中考数学试卷精选合辑补充52之3自主招生考试数学试题及参考答案
- 格式:doc
- 大小:374.50 KB
- 文档页数:7
2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。
1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。
2023年温州中学自主招生数学试题2023.4一试一、选择题:本大题共8题,每题4分,共32分.在每题给出旳旳四个选项中,只有一项是符合题目规定旳.1.已知b a >,则下列结论对旳旳是 ( ) A. 22b a > B. 33a b > C.b a 11< D. 1>ba2.用黑白两种颜色旳正六边形地面砖拼成若干个图案,规律如下图所示,则第2010个图案中,白色地面砖旳块数是A .8042ﻩB .8038ﻩﻩC .4024 ﻩﻩD.60333.有关x 旳整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( )A.方程没有整数根 B .方程有两个相等旳整数根 C .方程有两个不相等旳整数根 D .不能鉴定方程整数根旳状况 4.如图所示,一种33⨯旳方格中,每一行,每一列,及每一对角线上旳三个数之和都相等,则x 旳值是( )A.6 B.7 C.8 D.95.若10010321⨯+⨯+=a a a x ,10010654⨯+⨯+=a a a y 且736=+y x ,其中正整数79 x6i a 满足71≤≤i a ,)6,5,4,3,2,1(=i ,则在坐标平面上),(y x 表达不一样旳点旳个数为( )ﻩﻩA.60ﻩ B.90ﻩ C.110ﻩ D.1206.气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报旳精确率仅为80%,则在此经验下,本市明天降水旳概率为( )A.84% B.80% C.68% D.64% 7.设nnM 1723⨯+=,其中n 为正整数,则下列结论对旳旳是( ) A .有且仅有一种n ,使得M 为完全平方数 B.存在多于一种旳有限个n ,使得M 为完全平方数 C.存在无数个n ,使得M 为完全平方数 D.不存在n ,使得M 为完全平方数8.已知点A 、B 分别在x 轴正半轴、y 轴正半轴上移动,4AB =,则认为AB 直径旳圆.周.所扫过旳区域面积为( ) A.π4 B. π8 C. 42+π D . 46+π 二、填空题:本大题共6小题,每题5分,共30分. 9.若有关x 旳方程51122m x x ++=--无解,则______m =10.在Rt △ABC 中,C 为直角顶点,过点C 作AB 旳垂线,垂足为D,若A C、B C为方程0262=+-x x 旳两根,则AD ·BD 旳值等于11.我们规定[]x 表达不超过x 旳最大整数,如:[ 2.1]3-=-,[3]3-=-,[2.2]2=。
一、填空题:本题共15小题,共702023-2024学年广东省深圳中学自主招生数学试卷分。
1.计算:______.2.计算:______.3.已知,且,设,其中m 和n 是两个互质的正整数,则______.4.已知实数x ,y 满足,则______.5.如图,已知中,,D 是AB 的中点,,则______.6.若反比例函数的图象与一次函数的图象交于点和,则______.7.定义新运算:,例如:已知实数x 满足,则x 的最大值是______.8.如图,已知直线RS ,ST ,TR 都与相切,且,,,,的直径为,其中a 和b 都是有理数,则______.9.在平面直角坐标系中,由抛物线与x 轴所围出的区域内有______个整点横纵坐标都是整数的点边界上的点不计10.满足的全部实数x 的乘积等于______.11.如图所示为地板所铺瓷砖的一小部分.所有的瓷砖都是正方形,最小的正方形瓷砖是,次小的则是若以线段XY 为边长作正方形,则该正方形的面积为______12.已知三个非零实数x、y、z满足,则的值等于______.13.如图,在矩形ABCD中,,,若在AC,AB上各取一点M,N使的值最小,则这个最小值等于______.14.若正整数a、b、m满足且,则m的所有值之和等于______.15.一个的矩形ABCD,点P、Q、R、S分别为在AB、BC、CD、DA边上的点,如图所示.已知AP、PB、BQ、QC、CR、RD、DS、SA的长度都是正整数单位长,且PQRS为矩形,则矩形PQRS的面积的最大值是______.答案和解析1.【答案】308【解析】解:原式故答案为:分子、分母同时乘上和,再计算即可求解.本题考查了分母有理化,灵活运用二次根式的性质、掌握分母有理化的方法是解答本题的关键.2.【答案】972【解析】解:原式故答案为:根据特殊角的三角函数值、积的乘方法则计算即可.本题考查了实数的运算和特殊角的三角函数值,熟练掌握运算法则是关键.3.【答案】196【解析】解:解方程组,得,则,和n是两个互质的正整数,,,,故答案为:解方程组用含z的代数式表示出x、y,代入计算求出,根据质数的概念分别求出m、n,计算即可.本题考查的是质数和合数的概念、三元一次方程组的解法,正确由z表示出x、y是解题的关键.4.【答案】【解析】解:设,,原方程组可化为,由①可得:③,把③代入②可得:,解得:,把代入③得:,,,,,经检验,都是原方程的解.故答案为:根据换元法求出与的值,然后求出x和y的值,最后代入代数式求值.本题主要考查了分式方程的知识、换元法的知识、代数式求值的知识、二元一次方程的知识,难度不大,认真计算即可.5.【答案】40【解析】解:过B点作交AC的延长线于点E,,,,,为等腰直角三角形,AC::DB,,,为AB的中点,,在中,,,,解得,故答案为:过B点作交AC的延长线于点E,可证明为等腰直角三角形,,再利用勾股定理可得,结合平行线分线段成比例定理可得,根据勾股定理可求解,进而可求解本题主要考查等腰直角三角形,勾股定理,平行线分线段成比例定理等知识的综合运用,利用更改的求解是解题的关键.6.【答案】625【解析】解:将点和分别代入,得:,再将点和分别代入,得:,,,,故答案为:首先将点A,B代入反比例函数的解析式得,再将点A,b代入一次函数的解析式得,,据此可得,然后再将代入求值的代数式即可得出代数式的值.此题主要考查了的反比例函数与一次函数的交点,解答此题的关键是理解函数图象上的点都满足函数的解析式,满足函数解析式的点都在函数的图象上.7.【答案】4【解析】解:,,,,,,的最大值是故答案为:由新定义列出算式解方程即可.本题考查了解一元二次方程,新定义,解题的关键是由新定义列出算式.8.【答案】330【解析】解:如图,设直线RS,ST,TR都与相切于点A、点B、点C,则,,在中,,,,,连接OA、OB,则,,,,四边形OASB是正方形,,设,则,,,即,,,直径为,的直径为,即,,,故答案为:根据切线的性质,切线长定理以及正方形的性质进行计算即可.本题考查切线的性质,正方形的性质,掌握切线长定理以及正方形的性质是正确解答的前提9.【答案】14【解析】解:抛物线,令,即,解得从图中可以看出,抛物线与x轴所围出的区域内的整点有,,,,,,,,,,,,,故答案为:根据抛物线求出与x轴的交点,再利用图象找到整点即可.本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上点的坐标特征.10.【答案】594【解析】解:当时,原式化简为:,,算式不成立;当时,原式化简为:,,;当时,原式化简为:,,;当时,原式化简为:,,;当时,原式化简为:,,算式不成立,故答案为:分情况计利用方程解出x的值,再将x的值相乘即可.本题考查了方程的解答,绝对值的性质的应用是解题关键.11.【答案】400【解析】解:如图:图中的四边形均为正方形,且最小正方形的边长为1cm,次小正方形的边长为3cm,,则,,,,,,,在中,,,由勾股定理得:,以线段XY为边长作正方形,则该正方形的面积为故答案为:依题意得,则,,进而得,,,由此得,,然后在中由勾股定理得,据此可得出答案.此题主要考查了正方形的性质,勾股定理,解答此题的关键是准确识图,根据正方形的性质求出相关线段的长.12.【答案】600【解析】解:,,,,,,,故答案为:先化简得到,代入得到结论即可.本题考查了分式的化简求值,实数的运算,正确地求得是解题的关键.13.【答案】16【解析】解:如图,作点B关于直线AC的对称点,交AC与E,连接,过作于G,交AC于F,由对称性可知,,,的最小值为的长;在中,,,由勾股定理,得,点B与点关于AC对称,,,,,,,又,∽,,,的最小值是故答案为:作点B关于直线AC的对称点,交AC与E,连接,过作于G于点F,再由对称性可知,因此求出的长即可.本题考查轴对称-最短路线问题,矩形的性质,勾股定理,相似三角形的判定与性质,面积法,根据题意作出辅助线是解题的关键.14.【答案】27【解析】解:①,②,①②,得,因式分解,得,,b均为正整数,且或,,或,,,或,或,或,的所有值之和等于第11页,共11页故答案为:根据已知条件①,②得到,因式分解得到,由于a ,b 均为正整数,于是得到或,求得,或,根据求得或,即可求得m 的所有值之和等于本题考查了因式分解的应用,正确的理解题意得到是解题的关键.15.【答案】150【解析】解:根据题意:设,,,,由∽,则,,又因为a ,b 是正整数,故,24,33,40,45,48,49,得,15,则或9,即有,,,,,,150,150,102,即:故答案为:如图,根据矩形的性质,可知∽,得到a ,b 的关系式,再由题意a ,b 是正整数,得到的的整数解,从而求出矩形PQRS 的面积,取最大值.本题主要考查了矩形的基本性质,相似三角形的判定和性质,求二元方程组的整数解及三角形的面积等知识的运用,是一个综合性较强的题目,在图形中找出相似三角形是解题的关键.。
自主招生数学试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(自主招生数学试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为自主招生数学试题及答案的全部内容。
2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数a ,关于x 的方程0222=+--b a ax x 都有实数根,则实数b 的取值范围是( )A b ≤0B b ≤21-C b ≤81- D b ≤—12、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。
已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m,则电线杆的高(AB)是( ) A .)344(+m B .)434(-m C .)326(+m D .12m4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点. A .53B .12C .43D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数xy 2-=的图象上有一动点A,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数xk y =的图 象上运动,若tan ∠CAB=2,则k 的值为( )A 。
自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。
A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。
A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。
6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。
7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。
8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。
三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。
10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。
求工厂的盈亏平衡点。
答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。
学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。
1. 已知一个数x满足x²-2x+1=0,则x的值为()A. 1B. 2C. 0D. -12. 在等差数列{an}中,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 303. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 84. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积为()A. 40B. 50C. 60D. 805. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(-4,3)二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3n²-2n+1,则a4的值为______。
7. 在等差数列{an}中,若a1=1,公差d=2,则第10项an的值为______。
8. 已知直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB的长度为______。
9. 在等腰三角形ABC中,底边AB=8,腰AC=10,则该三角形的面积为______。
10. 在平面直角坐标系中,点P(-2,3)关于直线y=-x的对称点为______。
三、解答题(每题10分,共40分)11. (10分)已知数列{an}的通项公式为an=2n+1,求该数列的前10项之和。
12. (10分)已知等差数列{an}的公差d=3,若a1+a4+a7=27,求该数列的前10项之和。
13. (10分)在直角三角形ABC中,∠C=90°,AC=6,BC=8,求斜边AB的长度。
14. (10分)在等腰三角形ABC中,底边AB=10,腰AC=12,求该三角形的面积。
15. (10分)在平面直角坐标系中,点P(2,-3)关于直线y=x的对称点为Q,求点Q的坐标。
年河南省普通高中自主招生数学试卷(月份)一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).﹣的相反数是().﹣...﹣.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为().×.×.×.×.如图所示的几何体的主视图是().....在下列的计算中,正确的是().=.÷=.()=.()=.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组数据的众数是().....《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金枚(每枚黄金重量相同),乙袋中装有白银枚(每枚白银重量相同),称重两袋相等.两袋互相交换枚后,甲袋比乙袋轻了两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重两,根据题意得().....若关于的方程﹣=有两个不相等的实数根,则满足条件的最小整数的值是().﹣....如图,将一副三角板叠放在一起,使直角的顶点重合于点,∥,与交于点,则∠的度数为().°.°.°.°.如图.在直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为(,),将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为().....如图,在△中,∠=°,∠=°,点,分别为边,上的点,且∥,==,=,=.动点从点出发,以每秒个单位长度的速度沿→→→匀速运动,运动到点时停止.过点作⊥于点,设△的面积为,点的运动时间为,则关于的函数图象大致为()....二、填空题(本大题共小题,每小题分,共分).计算:=..将抛物线=﹣先向左平移个单位.再向下平移个单位,可以得到新的抛物线是:.在一个不透明的纸箱里装有个红球、个黄球、个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出个球,记下颜色后放回,再由小亮随机摸出个球,则两人摸到的球颜色不同的概率为..如图,在▱中,以点为圆心,的长为半径的圆恰好与相切于点,交于点,延长与⊙相交于点.若的长为,则图中阴影部分的面积为..如图,矩形中,=,=,点为中点,点为线段上一个动点,连接,将△沿折叠得到△,连接,,当△为直角三角形时,的长为.三、解答题(本大题共小题,共分.解答应写出文字说明、证明过程或演算步骤).先化简,再求值:()(﹣)()﹣(﹣),其中=,=﹣..为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()学校这次调查共抽取了名学生;()补全条形统计图;()在扇形统计图中,“戏曲”所在扇形的圆心角度数为;()设该校共有学生名,请你估计该校有多少名学生喜欢书法?.如图所示,半圆的直径=,=,⊥于,⊥于,连接,,.()求证:△≌△;()当=时,四边形是菱形;()当=时,四边形是正方形..某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点处,测得河的南岸边点处在其南偏东°方向,然后向北走米到达点处,测得点在点的南偏东°方向,求出这段河的宽度.(结果精确到米,参考数据:°=,°≈,°=,≈).如图,反比例函数=(>)的图象过格点(网格线的交点).()求反比例函数的解析式;()在图中用直尺和铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点,点;②矩形的面积等于的值..小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午:﹣:,下午:﹣:,每月工作天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得元,每生产一件乙种产品得元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为元,请根据以上信息,解答下列问题:()小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;()年月工厂要求小王生产甲种产品的件数不少于件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?.问题:如图①,在△中,=,为边上一点(不与点,重合),将线段绕点逆时针旋转°得到,连接,则线段,,之间满足的等量关系式为;探索:如图②,在△与△中,=,=,将△绕点旋转,使点落在边上,试探索线段,,之间满足的等量关系,并证明你的结论;应用:如图③,在四边形中,∠=∠=∠=°.若=,=,求的长..如图,在平面直角坐标系中,抛物线=与轴交于(﹣,),(,)两点,与轴交于点,点是该抛物线的顶点.()求抛物线的解析式和直线的解析式;()请在轴上找一点,使△的周长最小,求出点的坐标;()试探究:在拋物线上是否存在点,使以点,,为顶点,为直角边的三角形是直角三角形?若存在,请求出符合条件的点的坐标;若不存在,请说明理由.年河南省普通高中自主招生数学试卷(月份)参考答案与试题解析一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).﹣的相反数是().﹣...﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣的相反数是,故选:.【点评】此题主要考查了相反数,关键是掌握相反数的定义..“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为().×.×.×.×【分析】科学记数法的表示形式为×的形式,其中≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>时,是正数;当原数的绝对值<时,是负数.【解答】解:将用科学记数法表示为:×.故选:.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为×的形式,其中≤<,为整数,表示时关键要正确确定的值以及的值..如图所示的几何体的主视图是()....【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图..在下列的计算中,正确的是().=.÷=.()=.()=【分析】各项计算得到结果,即可作出判断.【解答】解:、原式不能合并,不符合题意;、原式=,符合题意;、原式=,不符合题意;、原式=,不符合题意,故选:.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键..在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组数据的众数是()....【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据出现了两次,次数最多,所以这组数据的众数是.故选:.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个..《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金枚(每枚黄金重量相同),乙袋中装有白银枚(每枚白银重量相同),称重两袋相等.两袋互相交换枚后,甲袋比乙袋轻了两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重两,根据题意得()....【分析】根据题意可得等量关系:①枚黄金的重量=枚白银的重量;②(枚白银的重量枚黄金的重量)﹣(枚白银的重量枚黄金的重量)=两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重两,每枚白银重两,由题意得:,故选:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系..若关于的方程﹣=有两个不相等的实数根,则满足条件的最小整数的值是().﹣...【分析】根据根的判别式即可求出的范围.【解答】解:由题意可知:△>,∴﹣(﹣)>,解得:>故满足条件的最小整数的值是,故选:.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型..如图,将一副三角板叠放在一起,使直角的顶点重合于点,∥,与交于点,则∠的度数为().°.°.°.°【分析】由平行线的性质求出∠=°,再求出∠=°,然后根据三角形的外角性质即可得出结论.【解答】解:∵∥,∠=°,∴∠∠=°,∴∠=°,∴∠=°﹣°=°,∴∠=∠∠=°°=°;故选:.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键..如图.在直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为(,),将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()....【分析】如图,过作⊥于,根据折叠可以证明△≌△,然后利用全等三角形的性质得到=,==,设=,那么=﹣,=,利用勾股定理即可求出的长度,而利用已知条件可以证明△∽△,而==,接着利用相似三角形的性质即可求出、的长度,也就求出了的坐标.【解答】解:如图,过作⊥于,∵点的坐标为(,),∴=,=,根据折叠可知:=,而∠=∠=°,∠=∠,∴△≌△,∴=,==,设=,那么=﹣,=,∴在△中,=,∴(﹣)=,∴=,又⊥,∴∥,∴△∽△,而==,∴==﹣=,∴,即,∴=,=,∴=﹣=,∴的坐标为(﹣,).故选:.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题..如图,在△中,∠=°,∠=°,点,分别为边,上的点,且∥,==,=,=.动点从点出发,以每秒个单位长度的速度沿→→→匀速运动,运动到点时停止.过点作⊥于点,设△的面积为,点的运动时间为,则关于的函数图象大致为()....【分析】根据题意易知道当在上由向运动时,△的高和底都随着的增大而增大,那么△就是和两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当在上有向运动时,高不变,底随着的增大而增大,则△是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当在上由向运动时高逐渐减小,底逐渐增大,△的图象会是一二次函数,再根据和两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵⊥∴在、运动过程中△始终是直角三角形.=•∴△①当点在上,在上时(即≤≤)=,=•°=,=•°==•=••=△此时的图象是关于(≤≤)的二次函数.△∵>∴抛物线开口向上;②当在上,在上时(即<≤)=•°=×=,=•°(﹣)=﹣△=•=••(﹣)=﹣此时△的图象是关于(<≤)的一次函数.∵斜率>∴△随的增大而增大,直线由左向右依次上升.③当在上,在上时(即<≤)=[﹣(﹣)]•°=﹣(<≤),=﹣=﹣[﹣(﹣)]•°=﹣(﹣)=△=•由于展开二次项系数=•=•(﹣)•()=﹣抛物线开口向下, 故选:.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想. 二、填空题(本大题共小题,每小题分,共分).计算:=﹣ .【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值. 【解答】解:原式=﹣=﹣, 故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键..将抛物线=﹣先向左平移个单位.再向下平移个单位,可以得到新的抛物线是:=﹣﹣﹣ 【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线=﹣先向左平移个单位长度,再向下平移个单位长度, ∴新抛物线顶点坐标为(﹣,﹣),∴所得到的新的抛物线的解析式为=﹣()﹣, 即=﹣﹣﹣, 故答案为=﹣﹣﹣.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便..在一个不透明的纸箱里装有个红球、个黄球、个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出个球,记下颜色后放回,再由小亮随机摸出个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:由表格可知,共有种等可能的结果,其中两人摸到的球颜色不同的情况有种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出,再从中选出符合事件或的结果数目,然后根据概率公式求出事件或的概率..如图,在▱中,以点为圆心,的长为半径的圆恰好与相切于点,交于点,延长与⊙相交于点.若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△的面积﹣扇形的面积,然后按各图形的面积公式计算即可.【解答】解:连接,∵是⊙的切线,∴⊥,又∵==,∴△是等腰直角三角形, ∴∠=°,又∵四边形是平行四边形, ∴∥, ∴∠=∠=°, 又∵=, ∴∠=∠=°, ∴∠=∠=°,∵的长为,∴,解得:=,∴阴影=△﹣扇形=.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差..如图,矩形中,=,=,点为中点,点为线段上一个动点,连接,将△沿折叠得到△,连接,,当△为直角三角形时,的长为或 .【分析】分两种情况进行讨论:当∠=°时,△是直角三角形;当∠=°时,△是直角三角形,分别根据直角三角形的勾股定理列方程求解即可. 【解答】解:如图所示,当∠=°时,△是直角三角形,由折叠可得,∠=∠=°,==,∴∠=°,即点,,在一条直线上,在△和△中,,∴△≌△(),∴==,设==,则=﹣,=,在△中,=,即(﹣)=(),解得=,即=;如图所示,当∠=°时,△是直角三角形,过作⊥于,作⊥于,则∠=∠=°,又∵∠∠=°=∠∠,∴∠=∠,∴△∽△,∴==,即==,解得=,=,∴==,=,设==,则=﹣,∵△中,=,即(﹣)()=,解得=,即=.综上所述,的长为或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共小题,共分.解答应写出文字说明、证明过程或演算步骤).先化简,再求值:()(﹣)()﹣(﹣),其中=,=﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将、的值代入化简后的式子即可解答本题.【解答】解:()(﹣)()﹣(﹣)=﹣﹣﹣=,当=,=﹣时,原式=×()(﹣)=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法..为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()学校这次调查共抽取了名学生;()补全条形统计图;()在扇形统计图中,“戏曲”所在扇形的圆心角度数为°;()设该校共有学生名,请你估计该校有多少名学生喜欢书法?【分析】()用“戏曲”的人数除以其所占百分比可得;()用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;()用°乘以“戏曲”人数所占百分比即可得;()用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:()学校本次调查的学生人数为÷=名,故答案为:;()“民乐”的人数为×=人,补全图形如下:()在扇形统计图中,“戏曲”所在扇形的圆心角度数为°×=°,故答案为:°;()估计该校喜欢书法的学生人数为×=人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想..如图所示,半圆的直径=,=,⊥于,⊥于,连接,,.()求证:△≌△;()当=时,四边形是菱形;()当=时,四边形是正方形.【分析】()根据角平分线的性质,可得与的关系,根据圆周角定理,可得与的关系,根据,证明即可;()根据菱形的性质,可得与,与的关系,根据等边三角形的性质,得到∠的度数,根据正弦的定义计算即可;()根据圆周角定理,可得⊥,根据勾股定理,可得答案.【解答】()证明:∵=,∴∠=∠,又⊥于,⊥于,∴=,∵=,∴=,在△和△中,,∴△≌△();()四边形是菱形时,===,∴∠=°,∴=∠=°=,故答案为:;()当⊥,即与重合时,四边形是正方形,由勾股定理,得==,故答案为:.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键..某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点处,测得河的南岸边点处在其南偏东°方向,然后向北走米到达点处,测得点在点的南偏东°方向,求出这段河的宽度.(结果精确到米,参考数据:°=,°≈,°=,≈)【分析】延长交于点,得⊥,设=,得=米,=()米,根据=∠列方程求出的值即可得.【解答】解:如图,延长交于点,则⊥,由题意知,∠=°,∠=°,设=米,则=米,=()米,在△中,=∠,∴≈,解得≈,答:这段河的宽约为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键..如图,反比例函数=(>)的图象过格点(网格线的交点).()求反比例函数的解析式;()在图中用直尺和铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点,点;②矩形的面积等于的值.【分析】()将点坐标代入=,利用待定系数法即可求出反比例函数的解析式;()根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:()∵反比例函数=(>)的图象过格点(,),∴=×=,∴反比例函数的解析式为=;()如图所示:矩形、矩形即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键..小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午:﹣:,下午:﹣:,每月工作天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得元,每生产一件乙种产品得元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为元,请根据以上信息,解答下列问题:()小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;()年月工厂要求小王生产甲种产品的件数不少于件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】()设生产一件甲种产品需分,生产一件乙种产品需分,利用待定系数法求出,的值.()设生产甲种产品用分,则生产乙种产品用(××﹣)分,分别求出甲乙两种生产多少件产品.【解答】解:()设生产一件甲种产品需分,生产一件乙种产品需分.由题意得:,解这个方程组得:,答:生产一件甲产品需要分,生产一件乙产品需要分.()设生产甲种产品共用分,则生产乙种产品用(××﹣)分.则生产甲种产品件,生产乙种产品件.=××∴总额=×=﹣=﹣,又≥,得≥,由一次函数的增减性,当=时取得最大值,此时=﹣×=(元),则小王该月收入最多是=(元),此时甲有=(件),乙有:=(件),答:小王该月最多能得元,此时生产甲、乙两种产品分别,件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解..问题:如图①,在△中,=,为边上一点(不与点,重合),将线段绕点逆时针旋转°得到,连接,则线段,,之间满足的等量关系式为=;探索:如图②,在△与△中,=,=,将△绕点旋转,使点落在边上,试探索线段,,之间满足的等量关系,并证明你的结论;应用:如图③,在四边形中,∠=∠=∠=°.若=,=,求的长.【分析】()证明△≌△,根据全等三角形的性质解答;()连接,根据全等三角形的性质得到=,∠=∠,得到∠=°,根据勾股定理计算即可;()作⊥,使=,连接,,证明△≌△,得到==,根据勾股定理计算即可.【解答】解:()=,理由如下:∵∠=∠=°,∴∠﹣∠=∠﹣∠,即∠=∠,在△和△中,,∴△≌△,∴=,∴==,故答案为:=;()=,理由如下:连接,由()得,△≌△,∴=,∠=∠,∴∠=°,∴=,在△中,=,又=,∴=;()作⊥,使=,连接,,∵∠∠=∠∠,即∠=∠,在△与△中,,∴△≌△(),∴==,∵∠=°,∠=°,∴∠=°,∴==,∵∠=°,∴===.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键..如图,在平面直角坐标系中,抛物线=与轴交于(﹣,),(,)两点,与轴交于点,点是该抛物线的顶点.()求抛物线的解析式和直线的解析式;()请在轴上找一点,使△的周长最小,求出点的坐标;()试探究:在拋物线上是否存在点,使以点,,为顶点,为直角边的三角形是直角三角形?若存在,请求出符合条件的点的坐标;若不存在,请说明理由.【分析】()设交点式=()(﹣),展开得到﹣=,然后求出即可得到抛物线解析式;再确定(,),然后利用待定系数法求直线的解析式;()利用二次函数的性质确定的坐标为(,),作点关于轴的对称点′,连接′交轴于,如图,则′(﹣,),利用两点之间线段最短可判断此时的值最小,则此时△的周长最小,然后求出直线′的解析式即可得到点的坐标;()过点作的垂线交抛物线于另一点,如图,利用两直线垂直一次项系数互为负倒数设直线的解析式为=﹣,把点坐标代入求出得到直线的解析式为=﹣,再解方程组得此时点坐标;当过点作的垂线交抛物线于另一点时,利用同样的方法可求出此时点坐标.【解答】解:()设抛物线解析式为=()(﹣),即=﹣﹣,∴﹣=,解得=﹣,∴抛物线解析式为=﹣;当=时,=﹣=,则(,),设直线的解析式为=,把(﹣,),(,)代入得,解得,∴直线的解析式为=;()∵=﹣=﹣(﹣),∴顶点的坐标为(,),作点关于轴的对称点′,连接′交轴于,如图,则′(﹣,),∵=′,∴=′=′,此时的值最小,而的值不变,∴此时△的周长最小,易得直线′的解析式为=,当=时,==,∴点的坐标为(,);()存在.过点作的垂线交抛物线于另一点,如图,∵直线的解析式为=,∴直线的解析式可设为=﹣,把(,)代入得=,∴直线的解析式为=﹣,解方程组,解得或,则此时点坐标为(,);过点作的垂线交抛物线于另一点,直线的解析式可设为=﹣,把(﹣,)代入得=,解得=﹣,∴直线的解析式为=﹣﹣,解方程组,解得或,则此时点坐标为(,﹣),综上所述,符合条件的点的坐标为(,)或(,﹣),【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.。
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
AB QO xyA B CE FO第一中学自主招生考试数学试题一、选择题(本大题共8小题,每小题4分,满分32分)1. 若M =3x 2-8xy +9y 2-4x +6y +13(x ,,y 是实数),则M 的值一定是( ). (A ) 零 (B ) 负数 (C ) 正数 (D )整数2.已知sin α<cos α,那么锐角α的取值范围是 ( )(A )300 <α<450 (B ) 00 <α<450 (C ) 450 <α<600 (D ) 00 <α<900 3.已知实数a 满足2008a -2009a -a ,那么a -20082值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006 4.如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式b ca-的值等于( ). A .43-(B )6- (C )43(D )6 5.二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是 图象上的一点,且BQ AQ ⊥,则a 的值为( ).A .13- (B )12- (C )-1 (D )-26.矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合, 设折痕为EF ,则重叠部分△AEF 的面积等于( ).A .73757375...881616B C D7.若a b ct b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( )(A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限(D )第三、四象限8.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) (A ) 12(B ) 16(C ) 3(D ) 82 二、填空题(本大题共7小题,每小题4分,共28分)9.已知012=--x x ,那么代数式123+-x x 的值是_____.10.已知z y x ,,为实数,且3,5=++=++zx yz xy z y x ,则z 的取值范围为______. 11.已知点A (1,3),B (5,-2),在x 轴上找一点P ,使│AP -BP │最大,则满足条件的点P 的坐标是____________. 12.设,,,321x x x … ,2007x 为实数,且满足321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1,则2000x 的值是___________. 13.对于正数x ,规定f (x )= x1x+, 计算f (1001)+ f (991)+ f (981)+ …+ f (13)+ f (12)+ f (1)+ f (2)+ f (3)+…+f(98)+f(99)+f(100)=__________.BA C M NPEF Q DG 14.如果关于x 的方程()012122=++++a x a x 有一个小于1的正数根,那么实数a 的 取值范围是________.15.在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________.三、解答题:16. (本小题10分) 某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同.求:(1)这个相同的百分数;(2)2月份的销售额.17.(本小题13分)如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、 N 、P 、Q ,求证:MN +PQ =2PN .18.(本小题13分)如图,已知点P 是抛物线2114y x =+上的任意一点,记点P 到x 轴距离为1d ,点P 与点(0,2F )的距离为2d(1)证明1d =2d;(2)若直线PF 交此抛物线于另一点Q (异于P 点), 试判断以PQ 为直径的圆与x 轴的位置关系,并说明理由.19.(本小题14分)如图,已知∆ABC 中,AB =a ,点D 在AB 边上移动(点D 不与A 、B 重合),DE //BC ,交AC 于E ,连结CD .设S S S S ABC DEC ∆∆==,1. (1)当D 为AB 中点时,求S S 1:的值; (2)若AD x S Sy ==,1,求y 关于x 的函数关系式 及自变量x 的取值范围; (3)是否存在点D ,使得S S 114>成立? 若存在,求出D 点位置;若不存在,请说明理由.20.(本小题10分)已知42++=m m y ,若m 为整数,在使得y 为完全平方数的所有m 的值中,设m 的最大值为a ,最小值为b ,次小值为c .(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.) (1)求c b a 、、的值;(2)对c b a 、、22一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008?证明你的结论.答案一、选择题:CBAABDAB 二、填空题:9.2;103131≤≤-z ;11_(13,0)12. 1,或253±-;13.__9921;14. 211-<<-a15. _3<r ≤4或r =2.4三、解答题:16.(1)100(x +1)2=100(x +1)+24 . x =0.2 =20%.(2) 2月份的销售额:100×1.22=144万元. .17、延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点,∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD ,∴ DNANPN MN =.∵ AD ∥CE , ∴ DN CQ PN PQ =.∴ +PN MN =PN PQ DN AN DN CQ +=DN CQ AN +. 又 =OQ DN 31=OG DG ,∴ OQ =3DN . ∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN ,∴ +PN MN =PN PQ DNCQAN +=2,即 MN +PQ =2PN . 18.(1)证明:设点),(00y x P 是2114y x =+上的任意一点,则200104x y =+>,∴10d y =.由勾股定理得2d =PF =20044x y =-,∴201d y d ===.(2)解:①以PQ 为直径的圆与x 轴相切.取PQ 的中点M ,过点P 、M 、Q 作x 轴的垂线,垂足分别为'P 、C 、'Q , 由(1)知,','PP PF QQ QF ==,∴''PP QQ PF QF PQ +=+=. 而MC 是梯形''PQQ P 的中位线,∴MC =21(PP ’+QQ ’)=21(PF +QF )=21PQ . ∴以PQ 为直径的圆与x 轴相切. 19、解:(1) DE BC D AB //,为的中点,21==∆∆∴AC AE AB AD ABC ADE ,∽.∴==S S AD AB ADE ∆()214S S AE EC ADE ∆11==, ∴411=S S . (2) ∵ AD =x ,y SS =1,∴ x xa AD DB AE EC S S ADE -===△1. BACMN P EFQDGO又∵ 222ax AB AD S S ADE ==△⎪⎭⎫ ⎝⎛,∴ S △ADE =22a x ·S ∴ S 1=⎪⎭⎫ ⎝⎛-x x a 22axS ∴ 221a ax x S S +-=, 即y =-x a21+x a 1自变量x 的取值范围是:0<x <a .(3)不存在点D ,使得S S 114>成立. 理由:假设存在点D ,使得S S 114>成立,那么S S y 11414>>,即. ∴-21ax 2+a 1x >41,∴(a 1x -21)2<0 ∵(a 1x -21)2≥ ∴x 不存在,即不存在点D ,使得S S 114>成立.20.(1)设224k m m =++(k 为非负整数),则有0422=-++k m m ,由m 为整数知其△为完全平方数(也可以由△的公式直接推出), 即22)4(41p k =--(p 为非负整数),得,15)2)(2(=-+p k p k 显然:p k p k ->+22,所以21521k p k p +=-=⎧⎨⎩或2523k p k p +=-=⎧⎨⎩,解得7=p 或1=p ,所以12p m -±=,得:1,0,4,34321-==-==m m m m ,所以1,4,3-=-==c b a .(2)因为222222a b a b c a b c ++=+++-,即操作前后,这三个数的平方和不变, 而2223(4)(1)2008+-+-≠.所以,对c b a 、、进行若干次操作后,不能得到2008.(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。