最全二次函数中的面积问题(中考数学必考题型)
- 格式:docx
- 大小:312.81 KB
- 文档页数:6
专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。
有时也要根据题目的动点问题产生解的不确定性或多样性。
解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2022•青海)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△P AB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.(请在图2中探讨)【例2】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.【例3】(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【例4】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.1.(2022•金坛区二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx﹣2的图象与x轴交于点A (3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD.(1)填空:b=;(2)将△AOC平移到△EFG(点E,F,G依次与A,O,C对应),若点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T.若∠CPT+∠DAC=180°,求△AHT与△CPT的面积之比.2.(2022•罗城县模拟)如图,已知抛物线y=ax2+b经过点A(2,6),B(﹣4,0),其中E、F(m,n)为抛物线上的两个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当﹣4<x<2且S△ABC最大时,求点C的坐标;(3)若EF∥x轴,点A到EF的距离大于8个单位长度,求m的取值范围.3.(2022•老河口市模拟)在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S 关于m的函数关系式;②S的最小值及S取最小值时m的值.4.(2022•新吴区二模)如图,已知抛物线y=+bx过点A(﹣4,0)、顶点为B,一次函数y=x+2的图象交y轴于M,对称轴与x轴交于点H.(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N.①若点N恰好落在抛物线的对称轴上,求点N的坐标;②请直接写出△MHN面积的最大值.5.(2022•开福区校级二模)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)如图①,若a=2,点D在抛物线的对称轴上,DB=DC,求△BCD与△ACO的周长之比;(3)如图②,若a=3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.6.(2022•官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线.(1)如图1,若点C坐标为(0,2),则b=,c=;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MN∥CD别交抛物线于点M,N,当MN=3CD时,求c 的值.7.(2022•徐州二模)如图,四边形ABCD中,已知AB∥CD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线AD﹣DC﹣CB运动点B停止,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,已知y与x之间函数关系如图②,其中MN为线段,曲线OM,NK为抛物线的一部分,根据图中信息,解答下列问题:(1)图①AB=,BC=;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,△APQ的面积为6?8.(2022•茌平区一模)如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△P AD的面积有最大值还是最小值,并求出此时点P的坐标.(3)连接OD,在(2)的条件下,求出的值.9.(2022•碑林区校级模拟)抛物线W1:y=a(x+)2﹣与x轴交于A(﹣5,0)和点B.(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点M(﹣1,0)对称后得到抛物线W2,点A、B的对应点分别为A',B',抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得S△P A′B′=S△P A'C,若存在,求出P点坐标,若不存在,请说明理由.10.(2021秋•钦北区期末)如图,抛物线y=ax2+bx+6与直线y=x+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PC⊥x轴于点D,交抛物线于点C,点E是直线AB与x轴的交点.(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求△BCE的面积;(3)是否存在点P,使得△BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由.11.(2022•保定一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B (1,﹣5),D(4,0).(1)求c,b(含t的代数式表示);(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式.并求t为何值时,△MPN的面积为.12.(2022•黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PE⊥x 轴,垂足为E,交直线l于点F.(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S.①求S 关于m的函数解析式及S的最大值;②点Q是直线PE上一动点,当S取最大值时,求△QOC周长的最小值及FQ的长.13.(2022•哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CF⊥y轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在(2)的条件下,过F作FM∥y轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当∠BAD+2∠AMN=90°,MN:EG=,求点D的坐标.14.(2022•利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y 轴和x轴上,点C的坐标为(3,4),且AC平行于x轴.(1)求直线AB的解析式;(2)求过B,C两点的抛物线y=﹣x2+bx+c的解析式;(3)抛物线y=﹣x2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当△ABM的面积与△ABC的面积相等时,求点M的坐标.15.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.16.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.17.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).18.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD 的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.19.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.20.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.21.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.22.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;(3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.。
一、知识梳理1.三角形面积公式:S 2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)=21×底×高2.平行四边形的性质:对边相等、对角相等、对角线互相平分3.判别式法求最值:通过判别式判断二次方程的根的情况,进而求出最值二、问题分析1.三角形面积最值存在性问题:∙利用二次函数的性质和对称性,找到合适的底和高,计算三角形的面积;∙设置关于底和高的二次方程,利用判别式判断方程的根的情况,进而求出面积的最值。
2.平行四边形存在性问题:∙利用二次函数的对称性和性质,找到满足平行四边形性质的点;∙利用平行四边形的性质证明这些点构成平行四边形。
三、例题解析【例1】已知抛物线y=x2−2x和直线y=2x+b相交于A、B两点,且∠AOB=90°,其中O为坐标原点。
求△AOB的面积。
【答案】联立方程组:y=x2−2x,y=2x+b.消去y得:x2−4x−b=0.由于直线与抛物线有两个交点,所以判别式Δ>0:Δ=16+4b>0⇒b>−4.设交点A、B坐标分别为(x1,y1)和(x2,y2),由韦达定理得:x1+x2=4,x1x2=−b.由于∠AOB=90,所以x1x2+y1y2=0。
代入y1=2x1+b和y2=2x2+b,解得:−b+(2x1+b)(2x2+b)=0.化简得:−b−4b+8b+b2=0⇒b2+3b=0.解得:b=−3或b=0。
当b=0时,A、B坐标分别为(0,0)和(4,8),点A和点O重合,不符合条件。
因此,b =−3,代入方程组得A (1,-1),B (3,3)。
所以,△AOB 的面积为:S =21×∣O A ∣×∣O B ∣=21×2211)()(-+×2233)()(+=21×2×18=3.【例2】抛物线6221y 2--=x x 与x 轴相交于点A 、点B ,与y 轴相交于点C 。
第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。
考向3.10 二次函数-面积问题例1、(2021·四川雅安·中考真题)已知二次函数223y x bx b =+-. (1)当该二次函数的图象经过点1,0A 时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足1≥x 的任意实数x ,都使得0y ≥成立,求实数b 的取值范围.解:(1)把1,0A 代入223y x bx b =+-, 得:20123b b =+-,解得:b =1,∴该二次函数的表达式为:223y x x =+-; (2)令y =0代入223y x x =+-, 得:2023x x =+-, 解得:11x =或23x =-,令x =0代入223y x x =+-得:y =-3, ∴A (1,0),B (-3,0),C (0,-3), 设运动时间为t ,则AP =2t ,BQ =t , ∴BP =4-2t ,过点M 作MQ ⊥x 轴, ∵OB =OC =3, ∴∠OBC =45°,∴BMQ 是等腰直角三角形,∴MQ =22BQ =22t , ∴△BPQ 的面积=()11222242BP MQ t t -⋅=⋅=()222122t --+,∴当t =1时,△BPQ 面积的最大值=22;(3)抛物线223y x bx b =+-的对称轴为:直线x =-b ,开口向上, 设2()23y f x x bx b ==+-,∵对1≥x 的任意实数x ,都使得0y ≥成立,∴()110b f -≤⎧⎨≥⎩或()10b f b ->⎧⎨-≥⎩,∴-1≤b ≤1或-3≤b <-1, ∴-3≤b ≤1.1、二次函数面积问题的几种形式(1)直接用面积公式;(2)三角形的面积等于铅直高度与水平宽度积的一半;(3)平行线等面积法(通过做平行线辅助线完成)。
二次函数中面积的最值问题(六大题型)通用的解题思路:二次函数中的面积最值问题通常有以下3种解题方法:1)当所求图形的面积没有办法直接求出时,通常采用分割或补全图形的方法表示所求图形的面积,如下:一般步骤为:①设出要求的点的坐标;②通过割补将要求的图形转化成通过条件可以表示的图形面积和或差;③列出关系式求解;④检验是否每个坐标都符合题意.2)用铅垂定理巧求斜三角形面积的计算公式:三角形面积等于水平宽和铅锤高乘积的一半.3)利用平行线间的距离处处相等,根据同底等高,将所求图形的面积转移到另一个图形中,如图所示:一般步骤为:①设出直线解析式,两条平行直线k值相等;②通过已知点的坐标,求出直线解析式;③求出题意中要求点的坐标;④检验是否每个坐标都符合题意.题型01三角形面积最值问题1(2024·宁夏银川·一模)如图,二次函数y =-x 2+6x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,5 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,且在直线AB 上方,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②设△PAB 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.2(2024·新疆克孜勒苏·二模)如图,抛物线y =x ²+bx +c (b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A 2,0 ,AB =6,点P 为线段AB 上的动点,过P 作PQ ∥BC 交AC 于点Q .(1)求抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.3(23-24九年级下·湖北武汉·开学考试)如图,抛物线y =ax 2-4ax +3a 交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴正半轴于点C ,OB =OC ,点P 在抛物线上.(1)求抛物线的解析式;(2)若tan∠ACP=2,求点P的横坐标.(3)平面上有两点M m,-m-3,求△PMN的面积的最小值.,N m+2,-m-54(23-24九年级下·辽宁沈阳·阶段练习)△ABC中,∠BAC=90°,AB=2,AC=4,点P从点C出发,沿射线CA方向运动,速度为每秒1个单位长度,同时点Q以相同的速度从点B出发,沿射线BA方向运动.设运动时间为x(x≠2且x≠4)秒,△APQ的面积为S.(1)当0<x<2时,如图①,求S与x的函数关系式;(2)当2<x<4时,如图②,求S的最大值;(3)若在运动过程中,存在两个时刻x1,x2,对应的点P和点Q分别记为P1,P2和Q1,Q2,对应的△AP1Q1和△AP2Q2的面积分别记为S1和S2,且当CP1=P1P2时,S1=S2,请求出x1的值.5(2023·山东聊城·二模)如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A 的坐标为-1,0,直线CD:y=2x-3与x轴交于点D.动点M在抛物线上运动, ,与y轴交于点C0,-3过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点M在运动过程中,能否使以C,N,M为顶点的三角形是以NM为腰的等腰直角三角形?若存在,请直接写出点M的坐标.6(2024·浙江宁波·模拟预测)如图,一次函数y=33x+3的图象与坐标轴交于点A、B,抛物线y=-33x2+bx+c的图象经过A、B两点.(1)求二次函数的表达式;(2)若点P为抛物线上一动点,在直线AB上方是否存在点P使△PAB的面积最大?若存在,请求出△PAB 面积的最大值及点P的坐标,请说明理由.7(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy中,已知直线y=-x-3与x轴交于点A,与y轴交于点C,过A,C两点的抛物线y=ax2+bx+c与x轴交于另一点B1,0,抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点,当△MAC的面积最大时,求点M的坐标;(3)点P是抛物线上一点,过点P作l的垂线,垂足为D,E是l上一点.要使得以P,D,E为顶点的三角形与△BOC全等,请直接写出点P的坐标.8(2024·江苏盐城·模拟预测)已知抛物线y=x2+bx-3与x轴交于A,B(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求抛物线的解析式和点A的坐标;(2)如图1,点P为直线BC下方抛物线上一点,求△PBC的最大面积;(3)如图2,M、N是抛物线上异于B,C的两个动点,若直线BN与直线CM的交点始终在直线y=2x-9上,求证:直线MN必经过一个定点,并求该定点坐标.9(2024·四川广元·二模)如图,在平面直角坐标系中,抛物线y1=-x2+bx+c与x轴交于点B,A(-3, 0),与y轴交于点C(0,3).(1)求直线AC和抛物线的解析式.(2)若点M是抛物线对称轴上的一点,是否存在点M,使得以M,A,C三点为顶点的三角形是以AC为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.(3)若点P是第二象限内抛物线上的一个动点,求△PAC面积的最大值.10(2024·安徽安庆·一模)如图,抛物线y=ax2+bx+3与x轴交于点A1,0两点,与y轴交于、B3,0点C.(1)求此抛物线对应的函数表达式;(2)点E为直线BC上的任意一点,过点E作x轴的垂线与此抛物线交于点F.①若点E在第一象限,连接CF、BF,求△CFB面积的最大值;②此抛物线对称轴与直线BC交于点D,连接DF,若△DEF为直角三角形,请直接写出E点坐标.11(2024·安徽合肥·一模)如图,直线y=x-3与x轴交于点B,与y轴交于点C,抛物线y=x2+bx+c 经过B、C两点,抛物线与x轴负半轴交于点A.(1)求抛物线的函数表达式;(2)直接写出当x-3>x2+bx+c时,x的取值范围;(3)点P是位于直线BC下方抛物线上的一个动点,过点P作PE⊥BC于点E,连接OE.求△BOE面积的最大值及此时点P的坐标.12(2024·天津西青·一模)已知抛物线y=-x2-4ax-12a(a<0)与x轴交于A,B两点(点A在点B左边),与y轴交于点C.(1)若点D4,12在抛物线上.①求抛物线的解析式及点A的坐标;②连接AD,若点P是直线AD上方的抛物线上一点,连接PA,PD,当△PAD面积最大时,求点P的坐标及△PAD面积的最大值;(2)已知点Q的坐标为-2a,-8a,连接QC,将线段QC绕点Q顺时针旋转90°,点C的对应点M恰好落在抛物线上,求抛物线的解析式.13(2024·山东临沂·二模)如图,抛物线y=ax2+32x+c与x轴交于点A和点B4,0,与y轴交于点C0,2,连接BC,点D在抛物线上.(1)求抛物线的解析式;(2)小明探究点D位置时发现:如图1,点D在第一象限内的抛物线上,连接BD,CD,△BCD面积存在最大值,请帮助小明求出△BCD面积的最大值;(3)小明进一步探究点D位置时发现:如图2,点D在抛物线上移动,连接CD,存在∠DCB=∠ABC,请帮助小明求出∠DCB=∠ABC时点D的坐标.14(2024·广东深圳·二模)如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与轴交于A,B 点,与y轴交于点C0,3,点B的坐标为3,0,点P是抛物线上一个动点.(1)求二次函数解析式;(2)若P点在第一象限运动,当P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;(3)连接PO,PC,并把△POC沿CO翻折,那么是否存在点P,使四边形POP C为菱形;若不存在,请说明理由.15(2024·湖北·模拟预测)如图,抛物线y=x-12+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C0,-3.设P点在抛物线上运动,横坐标为m.(1)求此抛物线的解析式;(2)当P点位于第四象限时,求△BCP面积的最大值,并求出此时P点坐标;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.① 求h关于m的函数解析式,并写出自变量m的取值范围;② 根据h的不同取值,试探索点P的个数情况.16(22-23九年级下·重庆·阶段练习)抛物线y=ax²+bx+5经过点A1,0和点B5,0.该抛物线与直线y=12x+5相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.(1)求该抛物线所对应的函数解析式;(2)连接PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连接PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.17(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴分别相交于A、B两点,与y轴相交于点C,已知点A的坐标为(-1,0),点B的坐标为(3,0).(1)求出这条抛物线的函数表达式;(2)如图2,点D是第一象限内该抛物线上一动点,过点D作直线l∥y轴,直线l与△ABD的外接圆相交于点E.①仅用无刻度直尺找出图2中△ABD外接圆的圆心P.②连接BC、CE,BC与直线DE的交点记为Q,如图3,设△CQE的面积为S,在点D运动的过程中,S是否存在最大值?如果存在,请求出S的最大值;如果不存在,请说明理由.18(2024·新疆乌鲁木齐·一模)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C,点P与直线m同时停止运动,设运动时间为t秒t>0.(1)AH=,EF=(用含t的式子表示).(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.19(2024·重庆·模拟预测)如图,在平面直角坐标系中,抛物线y=ax2+bx+c过点(3,-4),交x轴于点A(-1,0),B两点,交y轴于点C(0,2).(1)求抛物线的表达式;(2)连接AC ,BC ,M 为线段AB 上一动点,过点M 作MD ∥BC 交直线AC 于点D ,连接MC ,求△MDC 面积的最大值及此时M 点的坐标;(3)在(2)中△MDC 面积取得最大值的条件下,将该抛物线沿射线BC 方向平移2个单位长度,P 是平移后的抛物线上一动点,连接CP ,当∠PCM 与△OBC 的一个内角相等时,请直接写出所有符合条件的点P 的坐标.20(2024·湖南衡阳·一模)如图,已知抛物线y =ax 2+bx +c 经过A 1,0 ,B -3,0 ,C 0,3 三点.(1)求抛物线的解析式;(2)若点D 为第二象限内抛物线上一动点,求△BCD 面积的最大值;(3)设点P 为抛物线的对称轴上的一个动点,求使△BPC 为直角三角形的点P 的坐标.21(2024·甘肃天水·一模)如图,在平面直角坐标系中,开口向下的抛物线与x 轴交于A ,B 两点,D 是抛物线的顶点.O 为坐标原点.A ,B 两点的横坐标分别是方程x 2-4x -12=0的两根,且cos ∠DAB =22.(1)求抛物线的函数解析式;(2)作AC ⊥AD ,AC 交抛物线于点C ,求点C 的坐标及直线AC 的函数解析式;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在一点P ,使△APC 的面积最大?如果存在,请求出点P 的坐标和△APC 的最大面积;如果不存在,请说明理由.22(2024·山东聊城·一模)在平面直角坐标系中,抛物线y =ax 2+bx -3与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C .(1)求抛物线的解析式及顶点坐标;(2)若点P 为第四象限内抛物线上一点,当△PBC 面积最大时,求点P 的坐标;(3)若点P 为抛物线上一点,点Q 是线段BC 上一点(点Q 不与两端点重合),是否存在以P 、Q 、O 为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.23(2024·吉林长春·一模)如图,在平面直角坐标系中,直线y =x +2分别交x 轴、y 轴于A 、B 两点,过点C 2,2 作x 轴垂线,垂足为D ,连接BC .现有动点P 、Q 同时从A 点出发,分别沿AB 、AD 向终点B 和终点D 运动,若点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒2个单位长度.设运动的时间为t 秒.(1)求A、B两点的坐标;(2)当CQ∥AB时,t=;(3)设△CPQ的面积为y,写出y与t的函数关系式,并求△CPQ面积的最大值;(4)当△CPQ为轴对称图形时,直接写出t的值.24(2023·湖南娄底·中考真题)如图,抛物线y=x2+bx+c过点A-1,0,交y轴于点C.、点B5,0(1)求b,c的值.(2)点P x0,y0是抛物线上的动点0<x0<5①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25(2024·河南安阳·模拟预测)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与抛物线y=-x2+x-1的形状相同,且与x轴交于点-1,0.直线y=kx+2分别与x轴、y轴交于点A,B,和4,0与y=ax2+bx+c于点C,D(点C在点D的左侧).(1)求抛物线的解析式;(2)点P是直线y=kx+2上方抛物线上的任意一点,当k=2时,求△PCD面积的最大值;(3)若抛物线y=ax2+bx+c与线段AB有公共点,结合函数图象请直接写出k的取值范围.26(2024·湖南长沙·一模)如图,抛物线y=x2-bx+c与x轴交于A-1,0两点,与y轴交于,B m,0点C0,-3,顶点为D,直线BD交y轴于点E.(1)求抛物线的解析式.(2)设点P为线段BD上一点(点P不与B,D两点重合),过点P作x轴的垂线与抛物线交于点F,连接DF,BF,求△BDF面积的最大值.(3)连接CD,在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.27(2024·江西萍乡·一模)如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A3,0,连接AC,BC.,C0,3(1)求抛物线的函数解析式;(2)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OBC相似,求出点P的坐标;(3)若点M是抛物线上的一个动点,且位于第一象限内,连接MC,MA.设△ACM的面积为S,试求S的最大值.28(2024·四川广元·二模)如图1,抛物线y=ax²+bx+c与x轴交于A,B两点,且点B的坐标为5,0,与y轴交于点C,该抛物线的顶点坐标为(3,-4).(1)求抛物线和直线BC的解析式.(2)在抛物线上是否存在点M,使得△BCM是以BC为底边的等腰三角形?若存在,求出所有点M的坐标;若不存在,请说明理由.(3)如图2,以点B 为圆心,画半径为2的圆,点P 为⊙B 上的一个动点,连接AC ,求△ACP 面积的最大值.29(2023·山东青岛·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AB =10cm ,BD =45cm .动点P 从点A 出发,沿AB 方向匀速运动,速度为1cm/s ;同时,动点Q 从点A 出发,沿AD 方向匀速运动,速度为2cm/s .以AP ,AQ 为邻边的平行四边形APMQ 的边PM 与AC 交于点E .设运动时间为t s 0<t ≤5 ,解答下列问题:(1)当点M 在BD 上时,求t 的值;(2)连接BE .设△PEB 的面积为S cm 2 ,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在∠PEC 的平分线上?若存在,求出t 的值;若不存在,请说明理由.30(2023·湖南怀化·中考真题)如图一所示,在平面直角坐标系中,抛物线y =ax 2+bx -8与x 轴交于A (-4,0)、B (2,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求△PAC 面积的最大值及此时点P 的坐标;(3)设直线l 1:y =kx +k -354交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线l 2:y =-374上总存在一点E ,使得∠MEN 为直角.31(2024·海南省直辖县级单位·一模)如图,已知抛物线y =ax 2+2x +c a ≠0 ,与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC 、PB 、BC ,设点P 的横坐标为t .①当t 为何值时,△PBC 的面积最大?并求出最大面积;②当t 为何值时,△PBC 是直角三角形?(3)如图2,过E 作EF ⊥x 轴于F ,若M m ,0 是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请直接写出实数m 的取值范围.32(2024·四川成都·一模)如图,直线y =-x -4分别交x 轴,y 轴于A ,C 两点,点B 在x 轴正半轴上.抛物线y =15x 2+bx +c 过A ,B ,C 三点.(1)求抛物线的解析式;(2)过点B 作BD ∥AC 交y 轴于点D ,交抛物线于点F .若点P 为直线AC 下方抛物线上的一动点,连接PD 交AC 于点E ,连接EB ,求S △PEB 的最大值及最大值时点P 的坐标;(3)如图2,将原抛物线进行平移,使其顶点为原点,进而得到新抛物线,直线y =-2x 与新抛物线交于O ,G 两点,点H 是线段OG 的中点,过H 作直线RQ (不与OG 重合)与新抛物线交于R ,Q 两点,点R 在点Q 左侧.直线GR 与直线OQ 交于点T ,点T 是否在某条定直线上?若是,请求出该定直线的解析式,若不是,请说明理由.33(2024·江苏苏州·一模)如图,在平面直角坐标系中,抛物线y =ax 2-8ax +10a -1a <0 与x 轴的交点分别为A x 1,0 ,B x 2,0 ,其中(0<x 2<x 1),且AB =4,与y 轴的交点为C ,直线CD ∥x 轴,在x 轴上有一动点E t ,0 ,过点E 作直线l ⊥x 轴,与抛物线、直线CD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t ≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以C 、P 、Q 为顶点的三角形与△OBC 相似?若存在,求出此时t 的值;若不存在,请说明理由.题型02四边形面积最值问题1(2024·安徽阜阳·一模)如图,抛物线y =ax 2+bx +3与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P ,使△PAC 的周长最小,求△PAC 的周长的最小值及此时点P 的坐标;(3)若M 为抛物线在第一象限内的一动点,求出四边形OCMB 的面积的最大值及此时点M 的坐标.2(2024·山东临沂·一模)如图,在平面直角坐标系中,抛物线y =-14x 2+bx +c 与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,4),点P 是直线BC 上方的抛物线上一点(点P 不与点B ,C 重合),过点P 作PD ∥y 轴交直线BC 于点D .(1)求抛物线的函数表达式;(2)求线段PD 长的最大值;(3)连接CP ,BP ,请直接写出四边形ABPC 的面积最大值为.3(2024·山西运城·一模)综合与探究如图,抛物线y=ax2+bx-3a≠0与x轴交于A-1,0、B两点,与y轴交于点C,点D-2,9 2在抛物线上,点P是抛物线在第四象限内的一个动点,过点P作PQ∥y轴交直线BD于点Q,连接PA、PB、QA,设点P的横坐标为m.(1)求抛物线的函数表达式;(2)求四边形PAQB面积的最大值及此时点P的坐标;(3)若点M是抛物线上任意一点,是否存在点M,使得∠MAB=2∠ACO,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.4(2024·安徽合肥·一模)在平面直角坐标系中,点O是坐标原点.抛物线y=ax2+bx-3a≠0与x轴交于A,B两点,直线l:y=kx+2与抛物线交于A,C两点,且A-1,0,B3,0.(1)求a,b,k的值;(2)点M是线段OB上的动点,点N在x轴上,MN=2,且点N在M的左边.过点M作MP⊥x轴,交抛物线于点P.过点N作x轴的垂线,交抛物线于点Q,交直线l于点R.①当以P,Q,R,M为顶点的四边形是平行四边形时,求点M的坐标.②记以P,Q,R,M为顶点的四边形面积为S,求S的最大值.5(2024·安徽蚌埠·一模)如图1,已知直线y=-x+5与坐标轴相交于A、B,点C坐标是-1,0,抛物线经过A、B、C三点.点P是抛物线上的一点,过点P作y轴的平行线,与直线AB交于点D,与x轴相交于点F.(1)求抛物线的解析式;(2)当点P在第一象限时,连接CP交OA于点E,连接EF,如图2所示;①求AE+DF的值;②设四边形AEFB的面积为S,则点P在运动过程中是否存在面积S的最大值,若存在,请求出此时点P的坐标;若不存在,请说明理由.6(2024·安徽马鞍山·一模)如图,过原点的二次函数y=ax2+bx的图象与x轴正半轴交于点A,经过点A的直线与该函数交于B1,-3,与y轴交于点C0,-4.(1)分别求此二次函数与直线AB的解析式.(2)点P是第四象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为t.①当PD=12OC时,求t的值;②当点P在直线AB下方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF,求四边形FQED面积的最大值.7(2024·山东济南·一模)如图,直线y=-12x+3交y轴于点A,交x轴于点C,抛物线y=-14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P m,0顺时针旋转90°得到线段O A ,若线段O A 与抛物线只有一个公共点,请结合函数图象,求m的取值范围.8(2024·四川广元·二模)如图,二次函数y=ax2+bx+c的图象与x轴交于原点O和点A4,0,经过点A的直线与该函数图象交于另一点B1,3,与y轴交于点C.(1)求直线AB的函数解析式及点C的坐标.(2)点P是抛物线上位于直线AB上方的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,过点B作BF⊥x轴于点F,连接OP,与BF交于点G,连接DG.求四边形GDEF面积的最大值.(3)抛物线上是否存在这样的点Q,使得∠BOQ=45°?若存在,请求出点Q的坐标;若不存在,请说明理由.9(2024·广东珠海·一模)如图,抛物线y=-x2+3x+4和直线y=x+1交于A-1,0点,点B,B3,4在直线x=3上,直线x=3与x轴交于点C.(1)求∠BAC的度数.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒t>0.以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.10(2024·安徽宿州·二模)如图1,抛物线y=ax2+bx-3(a,b是常数且a>0)与x轴交于点A-1,0和点B(点B在点A的右侧),点D是抛物线的顶点,CD是抛物线的对称轴且交x轴于点C1,0.(1)求a,b的值;(2)点P是抛物线上一点且位于点A和点D之间.(i)如图2,连接AP,DP,BD,求四边形ABDP面积的最大值;(ii)如图3,连接AP并延长交CD延长线于点Q,连接BP交CD于点E,求CE+CQ的值.11(2024·安徽·二模)如图1,在平面直角坐标系中,抛物线y=ax2+bx-4交x轴于点A-1,0,B4,0,交y轴于点C,点M在该抛物线上,横坐标为m,将该抛物线M,C两点之间(包括M,C两点)的部分记为图象W.(1)求抛物线的解析式;(2)图象W的最大值与最小值的差为4时,求m的值;(3)如图2,若点M位于BC下方,过点A作AE∥BC交拋物线于点E,点D为直线AE上一动点,连接CM, CD,BM,BD,求四边形CDBM面积的最大值及此时点M的坐标.12(2024·四川广安·二模)如图,抛物线y=-x2+bx+c交x轴于A-4,0.,B两点,交y轴于点C0,4(1)求抛物线的函数解析式.(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P,连接AP、CP,求四边形AOCP的面积的最大值.(3)在抛物线的对称轴上是否存在点M,使得以点A、C、M为顶点的三角形是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.13(23-24九年级上·重庆渝北·期末)二次函数y=ax2+bx+4经过点A-1,0,点C,点D,点B4,0分别二次函数与y轴的交点和顶点,点M为二次函数图象上第一象限内的一个动点.(1)求二次函数的解析式;(2)如图1,连接BC ,过点A 作BC 的平行线交二次函数于点E ,连接CM ,BM ,BE ,CE .求四边形CMBE 面积的最大值以及此时点M 的坐标;(3)如图2,过点M 作MN ∥y 轴,交BC 于点N (点M 不与点D 重合),过点D 作DH ∥y 轴,交BC 于点H ,当DM =HN 时,直接写出点M 的坐标.题型03面积比最值问题14(2024·安徽合肥·一模)在平面直角坐标系xOy 中,已知抛物线y =a x +1 x -4 与x 轴交于A 、 B 两点,与y 轴交于点C 0,-2 .(1)求a 的值;(2)点D 为第四象限抛物线上一点①求△BCD 的面积最大值②连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;15(2023·四川遂宁·中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.16(2024·湖北省直辖县级单位·一模)抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)求出点B 和点D 的坐标;(2)如图①,连接OD ,P 为x 轴的负半轴上的一点,当tan ∠PDO =12时,求点P 的坐标;(3)如图②,M 是点B 关于抛物线的对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m 0<m <5 ,连接MQ ,BQ ,MQ 与直线OB 交于点E ,设△BEQ 和△BEM 的面积分别为S 1和S 2,求S1S 2的最大值.17(2023·湖南永州·中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.18(2024·四川南充·一模)抛物线y =-38x 2+bx +c b >0 与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 0,3 ,抛物线对称轴为x =1,点P 是抛物线在第一象限上动点,连接CB ,PB .(1)求抛物线和直线BC 的解析式;(2)如图,连接PA ,交BC 于点M ,设△ABM 的面积为S 1,△PBM 的面积为S 2,求S 1S 2的最小值及此时点P的坐标.19(2024·湖北孝感·一模)如图1,已知抛物线y=ax2+bx+3与x轴交于点A-1,0,B3,0,与y轴交于点C,连接BC.(1)求a,b的值及直线BC的解析式;(2)如图1,点P是抛物线上位于直线BC上方的一点,连接AP交BC于点E,过P作PF⊥x轴于点F,交BC于点G,(ⅰ)若EP=EG,求点P的坐标,(ⅱ)连接CP,CA,记△PCE的面积为S1,△ACE的面积为S2,求S1S2的最大值;(3)如图2,将抛物线位于x轴下方面的部分不变,位于x轴上方面的部分关于x轴对称,得到新的图形,将直线BC向下平移n个单位,得到直线l,若直线l与新的图形有四个不同交点,请直接写出n的取值范围.题型04面积和最值问题1(2024·吉林长春·一模)在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于点A(-1,0)、B(3,0),交y轴于点C,连结AC、BC.点D在该抛物线上,过点D作DE∥AC,交直线BC于点E,连结AD、AE、BD.设点D横坐标为m(m>0),△DAE的面积为S1,△DBE的面积为S2.(1)求a,b的值;(2)设抛物线上D、B两个点和它们之间的部分为图象G,当图象G的最高点的纵坐标与m无关时,求m的取值范围;(3)当点D在第一象限时,求S1+S2的最大值;(4)当S1:S2=2:1时,直接写出m的值.题型05面积差最值问题1(2024·安徽合肥·一模)如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=。
学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
2020中考数学 压轴专题 二次函数中的图形面积问题(含答案)1. 如图,在平面直角坐标系xOy 中,已知抛物线y =x 2+Bx +C 经过A (0,3),B (1,0)两点,顶点为M .(1)求B 、C 的值;(2)将△OAB 绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;(3)设(2)中平移所得的抛物线与y 轴的交点为A 1,顶点为M 1,若点P 在平移后的抛物线上,且满足△PMM 1的面积是△P AA 1面积的3倍,求点P 的坐标.第1题图解:(1)∵抛物线y =x 2+Bx +C 经过A (0,3),B (1,0)两点,∴⎩⎪⎨⎪⎧c =31+b +c =0,解得⎩⎪⎨⎪⎧b =-4c =3;(2)由(1)知,抛物线的表达式为y =x 2-4x +3. ∵A (0,3),B (1,0) ∴OA =3,OB =1, ∴C 点坐标为(4,1),当x =4时,由y =x 2-4x +3得y =3, 则抛物线y =x 2-4x +3经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C , ∴平移后的抛物线的表达式为y =x 2-4x +1;(3)∵点P 在y =x 2-4x +1上,可设P 点的坐标为(x 0,x 20-4x 0+1), 将y =x 2-4x +1配方得y =(x -2)2-3, ∴抛物线的对称轴为直线x =2, ∵S △PMM 1=12|x 0-2|·MM 1,S △P AA 1=12|x 0|·AA 1,S △PMM 1=3S △P AA 1,MM 1=AA 1=2, ∴x 0<2,|x 0-2|=3|x 0|. 分情况讨论: ①当0<x 0<2时, 则有2-x 0=3x 0,解得x 0=12,则x 20-4x 0+1=-34, ∴点P 的坐标为(12,-34);②当x 0<0时,则有2-x 0=-3x 0,解得x 0=-1,则x 20-4x 0+1=6, ∴点P 的坐标为(-1,6).故满足△PMM 1的面积是△P AA 1面积的3倍时,点P 的坐标为(12,-34)或(-1,6).2. 如图,抛物线y =Ax 2+2x +C 经过点A (0,3),B (-1,0). (1)求抛物线的表达式;(2)抛物线的顶点为D ,对称轴与x 轴交于点E ,连接BD ,求BD 的长;(3)在抛物线的对称轴上是否存在点M ,使得△MBC 的面积是4,若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图解:(1)∵抛物线y =Ax 2+2x +C 经过点A (0,3),B (-1,0),∴⎩⎪⎨⎪⎧a -2+c =0c =3, 解得⎩⎪⎨⎪⎧a =-1c =3,∴抛物线的表达式为y =-x 2+2x +3;(2)∵抛物线的顶点为D ,对称轴与x 轴交于点E , y =-x 2+2x +3=-(x -1)2+4, B (-1,0),∴点D 的坐标是(1,4),点E 的坐标是(1,0), ∴DE =4,BE =2, ∴BD =DE 2+BE 2=42+22=20=25,∴BD 的长是25;(3)在抛物线的对称轴上存在点M ,使得△MBC 的面积是4. 设点M 的坐标为(1,M ), 令-x 2+2x +3=0得x =-1或3, ∴点C 的坐标为(3,0), ∴BC =3-(-1)=4, ∵△MBC 的面积是4, ∴S △BCM =BC ×|m |2=4×|m |2=4, 解得M =±2,∴点M 的坐标为(1,2)或(1,-2).3. 如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1)求点A 、B 、C 的坐标; (2)求直线BD 的解析式;(3)在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.第3题图解:(1)令y=0,则12x2-32x-2=0,解得x1=-1,x2=4,∴A(-1,0),B(4,0),令x=0,得y=-2,∴C(0,-2);(2)∵C,D两点关于x轴对称,∴D(0,2),设直线BD的解析式为y=kx+b(k≠0),将B、D坐标代入可得4=0 =2k bb+⎧⎨⎩,解得1=-2 =2⎧⎪⎨⎪⎩kb,∴直线BD的解析式为y=-12x+2;(3)存在这样的点P,使得△PBD的面积最大.设P(m,12m2-32m-2),如解图,过点P作PE⊥x轴于点F,与BD交于点E,第3题解图则E 点坐标为(m ,- 12m +2),∴PE =(- 12m +2)-(12m 2-32m -2)=- 12m 2+m +4,∴S △PBD =S △PDE +S △PEB =12PE ·OF +12PE ·BF =12PE ·OB =12×(-12m 2+m +4)×4 =-m 2+2m +8 =-(m -1)2+9,当m =1时,S △PBD 取得最大值,最大值为9, 此时12m 2-32m -2=-3,∴P (1,-3).4. 如图,在平面直角坐标系xOy 中,已知二次函数y =Ax 2+2Ax +C 的图象与y 轴交于点C (0,3),与x 轴交于A 、B 两点,点B 的坐标为(-3,0). (1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1∶2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,当点P 在何处时△CPB 的面积最大?求出最大面积?并求出此时点P 的坐标.第4题图解:(1)根据题意将B (-3,0),C (0,3)代入抛物线解析式,得⎩⎪⎨⎪⎧c =39a -6a +c =0,解得⎩⎪⎨⎪⎧a =-1c =3, ∴二次函数的解析式为y =-x 2-2x +3, 将其化为顶点式为y =-(x +1)2+4, ∴顶点D 的坐标为(-1,4);(2)如解图①,连接OD 、AD 、AD 与y 轴交于点F ,第4题解图①S △OBD =12×3×4=6,S 四边形ACDB =S △ABD +S △CDF +S △ACF =12×4×4+12×1×1+12×1×1+12×1×1=9,因此直线OM 必过线段BD ,由B (-3,0),D (-1,4)得线段BD 的解析式为y =2x +6, 设直线OM 与线段BD 交于点E , 则△OBE 的面积可以为3或6.①当S △OBE =3时,12×3×y E =3,解得y E =2,将y =2代入y =2x +6中,得x =-2,∴E 点坐标(-2,2).则直线OE 的解析式为y =-x .设M 点坐标为(x ,-x ),联立抛物线的解析式可得-x =-x 2-2x +3, 解得x 1=-1-132,x 2=-1+132(舍去).∴点M (-1-132,1+132);②当S △OBE =6时,12×3×y E =6,解得y E =4,将y =4代入y =2x +6中得x =-1,此时点E 、M 、D 三点重合. ∴点M 坐标为(-1,4);综上所述,点M 的坐标为(-1-132,-1+132),(-1,4).(3)如解图②,连接OP ,设P 点的坐标为(M ,-M 2-2M +3),第4题解图②∵点P 在抛物线上,∴S △CPB =S △CPO +S △OPB -S △COB=12OC ·(-M )+12OB ·(-M 2-2M +3)-12OC ·OB =-32M +32(-M 2-2M +3)-92=-32(M 2+3M )=-32(M +32)2+278.∵-3<M <0,∴当M =-32时,(-M 2-2M +3)=154,△CPB 的面积有最大值278.∴当点P 的坐标为(-32,154)时,△CPB 的面积有最大值,且最大值为278.5. 如图,在平面直角坐标系中,二次函数y =-14x 2+Bx +C 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0). (1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第5题图解:(1)∵二次函数y =-14x 2+Bx +C 过A (0,8)、B (-4,0)两点,∴⎩⎪⎨⎪⎧-14×(-4)2-4b +c =0c =8,解得⎩⎪⎨⎪⎧b =1c =8,∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF ,OF ,设F (M ,-14M 2+M +8),第5题解图∵S 四边形OCFD =S △CDF +S △OCD = S △ODF +S △OCF ,∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×M +12×8×(-14M 2+M +8)-12×8×4 =2M -M 2+4M +32-16 =-M 2+6M +16 =-(M -3)2+25,当M =3时,△CDF 的面积有最大值,最大值为25, ∵四边形CDEF 为平行四边形, ∴S 四边形CDEF =2S △CDF =50, ∴S 的最大值为50; ②S =18.【解法提示】∵四边形CDEF 为平行四边形, ∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (M -8,-14M 2+M +12),∵E (M -8,-14M 2+M +12)在抛物线上,∴-14(M -8)2+(M -8)+8=-14M 2+M +12,解得M =7,当M =7时,S △CDF =-(7-3)2+25=9, ∴此时S =2S △CDF =18.6. 如图,抛物线y =Ax 2+Bx -3与x 轴交于点A (1,0)和点B ,与y 轴交于点C ,且其对称轴L 为直线x =-1,点P 是抛物线上B ,C 之间的一个动点(点P 不与点B ,C 重合).第6题图(1)直接写出抛物线的解析式;(2)小唐探究点P 的位置时发现:当动点N 在对称轴L 上时,存在PB ⊥NB ,且PB =NB 的关系,请求出此时点P 的坐标;(3)是否存在点P 使得四边形PBAC 的面积最大?若存在,请求出四边形PBAC 面积的最大值,若不存在,请说明理由.解:(1)y =x 2+2x -3;【解法提示】∵A (1,0),对称轴L 为直线x =-1, ∴B (-3,0),将AB 两点坐标代入得,∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3.(2)如解图①,过点P 作PM ⊥x 轴于点M ,连接BP ,过点B 作BN ⊥PB 交直线L 于点N , 设抛物线的对称轴与x 轴交于点Q ,第6题解图①∵PB⊥NB,∴∠PBN=90°,∴∠PBM+∠NBQ=90°.∵∠PMB=90°,∴∠PBM+∠BPM=90°.∴∠BPM=∠NBQ.又∵PB=NB,∴△BPM≌△NBQ.∴PM=BQ.由(1)得y=x2+2x-3,∴Q(-1,0),B(-3,0)∴BQ=2,∴PM=BQ=2.∵点P是抛物线y=x2+2x-3上B、C之间的一个动点,且点P的纵坐标为-2,将y=-2代入y=x2+2x-3,得-2=x2+2x-3,解得x1=-1-2,x2=-1+2(不合题意,舍去),∴点P的坐标为(-1-2,-2);(3)存在.如解图②,连接AC,BC,CP,PB,过点P作PD∥y轴交BC于点D,第6题解图②∵A (1,0),B (-3,0),C (0,-3),∴S △ABC =12×3×4=6, 直线BC 的解析式为y =-x -3.设P (T ,T 2+2T -3),则D (T ,-T -3),∴S △BPC =12×3×(-T -3-T 2-2T +3)=-32T 2-92T , ∴S 四边形PBAC =-32T 2-92T +6 =-32(T +32)2+758, 当T =-32时,S 四边形PBAC 存在最大值,最大值为758. 此时点P 的坐标为(-32,-154). 7. 如图,抛物线y =-12x 2+32x +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且A 点坐标为(-3,0),连接BC 、AC .(1)求抛物线的解析式;(2)点E 从点B 出发,沿x 轴向点A 运动(点E 与点A 、B 不重合),过点E 作直线L 平行于AC ,交BC 于点D ,设BE 的长为M ,△BDE 的面积为S ,求S 关于M 的函数关系式,并写出自变量M 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值.第7题图解:(1)∵抛物线y =-12x 2+32x +c 过A 点,且A (-3,0), ∴0=-12×9-32×3+c ,解得c =9, ∴抛物线的解析式为y =-12x 2+32x +9; (2)∵抛物线的解析式为y =-12x 2+32x +9, ∴C 点坐标为(0,9),∴OC =9,令y =0可得-12x 2+32x +9=0,解得x =-3或x =6, ∴B 点坐标为(6,0),∴AB =6-(-3)=9;设直线AC 的解析式为y =kx +b ,把A 、C 两点坐标代入可得⎩⎪⎨⎪⎧-3k +b =0b =9, 解得⎩⎪⎨⎪⎧k =3b =9, ∴直线AC 的解析式为y =3x +9,∵直线ED ∥AC ,∴可设直线ED 的解析式为y =3x +m ,∵OB =6,BE =m ,∴OE =6-m ,∴E 点的坐标为(6-m ,0),代入直线ED 的解析式可得0=3(6-m )+n ,解得n =3(m -6),∴直线ED 的解析式为y =3x +3m -18,设直线BC 的解析式为y =rx +s ,把B 、C 两点坐标代入可得⎩⎪⎨⎪⎧6r +s =0s =9,解得⎩⎪⎨⎪⎧r =-32s =9, ∴直线BC 的解析式为y =-32x +9, 联立⎩⎪⎨⎪⎧y =3x +3m -18y =-32x +9,解得⎩⎪⎨⎪⎧x =6-23m y =m, ∴D 点坐标为(6-23m ,m ), ∴D 到BE 的距离为m ,∴S =S △BDE =12m ·m =12m 2, 又∵E 在线段AB 上,且不与点A 、B 重合,∴0<BE <AB ,∴m 的取值范围为0<m <9;(3)∵OC =9,BE =m ,∴S △BEC =12BE ·OC =12×m ×9=92m , ∴S △CDE =S △BEC -S △BDE =92m -12m 2=-12(m -92)2+818, ∴当m =92时,△CDE 的面积有最大值,最大值为818. 8. 已知抛物线y =x 2+4x +3交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于点C ,抛物线的对称轴l 交x 轴于点E .(1)求抛物线的对称轴及点A 的坐标;(2)点P 为坐标系内一点,且以点A 、B 、C 、P 为顶点的四边形为平行四边形,求出所有满足条件的P 点的坐标.(3)连接CA 与L 交于点D ,M 为抛物线上一点,是否存在点M ,使经过点C 、M 的直线恰好将四边形DEOC 的面积平分?若存在,请求出直线CM 的解析式;若不存在,请说明理由.第8题图解:(1)对称轴为直线x=-42=-2,当y=0时,有x2+4x+3=0,解得x1=-1,x2=-3,∴点A的坐标为(-3,0);(2)由y=x2+4x+3可知A(-3,0),B(-1,0),C(0,3),①当AC是平行四边形的对角线时,将点C向左平移两个单位长度即是P点,即P(-2,3);②当BC是平行四边形的对角线时,将点C向右平移两个单位长度即是P点,即P(2,3);③当AB是平行四边形的对角线时,将点A向下平移三个单位长度再向左平移1个单位长度即是P点,即P(-4,-3);满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3);(3)存在;∵点C的坐标为(0,3),又DE∥y轴,AO=3,EO=2,AE=1,CO=3,∴△AED∽△AOC,∴AEAO=DECO,即13=DE3,∴DE=1,∴S四边形DEOC=12×(1+3)×2=4,在OE上找点F,使OF=43,此时S △COF =12×43×3=2, 直线CF 把四边形DEOC 分成面积相等的两部分,交抛物线于点M ,设直线CM 的解析式为y =kx +3,它经过点F (-43,0), 则-43k +3=0,解得k =94, ∴直线CM 的解析式为y =94x +3. 9. 如图,已知抛物线y =-12x 2+bx +c 与x 轴交于点B ,E 两点,与y 轴交于点A ,OB =8,tan ∠ABD =1,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长x 度移动,动点C ,D 同时出发,当动点D 到达原点O 时,点C ,D 停止运动.(1)求抛物线的解析式;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,直接写出P 点的坐标;若不存在,请说明理由.第9题图解:(1)∵OB =8,tan ∠ABD =1,∴OA =OB =8,∴A (0,8),B (8,0).把点A (0,8),B (8,0)代入y =-12x 2+bx +c , 得⎩⎪⎨⎪⎧c =8-12×82+8b +c =0,解得⎩⎪⎨⎪⎧b =3c =8, ∴抛物线解析式为y =-12x 2+3x +8; (2)令y =0时,有-12x 2+3x +8=0, 解得x 1=-2,x 2=8,∴E (-2,0),∴BE =10,∵S △CED =12DE ·OC , ∴S =12t (10-t )=-12t 2+5t , ∴S 与T 的函数解析式为S =-12t 2+5t =-12(t -5)2+252(0≤t ≤8), ∴当t =5时,△CED 的面积最大,最大面积为252; (3)存在,P 点坐标为(8,0)或(43,1009)或(343,-2009). 【解法提示】当△CED 的面积最大时,t =5,即BD =DE =5,此时要使S △PCD =S △CED ,CD 为公共边,只需求出过点B 、或点E 且平行于CD 的直线即可,如下:设直线CD 的解析式为y =kx +B ,由(2)可知OC =5,OD =3,∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入,得⎩⎪⎨⎪⎧b =53k +b =0,解得⎩⎪⎨⎪⎧k =-53b =5, ∴直线CD 的解析式为y =-53x +5, ∵DE =DB =5,∴过点B 且平行于CD 的直线为y =-53(x -5)+5, 过点E 且平行于CD 的直线为y =-53(x +5)+5, 与抛物线解析式联立得方程①:-12x 2+3x +8=-53(x -5)+5, 解得x 1=8,x 2=43, 方程②:-12x 2+3x +8=-53(x +5)+5, 解得x 3=343,x 4=-2, 分别将x 的值代入抛物线的解析式,得y 1=0,y 2=1009,y 3=-2009,y 4=0, 又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009).第9题解图10.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图②,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H 的坐标及最大面积.第10题图解:(1)∵抛物线过点A(-1,0)和点B(5,0),∴--502555=0a ba b=⎧⎨+-⎩=1=4ab⎧⎨-⎩,解得,∴抛物线的函数表达式为y=x2-4x-5;(2)∵OB=OC=5,∴∠ABC=∠OCB=45°,∴以B 、C 、D 三点为顶点的三角形要与△ABC 相似,必须要有一个角等于45°.(ⅰ)当点D 在点C 的下方时,∠BCD =180°-45°=135°,∴不会出现45°角,∴此种情况不存在;(ⅱ)当点D 在点C 的上方时,∠BCD =45°,易得BC =2OB =52,AB =OA +OB =1+5=6, 存在两种情况:①当△BCD ∽△ABC 时,BC AB =CD BC, 即526=, ∴CD =253, OD =CD -OC =253-5=103, ∴D (0,103); ②当△DCB ∽△ABC 时,DC AB =CB BC, 即6CD =5252, ∴CD =6,OD =CD -OC =6-5=1,∴点D (0,1),∴综上所述,点D 的坐标为(0,1)或(0,103)时,以B ,C ,D 为顶点的三角形与△ABC 相似; (3)令y =-5得x 2-4x -5=-5,解得x 1=0,x 2=4,∴E (4,-5),∴CE =4,设H (a ,a 2-4a -5),点H 是在直线CE 下方抛物线上的动点,∴0<a <4.设直线BC 的表达式为y =kx +b ,把点B (5,0)、C (0,-5)代入得5=0=5k b b +⎧⎨-⎩,解得=1=5k b ⎧⎨-⎩, ∴直线BC 的表达式为y =x -5,则点F (a ,a -5),∴FH =a -5-(a 2-4a -5)=-a 2+5a ,∵CE ⊥FH ,∴S 四边形CHEF =12CE ×FH =-2a 2+10a =-2(a -52)2+252, ∵0<a <4,∴当a =52时,四边形CHEF 面积有最大值,最大值是252, 此时H (52,-354). 11. 已知:二次函数y =-x 2-2x +M 的图象与x 轴交于点A (1,0)、B ,与y 轴交于点C .(1)求M 的值;(2)求点B 的坐标;(3)若该二次函数图象上有一点P (不与点C 重合),满足S △ABP =S △ABC ,求点P 的坐标.第11题图解:(1)将点A (1,0)代入y =-x 2-2x +M 中,得-1-2+M =0,解得M =3;(2)由(1)知y =-x 2-2x +3,令y=0,则-x2-2x+3=0,解得x1=1,x2=-3,∵A(1,0),∴B(-3,0);(3)①当点P在x轴上方时,∵S△ABP=S△ABC,且点P不与点C重合,∴点C和点P关于二次函数图象的对称轴对称,由二次函数的解析式可知,对称轴为直线x=-1,∵C(0,3),∴P(-2,3);②当点P在x轴下方时,∵△ABP与△ABC的底边均为AB,∴△ABP的边AB上的高应等于OC,即此时点P的纵坐标y=-3,即-3=-x2-2x+3,整理得x2+2x-6=0,解得x=-1±7,∴点P的坐标为(-1+7,-3)或(-1-7,-3).综上,当S△ABP=S△ABC时,点P的坐标为(-2,3)或(-1+7,-3)或(-1-7,-3).。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
专题010 二次函数背景下的面积比例问题【典型例题】如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2))点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【模型解读】除了三角形、四边形面积计算之外,面积比例也是中考题中常见的条件或结论,对面积比例的分析,往往比求面积要复杂得多,这也算是面积问题中最难的一类.大部分题目的处理方法可以总结为两种:(1)计算;(2)转化. 策略一:运用比例计算类策略二:转化面积比如图,B 、D 、C 三点共线,考虑△ABD 和△ACD 面积之比.转化为底:共高,面积之比化为底边之比:则::ABDACDSSBD CD =.更一般地,对于共边的两三角形△ABD 和△ACD ,连接BC ,与AD 交于点E ,则:::ABDACDSSBM CN BE CE ==.策略三:进阶版转化 在有些问题中,高或底边并不容易表示,所以还需在此基础上进一步转化为其他线段比值,比如常见有:“A ”字型线段比、“8”字型线段比. “A ”字型线段比::::ABDACDSSBD CD BA AM ==.CBAHABCM N EDCBA“8”字型线段比::::ABDACDSSBD CD AB CM ==.转化为垂线:共底,面积之比化为高之比::::ABDACDSSBD CD BM CN ==.面积能算那就算,算不出来就转换; 底边不行就作高,还有垂线和平行.MDCBAMDCBAMNABCD。
二次函数与面积专题例题1:如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB=_________,OC=_________;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.例题2.平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到口A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)口ABOC和口A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.例题3:在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.例题4:如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P 为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.例题5:如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.练习1:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.练习2:如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).(1)求二次函数的关系式;(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<x B<,当△AOB的面积最大时,求出此时直线l的关系式;(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C 的横坐标;若不存在说明理由.练习3:抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM 的最大面积及点M的坐标.练习4:如图,已知二次函数y=﹣x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)﹣x1x2=10.(1)求此二次函数的解析式.(2)写出B,C两点的坐标及抛物线顶点M的坐标;(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.练习5:如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB =2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.练习6:如图,已知抛物线y =-21x2+x +4交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.练习7:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =2ax 2+ax -23经过点B . (1)求点B 的坐标;(2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.练习8:如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y =21x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S .(1)求OA 所在直线的解析式.(2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN =23.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.练习9:在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点A在点B的左边),与y轴相交于点C(0,3),顶点P的坐标是(1,4),对称轴与x轴相交于点D.(1)求出抛物线y=ax2+bx+c的表达式,及点A、B的坐标;(2)如图,点M与点C关于直线PD对称,连接MA、MB、MO,过点D作DE∥OM交线段MB 于点E,连接OE.△BOE的面积记作S1,△MOE的面积记作S2,△MOA的面积记作S3,求证:S1=S2+S3;(3)若(2)中的点M是第一象限内抛物线上的任意一点,其它条件不变,(2)中的结论是否成立?若成立,请说明理由;若不成立,写出新的结论并证明.练习10:如图,已知直线y =-21x +1交坐标轴于A 、B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线另一个交点为E .(1)请直接写出点C ,D 的坐标;(2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D 落在x 轴上时停止,求抛物线上C 、E 两点间的抛物线弧所扫过的面积.练习11 如图,已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积S 1与四边形OABD 的面积S 满足:S 1=32S?若存在,求点E 的坐标;若不存在,请说明理由.练习12 如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别为(0,1)、(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线,垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位).(1)求抛物线对应的函数关系式.(2)分别求t=1和t=4时,点Q 的坐标.(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.练习13已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4。
二次函数中的面积问题
二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。
【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.
【铅垂法】
()1111
2222
ABC
ACD
BCD
C D B A S
S
S
CD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-
【方法梳理】
(1)求A 、B 两点水平距离,即水平宽;
(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12
S =⨯水平宽铅垂高.
二、转化法——借助平行线转化:
若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,
当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQ
P
A
B
Q
Q
B
A P
D
E
F O
y
x
C
B
A 铅垂高水平宽
D
A B
C
x
y
O
E
三、面积比类型
例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;
例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .
(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;
(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);
P
y
x
O C
B A
变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;
变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;
变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.
变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.
例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;
【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)
例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.
变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.
变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;
例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.
变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少
作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()
A.1B.C.2D.4
2.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于
点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.
3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且
点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。