质数与合数
- 格式:doc
- 大小:259.27 KB
- 文档页数:6
三、质数和合数【知识点1】质数和合数的相关定义一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。
100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
除1以外所有的质数都是奇数。
除1以外任意两个质数的和都是偶数最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数练习:(1)像2、3、5、7这样的数都是(),像10、6、30、15这样的数都是()。
(2)20以内的质数有(),合数有()。
(3)自然数()除外,按因数的个数可以分为()、()和()。
(4)在16、23、169、31、27、54、102、111、97、121这些数中,()是质数,()是合数。
(5)用A表示一个大于1的自然数,A2必定是()。
A+A必定是()。
(6)一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是()。
(7)两个连续的质数是()和();两个连续的合数是()和()(8)两个质数的和是12,积是35,这两个质数是()A. 3和8B. 2和9C. 5和7(9)判断并改正:一个自然数不是质数就是合数。
()所有偶数都是合数。
()一个合数的因数的个数比一个质数的因数的个数多。
()所有质数都是奇数。
()两个不同质数的和一定是偶数。
()三个连续自然数中,至少有一个合数。
()大于2的两个质数的积是合数。
()7的倍数都是合数。
()20以内最大的质数乘以10以内最大的奇数,积是171。
() 2是偶数也是合数。
一、质数的定义和特性1. 质数的定义:质数,又称素数,是指只能被1和本身整除的自然数。
换句话说,质数是只有1和它本身两个因子的自然数。
2. 质数的特性:(1)所有大于1的质数,都是奇数。
因为偶数除了2以外都有其他的因子,不符合质数的定义。
(2)质数的个数是无穷的,即质数是无限的。
(3)任何一个大于1的整数都可以唯一地分解成质数的乘积。
3. 质数的性质:(1)质数的乘积还是质数:如果p和q都是质数,则p*q也是质数。
(2)任何一个大于1的正整数都可以唯一地分解成一些质数的乘积。
二、合数的定义和特性1. 合数的定义:除了1和本身外,还有其他正整数能够整除它的自然数称为合数。
2. 合数的特性:(1)0和1既不是质数也不是合数。
(2)任何一个合数都可以唯一地分解成若干个质数的乘积。
三、质数和合数的判断方法1. 判断一个数是否为质数的方法:(1)试除法:用小于这个数的所有质数来试除这个数,如果都不能整除,则这个数为质数。
(2)埃氏筛法:埃氏筛法是一种简单的找质数的方法,算法的核心思想是从小到大枚举每个数,如果这个数是质数,就标记它的倍数为合数。
2. 判断一个数是否为合数的方法:通常通过试除法判断一个数是否为合数。
即用除数从2开始逐一试除,如果能整除,则是合数,否则为质数。
1. 质数和合数在密码学中的应用:质数和合数在密码学中有着重要的应用,比如RSA加密算法。
RSA算法的核心就是利用两个大素数相乘的结果,来保证加密的安全性。
2. 质数和合数在因子、约数、公因数的求解中的应用:在因子、约数、公因数等问题的求解中,质数和合数的性质是不可或缺的。
3. 质数和合数在数学分解中的应用:在数学分解中,质数和合数的性质也是至关重要的。
在实际应用中,质数和合数的性质不仅仅体现在数论问题中,还涉及到了计算机科学、密码学等领域。
因此对于质数和合数的研究和应用具有重要的意义。
五、质数与合数的相关定理和推论1. 质数定理:质数定理是指对于任意一个正自然数n,当n足够大时,不大于n的质数个数约为n/ln(n)。
质数和合数重点知识点总结1. 质数的定义和性质质数是指除了1和它本身外,不能被其他自然数整除的数。
例如2、3、5、7、11等都是质数。
质数的性质包括:(1)任何大于1的整数n,必定可以被质数整除;(2)任何一个合数(即不是质数)都可以分解成多个质数的乘积;(3)任何一个合数都有大于1和小于它本身的一个质因数。
2. 合数的定义和性质合数是指至少拥有两个不同的因数的自然数。
例如4、6、8、9、10等都是合数。
合数的性质包括:(1)一个合数能够分解为两个自然数的乘积;(2)合数的因数可以分解成更小的因数。
3. 质数和合数的关系质数和合数是数论中的两个基本概念,它们之间存在着密切的关系。
任何一个自然数要么是质数,要么是合数,两者之间不存在其他情况。
质数和合数的关系表现在以下几个方面:(1)任何一个自然数都可以分解为质数的乘积;(2)一个合数一定可以分解为多个质数的乘积;(3)一个自然数是质数当且仅当它只能被1和自身整除。
4. 质数和合数的应用质数和合数在数学中有着广泛的应用,在现实生活和其他学科中也有着重要的作用。
例如:(1)数据加密技术中广泛应用质数的特性,如RSA加密算法;(2)质数和合数的分解被用于因式分解和最小公倍数的求解;(3)质数和合数的性质也在统计学、物理学、计算机科学等领域得到应用。
总之,质数和合数是数学中非常基础和重要的概念,它们的定义、性质和应用对数学学习和实际问题的解决都具有重要意义。
深入理解和掌握质数和合数的性质,有助于提高数学解题的能力和对实际问题的理解。
质数与合数的互相转换一、质数与合数的定义1.质数:一个大于1的自然数,除了1和它本身以外不再有其他因数。
2.合数:一个大于1的自然数,除了1和它本身以外还有其他因数。
二、质数与合数的性质1.质数是无限的。
2.合数是无限的。
3.任何两个质数都是互不相同的。
4.任何两个合数都是互不相同的。
5.质数转换为合数:(1)将质数乘以一个大于1的自然数,得到一个合数。
(2)将质数乘以-1,得到一个合数。
2.合数转换为质数:(1)分解合数:将合数分解成两个因数,其中一个因数必须是质数。
(2)提取质因数:将合数中的质因数提取出来,得到一个或多个质数。
1.质数转换为合数实例:(1)质数7乘以自然数5,得到合数35。
(2)质数11乘以-1,得到合数-11。
2.合数转换为质数实例:(1)合数27分解成两个因数3和9,其中因数3是质数。
(2)合数60提取质因数,得到质数2和3。
五、质数与合数在数学中的应用1.质数在数学中的应用:(1)质数在数论中具有重要地位,如费马大定理、欧拉定理等。
(2)质数在密码学中具有重要应用,如RSA加密算法。
2.合数在数学中的应用:(1)合数在数论中用于研究数的因数分布、素数定理等。
(2)合数在组合数学中用于研究组合问题,如完全图、拉丁方等。
六、质数与合数在生活中的应用1.质数在生活中的应用:(1)质数在计算机科学中应用于算法优化、程序设计等。
(2)质数在通信领域中应用于频道分配、信号加密等。
2.合数在生活中的应用:(1)合数在建筑领域中应用于结构设计、力学分析等。
(2)合数在经济学中应用于市场分析、价格制定等。
综上所述,质数与合数在数学和生活中具有广泛的应用。
了解质数与合数的性质,掌握质数与合数的互相转换方法,有助于提高中小学生的数学素养,培养学生的逻辑思维能力。
习题及方法:1.习题:判断以下哪个数是质数,哪个数是合数?答案:7是质数,15是合数。
解题思路:质数是只有1和它本身两个因数的数,而合数除了1和它本身还有其他因数。
质数和合数的知识点一、引言质数和合数是数论中的基础概念,它们在整数中占有特殊的地位。
质数是大于1的自然数,除了1和它本身以外不再有其他因数的数。
合数则是大于1的自然数,除了1和本身还有其他因数的数。
质数和合数在数学、密码学、计算机科学等领域有着广泛的应用。
本文将对质数和合数的知识点进行详细的阐述。
二、质数的定义与性质质数是一种特殊的整数,其因数只有1和本身。
它具有以下性质:1.唯一性:一个大于1的自然数如果是质数,那么它的因数只能是1和它本身,因此质数是唯一的。
2.奇数性:除了2之外的质数都是奇数。
因为2是唯一的偶数质数,而其他质数只能是奇数。
3.无穷性:尽管我们还没有找到一个完整的证明,但数学家们普遍认为质数的个数是无限的。
这意味着无论我们选择多大的数字,总会有一些质数比这个数字大。
4.质数的分布:尽管质数的分布是稀疏的,但它们遵循一定的规律。
特别是,对于大于1的任意正整数n,存在至多n个质数小于n的n次方根。
此外,质数的平均值趋近于一个特定的常数,称为“质数定理”。
三、合数的定义与性质合数是除1和本身外还有其他因数的自然数。
合数具有以下性质:1.因数的多样性:合数的因数除了1和本身外,至少还有一个其他的因数。
这意味着合数至少可以被三个整数整除。
2.偶数合数的存在:由于所有偶数(除了2)都是合数,因此存在无限多的偶数合数。
而2是唯一的偶数质数。
3.合数的分布:合数的分布比质数更为复杂。
尽管合数的数量远超过质数,但它们在自然数中的比例随着数字的增大而逐渐增加。
数学家们对合数的分布进行了深入研究,发现了一些有趣的规律和模式。
4.合成物与分解:合数可以被分解为若干个因数的乘积。
这种分解是合数的一种重要性质,也是数学中的一个基本概念。
例如,4可以被分解为2×2,6可以被分解为2×3等。
这种分解方法不仅在数学中有广泛应用,也在计算机科学、密码学等领域有重要应用。
四、质数与合数的应用质数和合数在许多领域都有广泛的应用:1.数学领域:质数和合数是数学中的基本概念,可用于解决各种数学问题,如因式分解、同余方程等。
质数与合数基本知识1.质数与合数:一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:0和1不是质数,也不是合数。
常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9。
考点:(1)值得注意的是很多题都会以质数2的特殊性为考点,例如:两个质数之和为39,求这两个质数的乘积。
分析:因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74。
我们要善于抓住此类题的突破口。
(2)除了2和5,其余质数个位数字只能是1,3,7或9。
这也是很多题解题思路,需要大家注意2.质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如:30=2×3×5。
其中2、3、5叫做30的质因数。
又如12=2×2×3=×3,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式。
分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。
22例如:三个连续自然数的乘积是210,求这三个数.分析:210分解质因数:210=2×3×5×7,可知这三个数是5、6和7。
质数合数规律
质数和合数是自然数的两种分类。
自然数是从1开始的整数(1、2、3、4、5……)。
在自然数中,可以将它们分为质数和合数两类。
1. 质数:质数是指大于1的自然数,除了1和自身外,没有其他因数(除了1和本身之外没有其他正因数)。
例如,2、3、5、7、11等都是质数。
2. 合数:合数是指大于1的自然数,除了1和自身外,还有其他因数。
例如,4、6、8、9、10等都是合数,因为它们可以被1和除了自身以外的其他自然数整除。
规律:
1. 1不是质数也不是合数,因为它没有除了1和自身以外的因数。
2. 最小的质数是2,之后的质数依次为3、5、7、11……即质数是无限的。
3. 所有大于等于2的整数都可以表示为质数和合数的乘积。
例如:8 = 2 * 2 * 2 = 2^3,12 = 2 * 2 * 3 = 2^2 * 3。
4. 合数可以分解为若干个质数的乘积,这个过程称为质因数分解。
例如:24 = 2 * 2 * 2 * 3 = 2^3 * 3。
质数和合数在数论和数学中有着重要的地位,它们的研究和性质对于数学理论和实际问题的解决都有着重要的影响。
在数学中,对于一个大的数,要判断它是质数还是合数可能是一个复杂的问题,但质因数分解则为解决一些问题提供了有效的方法。
质数与合数的区别质数和合数是数学中两个重要的概念。
它们代表了自然数的不同性质和特点。
本文将重点介绍质数和合数的区别。
质数是指只能被1和自身整除的自然数。
换句话说,质数没有除了1和它本身以外的其他因数。
例如,2、3、5、7是质数,因为它们不能被其他自然数整除。
而4、6、8、9不是质数,因为它们可以被2或3整除。
合数则相反,是指除了1和自身之外还有其他因数的自然数。
换句话说,合数可以被不止两个数整除。
例如,4可以被2整除,6可以被2和3整除。
合数可以拆分为几个质数的乘积。
例如,4可以拆分为2乘以2,6可以拆分为2乘以3。
而质数本身不能再进一步拆分,因为它们没有其他因数。
一个自然数要么是质数,要么是合数。
没有其他可能性。
这是因为如果一个数即不是质数也不是合数,那么它就必须可以拆分为质数的乘积,这与质数的定义相矛盾。
质数和合数对数学和数论有很重要的应用和影响。
首先,质数的概念是密码学领域中非常关键的概念。
现代加密算法中的安全性很大程度上依赖于质数的特性。
其次,质数和合数的性质广泛应用于数学证明和问题的解决中。
数学家们研究和利用质数与合数的性质,推动了数学领域的发展。
此外,质数和合数的研究还有助于深化人们对数学本质的理解。
在日常生活中,我们也经常会遇到质数和合数。
例如,计算机的算法中经常涉及到对质数的判断和利用。
此外,在质因数分解、分数的简化等数学问题中,质数和合数的概念也扮演着重要的角色。
总之,质数和合数是数学中两个重要概念,它们代表了自然数的不同性质和特点。
质数只能被1和自身整除,而合数可以被多个因数整除。
质数和合数的研究和应用对于数学和人类社会都具有重要意义。
了解并理解质数与合数的区别,有助于我们更深入地理解数学以及数学在现实生活中的应用。
质数和合数定义质数和合数是数学中的基本概念,也是数学研究中的重要对象。
本文将介绍质数和合数的定义及其性质,以及它们在数学和实际生活中的应用。
一、质数的定义质数是指只能被1和它本身整除的正整数。
例如,2、3、5、7、11、13等数都是质数,而4、6、8、9、10等数都不是质数,因为它们可以被除了1和它本身以外的数整除。
二、合数的定义合数是指除了1和它本身以外还可以被其他正整数整除的数。
例如,4、6、8、9、10等数都是合数,因为它们可以被除了1和它本身以外的数整除,而2、3、5、7、11、13等数都不是合数,因为它们只能被1和它本身整除。
三、质数和合数的性质1. 质数和合数的性质不同。
质数只能被1和它本身整除,而合数可以被其他正整数整除。
2. 质数和合数的个数是无限的。
这一点可以通过反证法证明。
假设存在有限个质数p1、p2、p3、……、pn,那么我们可以构造一个大于pn的正整数N,使得N的所有因数都是p1、p2、p3、……、pn中的至少一个。
那么N不是质数,因为它可以被p1、p2、p3、……、pn中的至少一个数整除。
又因为N大于pn,所以N不属于p1、p2、p3、……、pn中的任何一个数,因此N不是合数。
这与假设矛盾,因此假设不成立,质数和合数的个数是无限的。
3. 质数和合数有一定的规律性。
质数的个数比合数的个数少,随着数的增大,质数的间隔也越来越大,而合数的间隔则越来越小。
四、质数和合数的应用1. 质数和合数在密码学中有重要应用。
RSA加密算法就是利用质数的乘积难以分解的特性来保证信息的安全。
2. 质数和合数在数论中有重要应用。
例如,费马大定理就是对质数和合数性质的研究而得出的。
3. 在实际生活中,质数和合数也有着广泛的应用。
例如,质数在计算机领域中用于生成随机数,合数在质因数分解中用于加密和解密。
总之,质数和合数是数学中的基本概念,它们的研究对于数学和实际生活都具有重要意义。
我们需要深入学习和研究质数和合数的性质和应用,在实际生活中充分利用它们的优势,为人类的发展进步做出更加积极的贡献。
一、 质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、质因数与分解质因数1.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.2. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯ 其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.3. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.4. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q(均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.重点:分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。
难点:在对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。
质数和合数【例1】(1)两个质数之和为39,求这两个质数的乘积是多少.(2)已知P ,Q 都是质数,并且11932003P Q ⨯-⨯=,则P Q ⨯=【巩固】1. 如果a ,b 均为质数,且3741a b +=,则a b +=______.2、A ,B ,C 为3个小于20的质数,30A B C ++=,求这三个质数.3. a b c 、、都是质数,如果()()342a b b c +⨯+=,那么b =4. a ,b ,c 都是质数,并且33a b +=,44b c +=, 66c d +=,那么cd = ____ 。
5.7个连续质数从大到小排列是a 、b 、c 、d 、e 、f 、g 已知它们的和是偶数,那么d 是多少?【例2】(1)将60拆成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是多少?(2)有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【巩固】1.将50分拆成10个质数的和,要求其中最大的质数尽可能大,则这个最大的质数是多少?2.将37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积中,哪个最小?【例3】(1)在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?(2)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的乘积是48384。
问他们四个人的年龄各是几岁?【巩固】1.一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?2.甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数?3.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?4、2004720⨯⨯的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和是多少?例题精讲5.三个连续自然数的乘积是210,求这三个数是多少?【例4】(1)在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?(2)幼儿园里给小朋友分苹果,420个苹果正好均分。
但今天刚好又新人园一位小朋友,这样每个小朋友就要少分2个苹果。
原来有个小朋友。
【巩固】1.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?2.张老师带领同学们去种树,学生的人数恰好等分成三组.已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵.问:一共有多少学生?每人种了几棵树?3.某班同学在班主任陈老师的带领下去福利院擦玻璃。
同学们恰好能平均分成4组,并且师生每人擦的块数同样多。
已知师生一共擦了102块玻璃,平均每人擦了多少块玻璃?4.李老师带领一部分同学去植树,同学们正好可以平均分成3组。
如果师生每人植树的棵树一样多,则共植了155棵树。
平均每人植树多少棵?【例5】把8,21,25,35,44,65,78,99这八个数平均分成两组,使每组中四个数的乘积相等。
【巩固】1.把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等。
2.把39,45,49,56,60,70,78,84,91这九个数平均分成三组,使每组中三个数的乘积相等。
【例6】、1×2×3×4×……×200乘积的末尾有多少个连续的0?【巩固】1. 1×2×3×4×……×1000乘积的末尾有多少个连续的0?2.要使75×()×184×125×60的乘积的末尾有7个连续的0,括号里最小应填多少?3.一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。
4.自然数a乘以338,恰好是自然数b的平方.求a的最小值以及b。
5.从50到100的这51个自然数的乘积的末尾有多少个连续的0【例7】问360共有多少个因数?所有因数的和是多少1.求240的约数的个数。
2.求10500的约数共有多少个?3.144的全部约数共有多少个?【例8】三个质数的乘积恰好等于它们和的11倍,求这三个质数.【巩固】、三个质数的乘积恰好等于它们的和的7倍,求这三个质数.作业:1、请你判断173、899是质数还是合数。
2、三个不同质数的和是80,这三个质数的积最大可能是多少?3、把37分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积中哪个最大?4:把31分拆成若干个不同质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积哪个最小?5、一个长方体木块,它的长、宽、高的厘米数正好是三个连续的自然数,这个长方体的体积是504立方厘米.。
求这个长方体的表面积是多少平方厘米?6:三个连续偶数的乘积是960,这三个数的和是多少?7、某班同学在班主任陈老师的带领下去福利院擦玻璃。
同学们恰好能平均分成4组,并且师生每人擦的块数同样多。
已知师生一共擦了102块玻璃,平均每人擦了多少块玻璃?8:李老师带领一部分同学去植树,同学们正好可以平均分成3组。
如果师生每人植树的棵树一样多,则共植了155棵树。
平均每人植树多少棵?9、把8,21,25,35,44,65,78,99这八个数平均分成两组,使每组中四个数的乘积相等。
10.把40、44、45、63、65、78、99、105这八个数平均分成两组,使每组四个数的乘积相等。
11、1×2×3×4×……×200乘积的末尾有多少个连续的0?12:1×2×3×4×……×1000乘积的末尾有多少个连续的0?13、24的全部约数共有多少个?180的全部约数共有多少个?14:360的全部约数共有多少个?15、用2010个棱长为1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高,它的长和宽各是多少厘米?16、如果A+B=140(若A大于B),A×B=4875,求A-B。
课后作业1、三个不同质数的和是54,这三个质数的积最大可能是多少?2、甲数比乙数大7,两个数的乘积是450,求这两个数的和是多少?3、王老师带着班上同学(不超过100人)去植树,学生按人数正好可以平均分成三组。
已知师生共植树154棵,老师与学生每人植的树一样多,并且不超过10棵。
共有多少学生?每人植树多少棵?4、把39,45,49,56,60,70,78,84,91这九个数平均分成三组,使每组中三个数的乘积相等。
5、要使75×()×184×125×60的乘积的末尾有7个连续的0,括号里最小应填多少?6、144的全部约数共有多少个?7、60个同学分成相等人数的小组去慰问解放军,每组不少于6人,不多于15人,有几组分法?8、在100与200之间找出两个整数,使其乘积等于28710。
9、用2,3,4,5中的3个不同数字,能组成的三位质数是多少?质数与合数作业一、填空题1. 在1~100里最小的质数与最大的质数的和是_____.2. 小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3. 把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4. 有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5. 两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6. 如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7. 某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8. 有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9. 有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10. 主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。