水力学课件最终版 (10)
- 格式:ppt
- 大小:7.16 MB
- 文档页数:87
水力学课件1.引言水力学是研究流体静力学和流体动力学的科学,主要研究液体在力的作用下的运动规律和液体与固体边界的相互作用。
水力学广泛应用于水利工程、海洋工程、环境工程、地质工程等领域。
本课件旨在介绍水力学的基本原理、方法和应用,为读者提供水力学的系统学习和研究。
2.流体静力学流体静力学主要研究在静止的流体中,流体粒子所受的力以及流体粒子之间的相互作用。
流体静力学的核心内容是压强、液体的浮力和静力平衡。
2.1压强压强是单位面积上所受到的力的大小,其计算公式为p=F/A,其中p表示压强,F表示作用在面积A上的力。
在液体中,压强随深度的增加而增大,其关系式为p=ρgh,其中ρ表示液体的密度,g 表示重力加速度,h表示液体的深度。
2.2浮力浮力是指液体对浸入其中的物体所产生的向上的力。
浮力的大小等于物体所排开液体的重量,其计算公式为F_b=ρVg,其中F_b 表示浮力,ρ表示液体的密度,V表示物体排开液体的体积,g表示重力加速度。
2.3静力平衡静力平衡是指在静止的流体中,作用在流体上的各个力相互平衡,使流体保持静止状态。
静力平衡的条件是作用在流体上的各个力的合力为零,即∑F=0。
3.流体动力学流体动力学主要研究在力的作用下,流体的运动规律以及流体与固体边界的相互作用。
流体动力学的核心内容是流体的流动、伯努利方程和流体的阻力。
3.1流体的流动流体的流动可以分为层流和湍流两种类型。
层流是指流体以平行层的形式流动,流体粒子之间的相互作用力较小,流动速度分布均匀。
湍流是指流体粒子之间的相互作用力较大,流体粒子呈无序运动,流动速度分布不均匀。
3.2伯努利方程伯努利方程是描述在不可压缩、稳定流动的流体中,流体的总能量守恒的方程。
伯努利方程的表达式为p+1/2ρv^2+ρgh=常数,其中p表示流体的压强,ρ表示流体的密度,v表示流体的速度,h表示流体的位置高度,常数表示流体的总能量。
3.3流体的阻力流体的阻力是指流体在流动过程中,由于与固体边界的相互作用而产生的阻碍流体运动的力。
01水力学基本概念与原理Chapter水力学定义及研究对象水力学的定义研究对象液体性质与分类液体的性质液体的分类静压力与动压力概念静压力动压力指液体在运动状态下,由于流体的动能而产生的压力。
动压力的大小与流体的速度、密度以及流动状态有关。
连续性方程与伯努利方程连续性方程伯努利方程02流体静力学分析Chapter静止液体中压强分布规律压强随深度增加而增大在静止液体中,压强随深度的增加而线性增大,符合帕斯卡定律。
等压面概念在连通器内,同一深度各点的压强相等,这些点构成的面称为等压面。
压强计算静止液体中某点的压强可通过液体密度、重力加速度和该点距液面的垂直距离计算得出。
表面张力作用浸润与不浸润现象毛细现象030201液体相对平衡时表面形状确定浮力与沉浮条件分析阿基米德原理沉浮条件密度与浮沉关系潜水艇、气球等应用实例潜水艇工作原理气球升空原理03流体动力学基础Chapter恒定总流能量方程及其意义恒定总流能量方程是描述流体在管道中流动时,各种能量之间转换关系的方程。
该方程表明,在不可压缩流体恒定流动的情况下,流体的位能、压能、动能之间可以相互转换,但总能量保持不变。
恒定总流能量方程的意义该方程是水力学中最基本的方程之一,对于理解和分析管道中水流运动特性具有重要意义。
通过该方程,可以计算出水流在管道中的流速、流量、水位等参数,为工程设计提供理论依据。
非恒定总流能量方程简介非恒定总流能量方程是描述流体在非恒定流动情况下,各种能量之间转换关系的方程。
与恒定总流能量方程相比,非恒定总流能量方程考虑了时间因素对流体运动的影响。
非恒定总流能量方程的应用该方程适用于分析水库放水、河流洪水演进、潮汐河口的水流运动等非恒定流动问题。
通过该方程,可以预测水流在不同时间点的运动状态,为防洪、水资源调度等提供决策支持。
沿程损失和局部损失计算方法沿程损失局部损失管道中水流运动特性分析管道水流运动类型管道水流运动特性04明渠均匀流与非均匀流计算Chapter$v = Csqrt{RJ}$,其中$v$为流速,$C$为谢才系数,$R$为水力半径,$J$为水面比降。
水力学全套课件contents •引言•水静力学•水动力学基础•水流阻力与水头损失•有压管道中的恒定流•明渠恒定流•堰流与闸孔出流目录引言水力学概述水力学的定义研究液体(主要是水)的平衡和机械运动规律及其应用的科学。
水力学的重要性在水利、能源、交通、环保等领域有广泛应用,对于国民经济和社会发展具有重要意义。
水力学与其他学科的关系与流体力学、水文学、水利工程学等学科密切相关,相互促进、共同发展。
水力学的研究对象和任务研究对象01研究任务02实际应用03发展历史现状发展趋势030201水力学的发展历史与现状课程内容及学习方法课程内容学习方法水静力学静水压强及其特性静水压强的特性静水压强的定义静水压强具有方向性,垂直于受压面并指向该面;在同一点上,静水压强的大小与受压面的方位无关。
压强的表示方法1 2 3液体平衡微分方程的概念液体平衡微分方程的建立液体平衡微分方程的应用液体平衡微分方程重力作用下液体平衡重力作用下液体平衡的概念等压面的概念重力作用下液体平衡的应用液体的相对平衡液体的相对平衡的概念液体相对平衡的原理液体相对平衡的应用液体作用在平面上的总压力的概念总压力的计算方法总压力的应用液体作用在曲面上的总压力的概念01总压力的计算方法02总压力的应用03水动力学基础描述液体运动的方法宏观描述微观描述欧拉法与拉格朗日法欧拉法拉格朗日法以流体质点为研究对象,追踪流体质点的运动轨迹,考察其在运动过程中各物理量的变化规律。
流场流线迹线流管液体运动的基本概念连续性方程实质质量守恒定律在流体力学中的具体表述。
意义反映了流体运动在空间上的连续性,即流体不可能在某一区域内突然消失或出现。
应用用于求解流体的密度、速度等物理量在空间和时间上的变化规律。
伯努利方程及其应用实质意义应用动量方程及其应用实质意义应用水流阻力与水头损失由于水流与固体边界之间的摩擦而产生的阻力,其大小与水流速度、边界粗糙度等因素有关。
摩擦阻力形状阻力兴波阻力涡流阻力由于物体形状对水流的阻碍而产生的阻力,与物体的形状、尺寸和在水流中的位置有关。
第10章渗流§10.1 概述102§10.2 渗流的达西定律§10.3 地下水的渐变渗流§10.4 井和井群10§10.5 渗流对建筑物安全稳定的影响一、渗流(seepage flow)概述1 定义:流体在孔隙介质中的流动流体→水地下水流动(地下水流)多孔介质→土壤、岩石2 应用2应用1) 生产建设部门:如水利、石油、采矿、化工等部门。
2)2) 土木工程地下水源开发、降低地下水位、防止建筑物地基发生渗流变形二、水在土中的状态气态水:以蒸汽状态散逸于土壤孔隙中,数量极少,不需考虑。
附着水:以最薄的分子层吸附在土壤颗粒表面,呈固态水的性质,数量很少。
薄膜水:以厚度不超过分子作用半径的薄层包围土壤颗粒,性质与液态水近似,数量很少。
毛细水:因毛细管作用保持在土壤孔隙中,除特殊情况外,因毛细管作用保持在土壤孔隙中除特殊情外一般也可忽略。
重力水:在重力作用下在土壤孔隙中运动的那部分水,是渗在重力作用下在土壤孔隙中运动的那部分水是流理论研究的对象。
三、渗流模型忽略土壤颗粒的存在,认为水充满整个渗流空间且满足:1)对同一过水断面,(对同一过水断面模型的渗流量等于真实的渗流量。
(2)作用于模型任意面积的渗流压强应面积上的渗流压强,应等于真实渗流压强。
(3)模型任意体积内所受的阻力等于同体积真实渗流所受的阻力。
“取走”实际存在的土壤骨架,“代之”以连续水流。
QΔ渗流平均流速意义:1、渗流简化模型将渗流作为连续空间内连续义介质的运动,使得前面基于连续介质建立起来的描述流体运动的方法和概念,能直接应用于渗流中。
2、渗流的速度很小,流速水头忽略不计。
过流断面的总水头等于测压管水头。
四、渗流的分类★渗流空间点运动要素是否随时间变化恒定渗流※非恒定渗流★运动要素与坐标关系一元渗流(渗流地层广阔)※二元、三元渗流元元渗流★流线是否平行直线均匀渗流※非均匀渗流渐变渗流※渐变渗流急变渗流★有无自由水面有压渗流无压渗流※∵渗流在孔隙介质中流动—>有阻力—>能量损失~1855法国工程师达西(Darcy)通过大量实18521855法国工程师达西(D)通过大量实验研究,总结出渗流能量损失与渗流速度之间的基本关系,后人称之为达西定律——渗流理论中最基本最要的关系式最基本最重要的关系式。