评价指标与权重系数
- 格式:doc
- 大小:69.50 KB
- 文档页数:2
多指标综合评价方法及权重系数的选择多指标综合评价方法是一种综合考虑多个评价指标的方法,通过构建合适的模型来对评价对象进行全面、客观的评价。
在进行多指标综合评价时,选择合适的权重系数是十分重要的,下面将介绍几种常用的多指标综合评价方法和权重系数的选择方法。
一、常用的多指标综合评价方法:1.加权求和法:该方法通过将各个指标的评价值乘以对应的权重系数,然后求和得到综合评价结果。
该方法简单直观,适用于指标的权重主观确定且各指标之间相互独立的情况。
2.层次分析法:该方法通过构建评价指标层次结构,通过专家的判断和主观权重赋值,计算各级指标的权重,然后通过计算各个综合评价层次的权重,得到最终的综合评价结果。
该方法适用于各级指标之间存在依赖关系的情况。
3.熵权法:该方法通过计算指标集合的信息熵值来确定每个指标的权重系数,信息熵值越大表示指标的差异性越大,权重越高。
该方法适用于指标之间差异较大、具有较强的差异性的情况。
4.模糊综合评价法:该方法通过构建模糊综合评价模型,将评价指标的模糊隶属度和权重系数相乘,然后求和得到综合评价结果。
该方法适用于指标权重不确定、评价模糊的情况。
二、权重系数的选择方法:1.主观赋值法:通过专家的主观判断和把握,根据评价对象的重要程度和关键性确定权重系数。
该方法适用于评价指标的具体含义和权重较为明确的情况。
2.统计分析法:通过对历史数据进行分析和回归,确定各个指标对评价结果的影响程度,从而确定相应的权重系数。
该方法适用于评价指标的历史数据较为丰富的情况。
3.层次分析法:通过构建评价指标层次结构,利用层次分析法计算各级指标的权重系数。
该方法适用于各级指标之间存在依赖关系且重要性不同的情况。
4.熵权法:通过计算指标集合的信息熵值来确定每个指标的权重系数。
该方法适用于指标之间差异较大、具有较强的差异性的情况。
总之,在选择多指标综合评价方法和权重系数时,需要根据具体的评价对象和目标,结合专业知识和实际情况,综合考虑各个方法的优缺点,选择合适的方法和合理的权重系数。
评价指标权重确定方法综述1.引言评价指标权重的确定是多目标决策的一个重要环节,因为多目标决策的基本思想是将多目标决策结果值纯量化,也就是应用一定的方法、技术、规则(常用的有加法规则、距离规则等)将各目标的实际价值或效用值转换为一个综合值;或按一定的方法、技术将多目标决策问题转化为单目标决策问题。
然后,按单目标决策原理进行决策。
指标权重是指标在评价过程中不同重要程度的反映,是决策(或评估)问题中指标相对重要程度的一种主观评价和客观反映的综合度量。
权重的赋值合理与否,对评价结果的科学合理性起着至关重要的作用;若某一因素的权重发生变化,将会影响整个评判结果。
因此,权重的赋值必须做到科学和客观,这就要求寻求合适的权重确定方法。
2.指标权重确定方法研究现状目前国内外关于评价指标权系数的确定方法有数十种之多,根据计算权系数时原始数据来源以及计算过程的不同,这些方法大致可分为三大类:一类为主观赋权法,一类为客观赋权法,一类为主客观综合集成赋权法。
主观赋权评估法采取定性的方法,由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评估。
如层次分析法、专家调查法(Delphi法)[](镇常青.多目标决策中的权重调查确定方法.系统工程理论与实践,1987,7(2):16-24)、模糊分析法、二项系数法[](程明熙.处理多目标决策问题的二项系数加权和法.系统工程理论与实践,1983,3(4):23-26)、环比评分法[](陆明生.多目标决策中的权系数.系统工程理论与实践,1986,6(4):77-78)、最小平方法[](宣家骥.多目标决策.长沙:湖南科技出版社,1989,陈挺.决策分析.北京:科学出版社,1997)、序关系分析法(G1法)[](郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.)等方法,其中层次分析法(AHP法)是实际应用中使用得最多的方法,它将复杂问题层次化,将定性问题定量化。
层次分析法(AHP)是由美国运筹学家,匹兹堡大学的萨迪教授于20世纪70年代初提出的,它是一种整理和综合人们主观判断的客观分析方法,也是一种定量与定性相结合的系统分析方法,它适合于具有多层次结构的多目标决策问题或综合评价问题的权重确定和多指标决策的可行方案优劣排序。
多指标综合评价方法及权重系数的选择【摘要】由于计算机的发展及一些相关领域的不断深入研究,综合评价方法得到了不断的发展和改进。
而指标权重系数的确定方法作为综合评价中的重中之重,近几年来也取得了一些新的进展。
本文对多指标评价方法和权重系数的选择进行概括介绍。
【关键词】多指标综合评价;评价方法;权重系数;选择基金项目:广东药学院引进人才科研启动基金资助项目( 2005ZYX12)、广州市科技计划项目、广东省科技计划项目综合评价是利用数学方法对一个复杂系统的多个指标信息进行加工和提炼,以求得其优劣等级的一种评价方法。
本文就近年来国内外有关多指标综合评价及权重系数选择的方法进行综述,以期为药理学多指标的研究提供一些方法学的资料。
1 多指标综合评价方法1 层次分析加权法[1]AHP法是将评价目标分为若干层次和若干指标,依照不同权重进行综合评价的方法。
根据分析系统中各因素之间的关系,确定层次结构,建立目标树图→ 建立两两比较的判断矩阵→ 确定相对权重→ 计算子目标权重→ 检验权重的一致性→ 计算各指标的组合权重→计算综合指数和排序。
该法通过建立目标树,可计算出合理的组合权重,最终得出综合指数,使评价直观可靠。
采用三标度矩阵的方法对常规的层次分析加权法进行改进,通过相应两两指标的比较,建立比较矩阵,计算最优传递矩阵,确定一致矩阵。
该方法自然满足一致性要求,不需要进行一致性检验,与其它标度相比具有良好的判断传递性和标度值的合理性;其所需判断信息简单、直观,作出的判断精确,有利于决策者在两两比较判断中提高准确性[2]。
2 相对差距和法[3]设有m项被评价对象,有n个评价指标,则评价对象的指标数据库为Kj=(K1j,K2j,……,Knj),j=1,2,……,m。
设最优数据为K0=。
最优单位K0中各数据的确定高优指标,取所有m个单位中该项评价指标最大者;低优指标,取所有m个单位中该项评价指标最小者。
各单位与最优单位的加权相对差距和为:D=∑nj=1WiKi-Kij2Mi式中Wi为第i 项指标的权系数,Mi为所有单位的第i 项指标数值的中位数。
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果;按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等;客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等;两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价;客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大;下面就对当前应用较多的评价方法进行阐述;一、变异系数法一变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重;是一种客观赋权的方法;此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距;例如,在评价各个国家的经济发展状况时,选择人均国民生产总值人均GNP作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度;如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义;由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度;为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度;各项指标的变异系数公式如下:式中:是第项指标的变异系数、也称为标准差系数;是第项指标的标准差;是第项指标的平均数;各项指标的权重为:二案例说明例如,英国社会学家英克尔斯提出了在综合评价一个国家或地区的现代化程度时,其各项指标的权重的确定方法就是采用的变异系数法;案例:利用变异系数法综合评价一个国家现代化程度时的指标体系中的各项指标的权重;数据资料是选取某一年的数据,包括中国在内的中等收入水平以上的近40个国家的10项指标作为评价现代化程度的指标体系,计算这些国家的变异系数,反映出各个国家在这些指标上的差距,并作为确定各项指标权重的依据;其标准差、平均数数据及其计算出的变异系数等见表1-1;i ii x V σ=()n i ,,2,1 =iV i i σi i xi ∑==ni iii VV W 1计算过程如下:1先根据各个国家的指标数据,分别计算这些国家每个指标的平均数和标准差;2根据均值和标准差计算变异系数; 即:这些国家人均GNP 的变异系数为:农业占GDP 比重的变异系数:其他类推;3将各项指标的变异系数加总:4计算构成评价指标体系的这10个指标的权重: 人均GNP 的权重:农业占GDP 比重的权重:其他指标的权重都以此类推; 三变异系数法的优点和缺点当由于评价指标对于评价目标而言比较模糊时,采用变异系数法评价进行评定是比较合适的,适用各个构成要素内部指标权数的确定,在很多实证研究中也多数采用这一方法;缺点在于对指标的具体经济意义重视不够,也会存在一定的误7 966.270.66711 938.4ii iV x σ===782.0352.9316.7===iii x V σ0.6670.7820.2360.560.537 4.59+++++=145.059.4667.01===∑=ni iii VV W 1704.059.4782.01===∑=ni iii VV W差;二、层次分析法一层次分析法概述人们在对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统;层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法;层次分析法AHP法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法;该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题;二层次分析法原理层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层供决策的方案、措施等相对于最高层总目标的相对重要权值的确定或相对优劣次序的排定;层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法;尤其适合于对决策结果难于直接准确计量的场合;三层次分析法的步骤和方法•建立层次结构模型•构造判断(成对比较)矩阵•层次单排序及一致性检验•层次组合排序及一致性检验1. 建立层次结构模型利用层次分析法研究问题时,首先要把与问题有关的各种因素层次化,然后构造出一个树状结构的层次结构模型,称为层次结构图;一般问题的层次结构图分为三层,如图所示;最高层为目标层O :问题决策的目标或理想结果,只有一个元素;中间层为准则层C :包括为实现目标所涉及的中间环节各因素,每一因素为一准则,当准则多于9个时可分为若干个子层;最低层为方案层P :方案层是为实现目标而供选择的各种措施,即为决策方案;一般说来,各层次之间的各因素,有的相关联,有的不一定相关联;各层次的因素个数也未必一定相同.实际中,主要是根据问题的性质和各相关因素的类别来确定;层次分析法所要解决的问题是关于最低层对最高层的相对权重问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中作出选择或形成选择方案的原则;2. 构造判断成对比较矩阵构造比较矩阵主要是通过比较同一层次上的各因素对上一层相关因素的影响作用.而不是把所有因素放在一起比较,即将同一层的各因素进行两两对比;比较时采用相对尺度标准度量,尽可能地避免不同性质的因素之间相互比较的困难;同时,要尽量依据实际问题具体情况,减少由于决策人主观因素对结果造成的影响;决策目标o准则1C 1准则2C 2准则m 1C m1子准则1C 11子准则2C 21方案1P 1方案2P 2方案nP n子准则m 2 C m21设要比较n 个因素n C C C ,,,21 对上一层如目标层O 的影响程度,即要确定它在O 中所占的比重;对任意两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响程度之比,按1~9的比例标度来度量),,2,1,(n j i a ij =.于是,可得到两两成对比较矩阵n n ij a A ⨯=)(,又称为判断矩阵,显然0>ij a ,),,2,1,(,1,1n j i a a a ii ijji ===因此,又称判断矩阵为正互反矩阵.比例标度的确定:ij a 取1-9的9个等级,ji a 取ij a 的倒数,1-9标度确定如下:ij a = 1,元素i 与元素j 对上一层次因素的重要性相同; ij a = 3,元素i 比元素j 略重要; ij a = 5,元素i 比元素j 重要; ij a = 7, 元素i 比元素j 重要得多; ij a = 9,元素i 比元素j 的极其重要; 2ij a n =,1,2,3,4n =元素i 与j 的重要性介于21ij a n =-与21ij a n =+之间;1ij a n=,1,2,9n =当且仅当ji a n =;由正互反矩阵的性质可知,只要确定A 的上或下三角的2)1(-n n 个元素即可;在特殊情况下,如果判断矩阵A 的元素具有传递性,即满足),,2,1,,(n k j i a a a ij kj ik ==则称A 为一致性矩阵,简称为一致阵. 3. 层次单排序及一致性检验3.1相对权重向量确定 1和积法取判断矩阵n 个列向量归一化后的算术平均值,近似作为权重,即),,2,1(111n i a a n w n j n k kjiji ==∑∑==类似地,也可以对按行求和所得向量作归一化,得到相应的权重向量; 2求根法几何平均法将A 的各列或行向量求几何平均后归一化,可以近似作为权重,即),,2,1(111111n i a a w nj nk nn j kj nij n j i =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∑∑∏∏====3特征根法设想把一大石头Z 分成n 个小块n c c c ,,,21 ,其重量分别为n w w w ,,,21 ,则将n 块小石头作两两比较,记j i c c ,的相对重量为),,2,1,(n j i w w a jiij ==,于是可得到比较矩阵111122221212n n n n n n w w w w w w w w w w w w A w w w w w w ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦显然,A 为一致性正互反矩阵,记12(,,,)T n W w w w =,即为权重向量.且12111,,,n A W w w w ⎛⎫=⋅ ⎪⎝⎭则12111,,,n A W W W nW w w w ⎛⎫⋅=⋅= ⎪⎝⎭这表明W 为矩阵A 的特征向量,且n 为特征根.事实上:对于一般的判断矩阵A 有max A W W λ⋅=,这里)(max n =λ是A 的最大特征根,W 为m ax λ对应的特征向量.将W 作归一化后可近似地作为A 的权重向量,这种方法称为特征根法; 注:现有软件求得最大特征根与特征向量; 3.2一致性检验通常情况下,由实际得到的判断矩阵不一定是一致的,即不一定满足传递性和一致性.实际中,也不必要求一致性绝对成立,但要求大体上是一致的,即不一致的程度应在容许的范围内.主要考查以下指标: 1一致性指标:1max --=n n CI λ.2随机一致性指标:RI ,通常由实际经验给定的,如表2-1;表2-1 随机一致性指标3一致性比率指标:RICI CR =,当10.0<CR 时,认为判断矩阵的一致性是可以接受的,则m ax λ对应的特征向量可以作为排序的权重向量;此时()1max 111nij jnnj ii i iia wA W nw n w λ===⋅≈=∑∑∑其中(A )i W ⋅表示A W ⋅的第i 个分量; 4.计算组合权重和组合一致性检验 1组合权重向量设第1-k 层上1-k n 个元素对总目标最高层的排序权重向量为()1(1)(1)(1)(1)12,,,k Tk k k k n Wwww-----=第k 层上k n 个元素对上一层1-k 层上第j 个元素的权重向量为()(1)()()()121,,,,1,2,,k Tk k k k jj jn jk P p p pj n --==则矩阵1()()()()12,P ,,P k k k k k n P P -⎡⎤=⎣⎦是1-⨯k k n n 阶矩阵,表示第k 层上的元素对第1-k 层各元素的排序权向量.那么第k 层上的元素对目标层最高层总排序权重向量为()1()()(1)()()()(1)12()()()12,P ,,P ,,,k kk k k k k k k n Tk k k n W P W P W w w w---⎡⎤=⋅=⋅⎣⎦=或k k j n j k ij k in i w p wk ,,2,1,)1(1)()(1==-=∑- 对任意的2>k 有一般公式()()(1)(3)(2)(2)k k k W P P P W k -=⋅⋅⋅⋅>其中(2)W 是第二层上各元素对目标层的总排序向量. 2组合一致性指标设k 层的一致性指标为)()(2)(11,,,k nk k k CI CI CI - ,随机一致性指标为 )()(2)(11,,,k n k k k RI RI RI - 则第k 层对目标层的最高层的组合一致性指标为()1()()()()(1)12,,,k k k k k k n CI CI CI CI W --=⋅ 组合随机一致性指标为()1()()()()(1)12,,,k k k k k k n RI RI RI RI W --=⋅ 组合一致性比率指标为)3()()()1()(≥+=-k RICI CRCRk k k k 当10.0)(<k CR 时,则认为整个层次的比较判断矩阵通过一致性检验.四案例说明实例:人们在日常生活中经常会碰到多目标决策问题,例如假期某人想要出去旅游,现有三个目的地方案:风光绮丽的杭州1P 、迷人的北戴河2P 和山水甲天下的桂林3P ;假如选择的标准和依据行动方案准则有5个景色,费用,饮食,居住和旅途;1.建立层次结构模型目标层 准则层2.构造判断矩阵1234511/2433217551/41/711/21/31/31/52111/31/5311C C A C C C ⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭构造所有相对于不同准则的方案层判断矩阵 1相对于景色O 择旅游地P1桂林C1景色C2费用C3居住C4饮食C5旅途P2黄山P3北戴河12345C C C C C 11231251/2121/51/2`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P2相对于费用3相对于居住4相对于饮食5相对于旅途3. 层次单排序及一致性检验3.1用matlab 求得判断矩阵A 的最大特征根与特征向量:max 5.073λ=,对应于max 5.073λ=的正规化的特征向量为:(2)(0.263,0.475,0.055,0.099,0.110)T W =判断矩阵1B 的最大特征值与特征向量max 3.005λ=(3)10.5950.2770.129W ⎛⎫ ⎪= ⎪ ⎪⎝⎭122311/31/8311/383`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 132********/31/3`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 14231341/3111/41`1P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P 1523111/4111/4441P B P P ⎛⎫ ⎪= ⎪⎪⎝⎭123P P P判断矩阵2B 的最大特征值与特征向量max 3.002λ=(3)20.2360.682W ⎪= ⎪ ⎪⎝⎭判断矩阵3B 的最大特征值与特征向量max 3λ=(3)30.4290.429,0.142W ⎛⎫ ⎪= ⎪ ⎪⎝⎭判断矩阵4B 的最大特征值与特征向量max 3.009λ=(3)40.6330.193,0.175W ⎛⎫⎪= ⎪ ⎪⎝⎭判断矩阵5B 的最大特征值与特征向量max 3λ=(3)50.1660.166.0.668W ⎛⎫ ⎪= ⎪ ⎪⎝⎭4.一致性检验对于判断矩阵A 进行一致性检验:max 5.07350.01825151nCI n λ--===--查表知平均随机一致性指标RI,从而可检验矩阵一致性:0.018250.0162950.11.12CI CR RI ===< 同理,对于第二层次的景色、费用、居住、饮食、旅途五个判断矩阵的一致性检验均通过;利用层次结构图绘出从目标层到方案层的计算结果:5.层次总排序各个方案优先程度的排序向量为:(3)(2)W W W =0.5950.0820.4290.6330.1660.3000.4750.2770.2360.4290.1930.1660.2460.0550.1290.6820.1420.1750.6680.4560.0990.110 ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭决策结果是首选旅游地为3P 其次为1P ,最后为2P ; 五优点与缺点人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统;层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法;在应用层次分析法研究问题时,遇到的主要困难有两个: i 如何根据实际情况抽象出较为贴切的层次结构;ii 如何将某些定性的量作比较接近实际定量化处理;层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据;但层次分析法也有其局限性,主要表现在:i 它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性;ii 当指标量过多时,对于数据的统计量过大,此时的权重难以确定;AHP 至多只能算是一种半定量或定性与定量结合的方法;三、熵值法一熵值法的原理在信息论中,熵是对不确定性的一种度量;信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大;根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大; 二算法实现过程 1.数据矩阵m n nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛=1111其中ij X 为第i 个方案第j 个指标的数值; 2. 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理;此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:mj n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越小越好的指标:mj n i X X X X X X X X X X X nj j j nj j j ijnj j j ij,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了方便起见,仍记非负化处理后的数据为ij X 3.计算第j 项指标下第i 个方案占该指标的比重),2,1(1m j XX P ni ijijij ==∑=4.计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,与样本数。
多指标综合评价方法及权重系数的选择在许多决策问题中,单一指标所反映的情况可能并不全面,而且往往存在各种指标之间的相互关系。
在这种情况下,就需要采用多指标综合评价方法来对决策对象进行全面地评估。
本篇文章将从多指标综合评价方法的选择和权重系数的确定两个方面进行阐述。
一、多指标综合评价方法的选择1.加权线性组合法(WLC):加权线性组合法是常用的一种多指标综合评价方法。
它通过给各个指标赋予一定的权重,并且将各指标得分与其权重进行加权求和,从而得到综合评价值。
这种方法简单易行,但存在权重主观性强的缺点。
2.层次分析法(AHP):层次分析法是一种基于专家判断的多指标综合评价方法。
它通过构建判断矩阵,由专家对各指标两两之间的重要性进行判断,并利用特征向量法求解最大特征值,从而确定权重。
该方法的优点是能够从专家的角度综合考虑各指标之间的关系,但需要依赖专家判断,且计算过程相对复杂。
3.熵权法:熵权法是一种基于信息理论的多指标综合评价方法。
该方法通过计算各指标的熵值,衡量指标的随机性和不确定性,进而确定权重。
该方法基于严格的数学理论,具有较好的客观性,但对于指标的分布和取值范围要求较高。
权重系数的选择是多指标综合评价的关键环节,直接影响到最终评价结果的准确性和可靠性。
常用的权重系数确定方法有主观赋值法、客观赋值法和组合赋值法。
1.主观赋值法:主观赋值法是依靠决策者主观判断来确定权重系数的方法。
这种方法简单易行,适用于较为简单的问题,但容易受到决策者主观偏见的影响。
2.客观赋值法:客观赋值法是通过其中一种统计方法或专家评价来确定权重系数的方法。
比如,可以通过问卷调查、专家访谈等方式收集数据,运用统计方法进行分析,最终确定权重系数。
这种方法相对客观一些,但需要投入较大的时间和精力。
3.组合赋值法:组合赋值法是综合考虑主观和客观因素来确定权重系数的方法。
可以采用主客观权重相结合的方式,将决策者的主观判断与实际数据结合起来进行权重系数的确定,以提高评价的准确性和可靠性。
数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。
指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。
而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。
在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。
1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。
这类方法中,非常具有代表性的就是层次分析法。
另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。
评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。
在这类方法中,应用比较广泛的有变异系数法和熵值法。
2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。
在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。
比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。