐。
⑧纯化采用Phenyl-Sepharose,DEAE-Sepharose进行色谱,再加入固体硫酸铵达到饱和浓度45%,沉淀2h,离心,收集沉淀,溶解沉淀,再通过sephacryl S-11HR及DEAE-Sepharose进行纯化,得到人生长激素原料药半成品.。
(2)质量检验:质量必须符合<中华人民共和国药典>2005年版二部附录规定。
目前,人和动物生长素基因都已在大肠杆菌中表达成功,重组人生长激素将会得到大规模的生产,从而造福人类。
(二) 胰岛素( insulin )胰岛素是胰脏中胰岛β细胞分泌的一种蛋白质激素,它是促进合成代谢的激素,在调267节机体糖代谢、脂肪代谢、核蛋白质代谢方面都有重要作用,是维持血糖在正常水平的主要激素之一。
广泛存在于人和动物的胰脏中,正常人的胰脏约含有200万个胰岛,占胰脏总质量的1.5%。
胰岛由α、β和δ三种细胞组成,其中α细胞制造胰高血糖素和胰抗脂肝素,β细胞制造胰岛素,δ细胞制造生长激素抑制因子。
胰岛素在β细胞中开始时是以活性很弱的前体胰岛素原存在,进而分解为胰岛素进入血液循环,能使血糖降低,起到调节血糖作用。
临床上主要用于治疗胰岛素依赖性糖尿病及糖尿病昏迷和酮症酸中毒、精神分裂症、休克等。
胰岛素由A、B两条链组成,A链含21个氨基酸残基,B链含30个氨基酸残基,两链之间由两个二硫键相连,在A链内部含有一个二硫键。
不同种属动物的胰岛素分子结构大致相同,主要差别在A链二硫桥中间的第8位、9位和10位上的三个氨基酸及B链C末端的一个氨基酸上,随种属而异,但其生理功能是相同的。
生产胰岛素的方法较多,有传统的方法和基因工程技术方法。
1.动物胰脏制胰岛素由动物胰脏生产胰岛素的方法较多,目前被普遍采用的是酸醇法和锌沉淀法。
现以酸醇法为例,介绍胰岛素的生产工艺。
其工艺路线如图11-3所示。
提取碱化图11-3 酸醇法生产胰岛素的工艺路线(1)工艺过程如下:268①提取冻胰块用刨胰机刨碎,加入2.3~2.6倍的86%~88%乙醇(质量分数)和5%草酸,在12±2℃搅拌提取3h,离心。
滤渣再用1倍量68%~70%乙醇和0.4%草酸提取2h,离心,合并乙醇提取液。
沉淀用于回收胰岛素。
②碱化、酸化边搅拌提取液边加入浓氨水调pH 8.0~8.4 (12±2℃),立即过滤,除去碱性蛋白,滤液应澄清,并及时用硫酸酸化至pH 3.6~3.8,降温至5℃,静置4h以上,使酸性蛋白充分沉淀。
③减压浓缩吸取上清液至减压浓缩锅内,下层用帆布过滤,沉淀物弃去,取上清液,30℃以下减压蒸去乙醇,浓缩至浓缩液相对密度为1.04~1.06 (约为原体积的1/10~1/9为止)。
④去脂、盐析浓缩液转入去脂锅内,5min内加热至50℃后,立即用冰盐水降温至5℃,静置3~4h,分离下层清液(脂层用于回收胰岛素)。
用盐酸调pH 2.3~2.5,于22±2℃搅拌加入27%(质量体积分数)固体氯化钠,保温静置数小时。
析出物即为胰岛素粗品。
⑤精制盐析物按干重计算,加入7倍量蒸馏水溶解,再加入3倍量的冷丙酮,用4mol/L氨水调pH 4.2~4.3,然后补加丙酮,使溶液中水和丙酮的比例为7∶3。
充分搅拌后,低温5℃以下放置过夜,次日在低温下离心分离,取上清夜,在上清夜中加入4mol/L 氨水使pH 6.2~6.4,加入3.6%(体积分数)的醋酸锌溶液(浓度为20%),再用4mol/L氨水调节pH 6.0,低温放置过夜,次日过滤,分离沉淀。
⑥结晶将沉淀用冷丙酮洗涤,得干品,再按干品质量每克加冷2%柠檬酸50mL、6.5%醋酸锌溶液2mL、丙酮16mL,并用冰水稀释至100mL,使其充分溶解,5℃以下,用4mol/L氨水调pH 8.0,迅速过滤。
滤液立即用10%柠檬酸溶液调pH 6.0,补加丙酮,使整个溶液体系保持丙酮含量为16%。
慢速搅拌3~5h使结晶析出。
在显微镜下观察,外形为正方形或扁斜形六面体结晶,再转入5℃左右低温室放置3~4d,使结晶完全。
离心收集结晶,并小心刷去上层灰黄色无定形沉淀,用蒸馏水或醋酸铵缓冲液洗涤,再用丙酮、乙269醚脱水,离心后,在五氧化二磷真空干燥箱中干燥,即得结晶胰岛素。
(2)质量检验测定胰岛素效价,各国药典规定有家兔血糖降低法和小鼠血糖降低法。
(3)在整个生产过程中,为提高胰岛素的质量和产量,应注意以下几个方面:①胰脏质量是胰岛素生产中的关键,在我国是一个薄弱环节。
工业生产用的原料主要是猪、牛的胰脏。
不同种类和年龄的动物,其胰脏中胰岛素量有所差别,牛胰含量一般高于猪胰。
采摘胰脏要注意保持腺体组织的完整,避免摘断,并且离体后要立即深冻,先在-30℃以下急冻后转入-20℃保存备用,如用液氮速冻,效果更好。
在胰脏中,胰尾部分胰岛素含量较高,如单独使用可提高收率10%。
②浓缩浓缩工序的条件,对胰岛素收率影响很大。
如采用离心薄膜蒸发器,在第一次浓缩后,浓缩液用有机溶剂去脂,再进行第二次浓缩,被浓缩溶液受热时间极短,避免了胰岛素效价的损失。
③产品纯度在常规的结晶胰岛素中,除了胰岛素主成分外,还含有其他一些杂蛋白抗原成份,如胰岛素原、精氨酸胰岛素、胰多肽等。