2016年浙江省舟山市南海实验中学中考数学模拟试卷(5月份)
- 格式:doc
- 大小:611.50 KB
- 文档页数:29
舟山市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题4分,共40分) (共10题;共40分)1. (4分) 3的倒数是()A . 3B .C . -3D .2. (4分)若式子在实数范围内有意义,则x的取值范围是()A . x≥-1B . x>-1C . x<-1D . x≤-13. (4分)(2018·鹿城模拟) 由五个小立方体搭成的几何体如图所示,其主视图是A .B .C .D .4. (4分) (2019九上·大同期中) 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A . 2个B . 3个C . 4个D . 5个5. (4分)(2018·长清模拟) 东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是()A .B .C .D .6. (4分)(2020·宁波模拟) 明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A .B .C .D .7. (4分)如图,某厂房人字架屋顶的上弦AB=AC=10米,∠B=α,则该屋顶的跨度BC为()A . 10sinα米B . 10cosα米C . 20sinα米D . 20cosα米8. (4分)(2018·镇江) 如图,一次函数y=2x与反比例函数y= (k>0)的图象交于A,B两点,点P 在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A .B .C .D .9. (4分)已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为()A . 1或-2B . 2或-1C . 3D . 410. (4分) (2018九下·龙岩期中) 如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,①∠EBG =45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG .则下列结论正确有()A . ①②④B . ①③④C . ②③④D . ①②③二、填空题(共6小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2016七下·青山期中) 计算:3 +2 =________.12. (5分) (2018八上·汪清期末) 李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是________.13. (5分)请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是________.14. (5分)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是________.15. (5分) (2017九上·钦州港月考) 如图,矩形中,点、分别是、的中点,连接和,分别取、的中点、,连接,,,若,,则图中阴影部分的面积为________.16. (5分) (2017七下·北海期末) 观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;…请你猜想(a+b)10的展开式第三项的系数是________.三、解答题(共8题,共80分) (共8题;共80分)17. (8分)(2018·随州) 先化简,再求值:,其中x为整数且满足不等式组.18. (8.0分) (2017九下·建湖期中) 在某市2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成不完整的统计表(如表),请根据图表解答下列问题.获奖等级频数一等奖a二等奖b三等奖275(1)表格中a的值为________,b的值为________.(2)扇形统计图中表示获得一等奖的扇形的圆心角为________度.(3)估计全市有多少名学生获得三等奖?19. (8分) (2019九上·台州期中) 如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)①画出△ABC关于原点成中心对称的三角形△A′B′C′;②将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20. (10分)(2019·衢州) 如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G。
浙江省舟山市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·开江模拟) 函数y= 的自变量x的取值范围是()A . x≥﹣1B . x≥﹣1且x≠2C . x≠±2D . x>﹣1且x≠22. (2分)(2017·罗平模拟) 下列几何体各自的三视图中,只有两个视图相同的是()A . ①③B . ②③C . ③④D . ②④3. (2分)若k为正整数,则2•(﹣2)2k+(﹣2)2k+1等于()A . 0B . 22k+1C . ﹣22k+1D . 22k+24. (2分) (2019八上·皇姑期末) 下列命题为真命题的是()A . 三角形的一个外角大于任何一个和它不相邻的内角B . 两直线被第三条直线所截,同位角相等C . 垂直于同一直线的两直线互相垂直D . 三角形的外角和为5. (2分)(2018·福建模拟) 已知数据4,4,6,6,8,a的中位数是5,如果这组数据有唯一的众数,那么a的值()A . 4B . 6C . 8D . 4或66. (2分)使代数式有意义的自变量的取值范围是()A . x≥7B . x>7且x≠8C . x≥7且x≠8D . x>77. (2分)一个形式如圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积是()A .B .C .D .8. (2分)平面直角坐标系中,O是坐标原点,点A(1,1)、点B(2,﹣5),P是y轴上一动点,当△PAB 的周长最小时,求∠APO的正切值()A . 2B . 0.5C . -5D . 5二、填空题 (共6题;共7分)9. (1分) (2019七上·天台月考) -的倒数是________10. (1分) PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.某天灌南县城区的PM2.5值是29微克/立方米,根据PM2.5检测网的空气质量新标准,这一天城区的PM2.5值为优,请用科学记数法表示:2.5微米=________米.(1米=1000000微米)11. (1分) (2019七下·遂宁期中) 方程组的解是________12. (1分)(2017·黑龙江模拟) 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.13. (2分) (2019九上·台州期中) 如图,已知O的半径为13,弦AB长为24,则点O到AB的距离是________.14. (1分) (2020九下·汉中月考) 如图,在x轴上方,平行于x轴的直线与反比例函数y= 和y=的图象分别交于A、B两点,连接OA、OB。
2016年浙江省舟山市中考数学试卷一、选择题:本大题共10小题,每题3分,共30分1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.在以下“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.计算2a2+a2,结果准确的是()A.2a4B.2a2C.3a4D.3a24.13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.775.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数 D.方差6.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.97.一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根8.把一张圆形纸片按如下列图方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°9.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.10.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.二、填空题:本大题共6小题,每题4分,共24分11.因式分解:a2﹣9=.12.二次根式中字母x的取值范围是.13.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.14.把抛物线y=x2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是.15.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是多少?16.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q 随之在x轴的非负半轴上运动,假设PQ=,那么当点P运动一周时,点Q运动的总路程为.三.解答题:(此题有8小题,第17-19题每题6分,第20.21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:|﹣4|×(﹣1)0﹣2(2)解不等式:3x>2(x+1)﹣1.18.先化简,再求值:(1+)÷,其中x=2016.19.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)20.为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为理解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本实行统计,绘制了如下列图的统计图(部分信息未给出)根据图中信息,解答以下问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.21.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.22.如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路能够证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.23.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.24.小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.2016年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每题3分,共30分1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.应选:A.2.在以下“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念实行判断即可.【解答】解:A、不是轴对称图形,应选项错误;B、是轴对称图形,应选项准确;C、不是轴对称图形,应选项错误;D、不是轴对称图形,应选项错误.应选:B.3.计算2a2+a2,结果准确的是()A.2a4B.2a2C.3a4D.3a2【考点】合并同类项.【分析】根据合并同类项法则合并即可.【解答】解:2a2+a2=3a2,应选D.4.13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77【考点】有理数的乘方.【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.应选:C.5.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【解答】解:知道自己是否入选,老师只需公布第五名的成绩,即中位数.应选B.6.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷=360°÷40°=9.答:这个正多边形的边数是9.应选:D.7.一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,实行判断即可.【解答】解:∵a=2,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,应选:A.8.把一张圆形纸片按如下列图方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°【考点】圆心角、弧、弦的关系;翻折变换(折叠问题).【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.【解答】解:如下列图:连接BO,过点O作OE⊥AB于点E,由题意可得:EO=BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故的度数是150°.应选:C.9.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.【考点】矩形的性质;全等三角形的判定与性质;勾股定理.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF 是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,应选D.10.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【考点】二次函数的最值.【分析】结合二次函数图象的开口方向、对称轴以及增减性实行解答即可.【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,所以m+n=﹣2+=.应选:D.二、填空题:本大题共6小题,每题4分,共24分11.因式分解:a2﹣9=(a+3)(a﹣3).【考点】因式分解-使用公式法.【分析】a2﹣9能够写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).12.二次根式中字母x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故答案为:x≥1.13.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.【考点】概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.故答案为:.14.把抛物线y=x2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是y=(x﹣2)2+3.【考点】二次函数图象与几何变换.【分析】先确定y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后对应点的坐标,然后根据顶点式写出平移后抛物线的表达式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向右平移2个单位,再向上平移3个单位所得对应点的坐标为(2,3),所以平移后抛物线的表达式为y=(x﹣2)2+3.故答案为y=(x﹣2)2+3.15.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是多少?【考点】相似三角形的判定与性质.【分析】根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长,【解答】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等,∵AB∥DE,∴△CEF∽△CBA,∵EF=9,AB=12,∴EF:AB=9:12=3:4,∴△CEF和△CBA的面积比=9:16,设△CEF的面积为9k,则四边形AFEB的面积=7k,∵△CDF与四边形AFEB的面积相等,∴S△CDF=7k,∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=7k:9k,∴DF=7.故答案为7.16.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q 随之在x轴的非负半轴上运动,假设PQ=,那么当点P运动一周时,点Q运动的总路程为4.【考点】解直角三角形.【分析】首先根据题意准确画出从O→B→A运动一周的图形,分四种情况实行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ 的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O 时,点Q运动的路程就是点P运动的路程;最后相加即可.【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4三.解答题:(此题有8小题,第17-19题每题6分,第20.21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(1)计算:|﹣4|×(﹣1)0﹣2(2)解不等式:3x>2(x+1)﹣1.【考点】实数的运算;零指数幂;解一元一次不等式.【分析】(1)原式利用绝对值的代数意义,零指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:(1)原式=4﹣2=2;(2)去括号得:3x>2x+2﹣1,解得:x>1.18.先化简,再求值:(1+)÷,其中x=2016.【考点】分式的化简求值.【分析】首先计算括号里面的加法,再把除法化成乘法,约分得出化简结果,再代入x的值计算即可.【解答】解:(1+)÷=×=×=,当x=2016时,原式==.19.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)【考点】解直角三角形的应用.【分析】在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.【解答】解:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.59=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.20.为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为理解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本实行统计,绘制了如下列图的统计图(部分信息未给出)根据图中信息,解答以下问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总体=样本容量÷所占比例”即可得出结论;(2)根据“样本容量=总体×所占比例”可求出参加C舞蹈类的学生人数,再由总体减去其他各样本容量算出参加E棋类的学生人数,求出其所占总体的比例,再根据比例关系即可得出结论;(3)根据条形统计图的特点,找出一条建议即可.【解答】解:(1)被调查学生的总人数为:12÷30%=40(人).(2)被调查参加C舞蹈类的学生人数为:40×10%=4(人);被调查参加E棋类的学生人数为:40﹣12﹣10﹣4﹣6=8(人);200名学生中参加棋类的学生人数为:200×=40(人).(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多展开拓展性课程等.21.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.【考点】反比例函数与一次函数的交点问题;切线的性质.【分析】(1)直接将A点代入反比例函数解析式求出答案;(2)直接利用切线的性质结合正方形的判定与性质得出C,B点坐标,进而利用待定系数法求出一次函数解析式;(3)利用A点坐标结合函数图象得出x的取值范围.【解答】解:(1)把点A(﹣4,m)的坐标代入y2=,则m==﹣1,得m=﹣1;(2)连接CB,CD,∵⊙C与x轴,y轴相切于点D,B,∴∠CBO=∠CDO=90°=∠BOD,BC=CD,∴四边形BODC是正方形,∴BO=OD=DC=CB,∴设C(a,a)代入y2=得:a2=4,∵a>0,∴a=2,∴C(2,2),B(0,2),把A(﹣4,﹣1)和(0,2)的坐标代入y1=kx+b中,得:,解得:,∴一次函数的表达式为:y1=x+2;(3)∵A(﹣4,﹣1),∴当y1<y2<0时,x的取值范围是:x<﹣4.22.如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路能够证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.【考点】平行四边形的判定.【分析】(1)连接BD根据三角形的中位线的性质得到CH∥BD,CH=BD,同理FG∥BD,FG=BD,由平行四边形的判定定理即可得到结论;(2)根据三角形的中位线的性质和正方形的性质即可得到结果;(3)根据勾股定理得到BD=,由三角形的中位线的性质得到FG=BD=,于是得到结论.【解答】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.23.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【考点】几何变换综合题.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,=S△ACE﹣S△BED′=15﹣=10;则S四边形ACBD′(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.24.小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.【考点】二次函数的应用.【分析】(1)直接利用待定系数法求出抛物线解析式进而得出答案;(2)利用图形,得出速度和时间,再结合h=48+12×(17﹣8)得出答案;(3)首先求出OB的解析式进而利用二次函数解析式得出关于x的等式求出答案.【解答】解:(1)由图象得:小明家到乙处的路程为180m,∵点(8,48)在抛物线s=at2上,∴48=a×82,解得:a=;(2)由图及已知得:h=48+12×(17﹣8)=156,故A点的纵坐标为:156,表示小明家到甲处的路程为156m;(3)设OB所在直线的表达式为:v=kt,∵(8,12)在直线v=kt上,则12=8k,解得:k=,∴OB所在直线的表达式为:v=t,设妈妈加速所用时间为:x秒,由题意可得:x2+x(21+7﹣x)=156,整理得:x2﹣156+208=0,解得:x1=4,x2=52(不符合题意,舍去),∴x=4,∴v=×4=6(m/s),答:此时妈妈驾车的行驶速度为6m/s.。
浙江省舟山市普陀区中考数学模拟试卷(5月份)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)计算﹣2+1的值是()A.﹣3B.﹣1C.1D.32.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)1月29日,宁波雅戈尔动物园发生老虎咬人事件,引发人们对“遵守规则”的热议.“动物园老虎咬人,应怪不守规则”,百度为你找到相关结果约368000个,其中368000用科学记数法表示为()A.3.68×104B.3.68×105C.3.68×106D.36.8×1044.(3分)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.5.(3分)若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是的概率为()α30°45°60°sinαcosαtanαA.B.C.D.6.(3分)下列计算中,结果正确的是()A.2x+x=3x2B.2x﹣x=2C.x6•x2=x8D.x6÷x2=x3 7.(3分)在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89B.众数是93C.中位数是89D.方差是8.(3分)如图为两根长度均为10cm和两根长度均为12cm的木条组成的木框,为保证稳定要在BD间加一根木条.设该木条的长为xcm,则x的取值范围是()A.0<x<20B.2<x<20C.0<x<24D.2<x<249.(3分)一通讯员跟随队伍沿直线行军,出发后2小时,发现一份文件遗忘在营地.通讯员返回拿到后再追队伍,在此过程中,通讯员的速度值保持不变.队伍出发时间x(h),通讯员到营地的距离与队伍到营地的距离之和为y(km),y与x的函数图象如图所示,则通讯员追上队伍时a=()A.B.C.D.10.(3分)如图,点A(1,2)在反比例函数y=(x>0)上,B为反比例函数图象上一点,不与A重合,当以OB为直径的圆经过A点,点B的坐标为()A.(2,1)B.(3,)C.(4,0.5)D.(5,0.4)二、填空题(本题有6小题,每题4分,共24分)11.(4分)使有意义的x的取值范围是.12.(4分)因式分解:x2﹣4=.13.(4分)形状与开口方向和抛物线y=﹣2x2相同,过点(0,1)的函数解析式为只需写出一个答案即可).14.(4分)观察如图所示的数阵,用A(m,n)表示第m行的第n个数,则依次规律A(5,3)为.15.(4分)我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角等于.16.(4分)如图,BC=2,A为半径为1的⊙B上一点,连接AC,在AC上方作一个正六边形ACDEFG,连接BD,则BD的最大值为.三、解答题(共8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:|﹣2|﹣(π﹣3.14)0;(2)解方程:=.18.(6分)如图(1),正方形每条边上放置相同数目的小球,设一条边上的小球数为x,请回答下列问题:(1)如图(1),用两种不同的思考方法,列出2个含有x的代数式表示正方形边上的所有小球数(不要化简).(2)如图(2),将正方形改为立方体,每条边上同样放置相同数目的小球,设一条边上的小球数为x,请用含有x的代数式表示立方体上的所有小球数.19.(6分)在平面直角坐标系中,点A(﹣2,3)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点.(1)求k的值;(2)若△ABP的面积等于2,求点P坐标.20.(8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B 篮球.C.羽毛球D.乒乓球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2)请你将条形统计图补充完整;(3)在平时的羽毛球项目训练中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加市里组织的羽毛球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.(8分)如图,已知线段AC为⊙O的直径,P A为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.(1)求证:PB为⊙O的切线;(2)若⊙O的半径为1,P A=3,求BC的长.22.(10分)舟山市朱家尖南沙是一处游泳避暑的好地方.海岸线MN上有两个观察台A、B,A在B的正东方向,AB=400米.从A测得一个游泳者在北偏西60°方向,从B测得这个游泳者在北偏东45°方向.(1)在图中画出这个游泳者点C的位置,并标出相关的角度.(2)求点C到海岸线MN的距离.(结果保留根号)(3)若这个游泳者从点C处沿射线AC的方向游一段时间后,到达D处,此时,从B测得这个游泳者在北偏西15°的方向,若景区规定游泳者到海岸线MN的距离超过250米,就要发出警告.问观察台是否要对游泳者发出警告?请说明理由.23.(10分)如图1是边长为6的菱形ABCD,E是BC的中点,AE、BD相交于点P.(1)如图2,当∠ABC=90°时,求BP的长.(2)如图3,当∠ABC角度在改变时,BP的中垂线与边BC的交点F的位置是否发生变化?如果不变,请求出BF的长;如果改变,请说明理由.(3)当∠ABC从90°逐步减少到30°的过程中,求P点经过路线长.24.(12分)如图,抛物线与x轴交于点和A(﹣1,0)和点B(4,0),与y轴交于点C(0,2).(1)求抛物线解析式;(2)点P是抛物线BC段上一点,PD⊥BC,PE∥y轴,分别交BC于点D、E.当DE=时,求点P的坐标;(3)M是平面内一点,将符合(2)条件下的△PDE绕点M沿逆时针方向旋转90°后,点P、D、E的对应点分别是P′、D′、E′.设P′E′的中点为N,当抛物线同时经过D′与N时,求出D′的横坐标.浙江省舟山市普陀区中考数学模拟试卷(5月份)参考答案一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.B;2.D;3.B;4.A;5.D;6.C;7.D;8.A;9.C;10.C;二、填空题(本题有6小题,每题4分,共24分)11.x≥1;12.(x+2)(x﹣2);13.y=﹣2x2+1(答案不唯一);14.;15.90°或30°;16.;三、解答题(共8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.;18.;19.;20.200;72°;21.;22.;23.;24.;。
浙江省舟山市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题4分,共48分. (共12题;共27分)1. (2分)(2017·海陵模拟) 下列计算正确的是()A . =﹣5B . (x3)2=x5C . x6÷x3=x2D . ()﹣2=42. (2分) (2018八上·天台月考) 下列图案是轴对称图形的是()A .B .C .D .3. (2分)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A . 3.7×10﹣5克B . 3.7×10﹣6克C . 37×10﹣7克D . 3.7×10﹣8克4. (2分)(2017·文昌模拟) 将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A .B .C .D .5. (2分)(2017·江北模拟) 分式有意义,则x的取值范围是()A . x≠2B . x≠﹣2C . x=2D . x=﹣26. (2分)(2011·台州) 如图是一个组合烟花的横截面,其中16个圆的半径相同,点A、B、C、D分别是四个角上的圆的圆心,且四边形ABCD为正方形.若圆的半径为r,组合烟花的高为h,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)()A . 26πrhB . 24rh+πrhC . 12rh+2πrhD . 24rh+2πrh7. (2分) (2016八上·吉安开学考) 从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是()A .B .C .D .8. (2分)下列各式中,满足完全平方公式进行因式分解的是()A . 2x2+4x+1B . 4x2﹣12xy+9y2C . 2x2+4xy+y2D . x2﹣y2+2xy9. (2分)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
浙江省舟山市中考数学摸底测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在Rt △ABC 中,∠C=90°,AB=12,AC=5,则sinA 的值是( )A .512B .513C .1213D 2.若正比例函数2y x =-与反比例函数k y x =的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x =-3.下列函数是反比例函数的是( ) D .A .y kx =-B .(0)xy kk =≠ C .y =D .y =4.在Rt ΔABC 中,∠C =Rt ∠,BC:AC =1:2,AB =5,则斜边上的高长为( )A .315B . 2C . 1D . 3152 5.圆的切线( )A .垂直于半径B .平行于半径C .垂直于经过切点的半径D .以上都不对6.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x ,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A .11B .9C .8D .77.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( )A .平均数B .众数C .中位数D .方差 8.分式11a b+计算的结果是( ) A .b a + B .1a b+ C .2a b + D .a b ab + 9.下面的图表是护士统计的一位病人一天的体温变化情况:A .38.0℃B .39.1℃C .37.6℃D .38.6℃10.已知某数的23比这个数大4,那么这个数是( ) A .-12 B .-8 C .-6 D .-411.下列说法中正确的是( )A .0不是单项式B .32abc -的系数是-3 C .32223x y -的系数是13- D .2b πα的次数是2 12.下列说法错误的是( )A .一个教同 0相乘,仍得0B .一个数同 1 相乘,仍得原教C .一个数同一 1 相乘,得原教的相反数D .互为相反数的两数积为负数二、填空题13.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).14.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 .15.若两圆的半径分别为4和8,且两个圆没有公共点,则两圆的圆心距d 的取值范围是 .16.有下列函数:A.22y x =-,B .2y x =-,C.213y x =-,D.25y x = (1)当x ≠0时,函数图象上的点在x 轴上方的有 .(2)图象开口向下的有 ..(3)对称轴是 y 轴的有 .(4)当 =0 时,函数图象有最高点的是 .17.矩形的面积为 20 cm 2,则它的宽 y(cm)与长 x(cm)的函数关系式是 .18.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .19.象棋中,有“马走日,象走田……”的规则(列数在前,排数在后)图中“马”可移动到 上,“象”可移动到 上.20.若分式27x x -无意义,则x 的值为 . 21.计算:(a 2b 3)2=________.22.若2(2)30a b ++-=,则b a = .23.在同一时刻,巴黎时间比北京时间晚 7小时,班机从巴黎飞到北京需用 9小时,若乘坐 6:00(当地时间)从巴黎起飞的航班,则到达北京机场时,北京时间是 .解答题三、解答题24.如图,⊙O 为四边形ABCD 的外接圆,圆心O 在AD 上,OC ∥AB .(1)求证:AC 平分DAB ∠;(2)若AC=8,⌒AC :⌒CD =2:1,试求⊙O 的半径;(3)若点B 为⌒AC 的中点,试判断四边形ABCD 的形状.25.请将四个全等的直角梯形拼成一个平行四边形,并画出两种不同的拼法示意图(拼出的两个图形只要不全等就认为是不同的拼法).D A O26.如图,在□ABCD 中,BC=2AB ,E 为BC 中点,求证:AE ⊥ED .27.你知道棱柱与直棱柱的关系吗?请简要说明.28.计算下列各式,并用幂的形式表示结果:(1)22()m m -⋅-;(2) 83(7)7-⨯(3) 233()()a a a ⋅-⋅-(4)2()()x y x y +⋅+ (5)422()()33-⋅- (6)11n n x x ++⋅29.“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?30.如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD的周长为10.(1)求此圆的半径;(2)求图中阴影部分的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.B5.C6.B7.D8.D9.D10.A11.DD二、填空题13.变小14.31 15. 0≤d <4或d >1216.(1)B 、D ;(2)A 、C ;(3)A 、B 、C 、D ;(4)A 、C17.20y x18. -819.(1,3)或(3,3)或(4,2),(1,8)或(5,8)20.3.521.a 4b 622.-823.22: 00三、解答题24.(1)略;(2)338;(3)等腰梯形. 25.略26.证∠BAE=∠AEB ,∠CDE=∠CED ,再证∠DAE+∠ADE=90°即可略28.(1)4m -;(2)117;(3)8a ;(4)3()x y +;(5)52()3-;(6)22n x + 29.(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x 、y 顶,则⎩⎨⎧=+=+178321052y x y x ,解得x=41,y=32. 答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,还不能如期完成任务. 可以从加班生产、改进技术等方面进一步挖掘生产潜力,或者动员其它厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.30.(1)2 (2)332-π.。
浙江省舟山市中考数学第三次模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )2. 如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( )A .8cmB .4cmC .234cmD 34cm3.福彩“五位数”玩法规定所购彩票的 5 位数与开奖结果的 5 位数顺序与大小均相同, 则中一等奖,问购一张彩票中一等奖的概率是( )A .15B .5110 C .6110 D .1015 4.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 2y ax bx c =++ 0.03- 0.01- 0.02 0.04 6 6.17x << 6.17 6.18x << C .6.18 6.19x << D .6.19 6.20x <<5.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=3,BC=5,将腰 DC 绕点D 逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( ) A .1 B .2 C .3 D .46.等腰三角形一个外角是80°,其底角是( )A .40°B .100°或40°C .100°D .80°7.直线443y x =--与两坐标轴围成的三角形面积是( ) A .3B . 4C . 6D . 12 8.方程222332x x x-=--的解是( ) A .x=1.5B .x=4C .0D .无解 9.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线10.下列说法错误的是( )A .任何有理数都有倒数B .互为倒数的两个数的积为1C .互为倒数的两数符号相同D .1 和-1 互为负倒数二、填空题11.在体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145, 155, 140, 162, 164. 则他在该次预测中达标的概率是__________.12.抛物线2y ax bx c =++如图所示,则抛物线的解析式是 . 解答题 13.在⊙O 中,弦 AB ∥CD ,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是 .14.解方程(组): (1)()1812=+x (2)⎪⎩⎪⎨⎧=-=+135435y x y x 15.若一个多面体的棱数是30,顶点数是20,这是一个 面体.16.在△ABC 中,∠A :∠B :∠C=1:2:3,BC=4,那么AB= .17.若02910422=+-+-b b a a ,则a = ,=b .18.如图所示的四个两两相联的等圆.右边的三个圆可以看做是左边的圆经过 得到的.19.将长方形纸条折成如图的形状,BC 为折痕, 若∠DBA=700,则∠ABC=_______.20.如图,B 、C 是AD 的三等分点,E 是CD 的中点,根据图形填空.(1)AE= +AB=AD- =AD- ;(2)CE= =12 =12 =16. 三、解答题21.如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:A B CD M N D ′ABF EAD △∽△.22.已知一个平行四边形可以剪开而拼成一个矩形,如图①所示,那么一个等腰梯形(如图②)是台能剪升拼成一个矩形?请画图说明.若在等腰梯形ABCD 中,AD ∥BC ,AC=5 cm ,梯形的高为4 cm ,求梯形的面积.23.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.24.某校为了解九年级学生的学习情况,在这个年级段中抽取50名学生,对某学科进行测试,将成绩整理后如下数:请回答下列问题:(1)70~79分出现的频率为 ;(2)90分以上的人数(包括90分)为 人;(3)本次测试50名学生成绩的及格率为是(60分以为及格,包括60分).25.作一个任意的三角形ABC ,以A 为对称中心,画出它的对称三角形.26.(1)计算后填空:(1)(2)x x -+= ;(3)(1)x x --= ;(2)归纳、猜想后填空:2()()()()x a x b x x ++=++;(3)运用②的猜想结论,直接写出计算结果:(2)()x x m ++= ;(4)根据你的理解,填空:2310()()x x --=.27.分式方程0111x k x x x x +-=--+有增根x=1,求k 的值.28.一件工作,甲单独做要8天过完成,乙单独做需l2天完成,丙单独做需24天完成.甲 乙合作了3天后,甲因事离去,由乙、丙合作,问乙、丙还要几天才能完成这项工作?29.某地区夏季高山上的温度从山脚处开始每升高 100 m 降低 0.7℃,如果山脚温度是28℃,那么山上 300 m 处的温度是多少度?一般山上 x(m)处的温度是多少?30.计算:(1)0-(+5)-(-3. 6)+(-4);(2)(-5.3 (+ 4.8 )+ (-3.2)-(-2. 5)(3)31321 52452 --+-+(4)581139 11 1215121520 -++--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.B4.C5.C6.A7.C8.C9.D10.A二、填空题11.52 12. 2(2)1y x =-- 13.7 或 1714.⑴ 2;⑵ ⎪⎩⎪⎨⎧==2523x y . 15.12 16.817.2,518.平移19.55°20.(1)EB ,ED ,CE (2)ED ,AB ,BC ,AD三、解答题21.略22.能,12 cm 223.△AMD ′是正三角形.24.(1) 0.16 (2)21 (3)96%25.略26.(1)232x x ++,223x x -+; (2)a b +,ab ; (3)2(2)2x m x m +++; (4)(5)(2)x x -+ 27.1-=k .28.3天29.25.9℃, (7281000x -)℃ 30. (1)-5.4 (2)-10.8 (3)14- (4)7160-。
浙江省舟山市中考数学复习模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.关于二次函数y=ax 2+bx+c 的图象有下列命题:① 当c=0时,函数的图象经过原点② 当c >0且函数的图象开口向下时,方程ax 2+bx+c=0必有两个不等实根③ 函数图象最高点的纵坐标是4ac -b 24a④ 当b=0时,函数的图象关于y 轴对称.其中正确的命题的个数有 ( )A .1个B .2个C .3个D .4个 2.抛物线2255y x x =++与坐标轴的交点个数是( )A .O 个B .1个C . 2个D .3 个 3.如图,将一正方形按如图方式分成n 个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为( )A .12B .10C .8D .64.如果2a -<,那么下列各式正确的是( )A .2a <-B .2a >C .13a -+< 11a --> 5.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表: 颜色黑色 棕色 白色 红色 销售量(双)60 50 10 15 鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是 ( ) A .平均数 B .众数C .中位数D .方差 6.如图,为了测出湖两岸A 、B 间的距离.一个观测者在在C 处设桩,使三角形ABC 恰为直角三角形,通过测量得到AC 的长为160 m ,BC 长为l28 m ,那么从点A 穿过湖到点B 的距离为( )A .86 mB .90 mC .96 mD .l00 m7.在下列的计算中,正确的是( )A .2x +3y =5xyB .(a +2)(a -2)=a 2+4C .a 2•ab =a 3bD .(x -3)2=x 2+6x +9 8.两个连续的奇数的平方差总可以被 k 整除,则k 等于( )A .4B .8C .4或-4D .8的倍数 9.赵师傅透过平举的放大镜从正上方看到水平桌面上的菱形图案的一角(如图所示),那么∠A 与放大镜中的∠C 的大小关系是( )A .∠A=∠CB .∠A >∠CC .∠A <∠CD .∠A 与∠C 的大小无法比较10.已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角11.翔翔、帆帆两人赛跑,翔翔每秒钟跑7米,帆帆每秒钟跑6.5米,翔翔让帆帆先跑5米,设x 秒后,翔翔追上帆帆,则下列四个方程中,错误的是( )A . 7 6.55x x =+B . 75 6.5x -=C .(7 6.5)5x -=D .6.575x =-12.某市出租车的收费标准是:起步价7元(即行驶距离不超过3 km 都需付7元车费),超过3 km 以后,每增加l km ,加收2.4元(不足l km 按1 km 计).某人乘这种出租车从甲地到乙地共付车费19元,设此人从甲地到乙地的路程是x (km ),那么x 的最大值是 ( )A .11B .8C .7D .5 13.若3-=b a ,则a b -的值是( )A .3B .3-C .0D .6 二、填空题14.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则AP= .15.已知四边形ABCD 中,AD ∥BC ,∠B= 60°,DC=BC-AD ,则四边形ABCD 是 .16.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象,可得关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的的解是 .17.直线4y kx =+与两坐标轴围成的直角三角形面积为2,则这条直线与x 轴的交点 为 . 18.在△ABC 中,AB = AC ,∠A 的外角等于 150°,则∠B 的外角等于 .19.(x+1)4÷(x+1)2=________.20.已知31=+aa ,则221a a +的值是 . 21.(23a 4b 7-19a 2b 6)÷(-13ab 3)2=_ . 22.水星与太阳的距离约为5.79×102 km ,则这个数为 km .三、解答题23.将图中的△ABC 依次做下列变换,画出相应的图形.(1)沿y 轴正向平移1个单位;(2)以B 点为位似中心,放大到2倍.24.如图,在Rt △ABC 中,∠C=90°,∠A=60°3,将△ABC 绕点B 旋转至△A ′BC′的位置,且使点A,B,C′三点在同一直线上,则点A 经过的最短路线长是______cm.A 'C 'CB A25.如图,在△ABC 中,AD 平分∠BAC ,且AB+BD=AC 求证:∠B=2∠C .26.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移 3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形. 说明在变化过程中所运用的图形变换.27.(1)已知118x y+=,求2322x xy y x xy y -+++的值. (2)若a 2+b 2-10a-6b+34=0,求a b a b+-的值.28.任意给一个非零数,按图中的程序计算下去,试写出输出的结果.29.如图所示是在镜子中看到的某时刻时钟的情况,请问此时实际是几点钟?30.2008年四川省遭受地震灾害,全国人民万众一心,众志成城,抗震救灾.如图(1)是某市一所中学根据“献出爱心,抗震救灾”自愿捐款活动期间学生捐款情况制成的条形统计图,图(2)是该中学学生人数比例统计图(该校共有学生 1450人).(1)该校九年级学生共捐款多少元?(2)该校学生均每人捐款多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.B6.C7.C8.B9.A10.B11.BB13.A二、填空题 14. 51- 15. 等腰梯形 16.42x y =-⎧⎨=-⎩17. (-1,0)或(1,O) 18.105°19.x 2+2x+120.721.162-b a 22. 57900000三、解答题 23.如图所示.24.π335 25. 在AC 上截取AP=AB ,证△ABD ≌△APD图略27.(1)1013;(2)4. 28.输出的数等于输入的数 29.3:2530.(1) 5.4×1450×(1-34% -38%)=2192.4(元);(2)6.452元。
浙江省舟山市中考数学五模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)用科学记数法表示的数﹣3.6×10﹣4写成小数是()A . 0.00036B . ﹣0.0036C . ﹣0.00036D . ﹣360002. (2分) (2016·南通) 函数y= 中,自变量x的取值范围是()A . x 且x≠1B . x 且x≠1C . x 且x≠1D . x 且x≠13. (2分)大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90-110这一组的频数是()A . 2B . 4C . 6D . 144. (2分) (2017九上·下城期中) 二次函数(其中m>0),下列说法正确的()A . 当x>2时,都有y随着x的增大而增大B . 当x<3时,都有y随着x的增大而减小C . 若当x<n时,都有y随着x的增大而减小,则n≤2+D . 若当x<n时,都有y随着x的增大而减小,则n≥5. (2分)(2018·河北) 如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A . 北偏东30°B . 北偏东80°C . 北偏西30°D . 北偏西50°6. (2分)正六边形的两条平行边的距离为1,则它的边长为()A .B .C .D .7. (2分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A . ∠C=2∠AB . BD平分∠ABCC . S△BCD=S△BODD . 点D为线段AC的黄金分割点8. (2分)某水坝的坡度i=1:,坡长AB=20米,则坝的高度为()A . 10米B . 20米C . 40米D . 20米二、填空题 (共8题;共9分)9. (1分)(2016·镇江模拟) 若代数式的值为零,则x=________.10. (1分) (2017七下·延庆期末) 化简(x+y)2+(x+y)(x﹣y)=________.11. (1分) (2017八下·辉县期末) 某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:=1.69m, =1.69m,S2甲=0.0006,S2乙=0.00315,则这两名运动员中________的成绩更稳定.12. (1分)(2018九上·夏津开学考) 设α,β是一元二次方程x2+3x﹣7=0的两个根,则α2+4α+β=________.13. (1分) (2017八下·合浦期中) 如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是________.14. (2分)(2017·新疆) 如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________ s时,四边形EFGH的面积最小,其最小值是________ cm2 .15. (1分)如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D的度数是________°.16. (1分)(2017·嘉兴) 如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为________.三、解答题 (共8题;共76分)17. (5分)先化简,再求值:÷(x﹣2+),其中x=﹣1.18. (10分)(2017·平南模拟) 如图,已知△ABC,∠BAC=90°,AB=6,AC=8.(1)请用尺规过点A作一条线段与BC交于D,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)(2)求AD的长.19. (6分)(2017·和平模拟) 小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.(1)小明抽到标有数字6的纸牌的概率为________;(2)请用树状图或列表的方法求小亮获胜的概率.20. (10分)(2018·衡阳) 如图,已知直线分别交轴、轴于点A、B,抛物线过A,B 两点,点P是线段AB上一动点,过点P作PC 轴于点C,交抛物线于点D.(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与 AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.21. (10分)(2018·岳池模拟) 如图,已知ΔABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)若E是BD的中点,连结CE,试判断CE与⊙O的位置关系.(2)若AC=3CD,求∠A的大小.22. (10分)(2017·淮安) 如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.23. (15分)(2017·宁波模拟) 如图,已知反比例函数y1= 与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式 x+b的解.24. (10分)(2016·抚顺模拟) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共76分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
浙江省舟山市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题: (共14题;共28分)1. (2分)以下各数中,填入□中能使(﹣)×□=﹣2成立的是()A . -1B . 2C . 4D . -42. (2分)下列式子可以用“=”连接的是()A . 5+4_______12-5B . 7+(-4)______7-(+4)C . 2+4(-2)______-12D . 2(3-4)_____23-43. (2分) (2019九下·沈阳月考) 两个完全相同的长方体的长、宽、高分别为5cm、4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最大是().A . 158cm2B . 164cm2C . 176cm2D . 188cm24. (2分)若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是()A . 平均数为10,方差为2B . 平均数为11,方差为3C . 平均数为11,方差为2D . 平均数为12,方差为45. (2分) (2017七下·滦南期末) 下列运算中,正确的是()A .B .C .D .6. (2分)用科学记数法表示我国9.60×106平方公里国土面积,下面说法正确的是()A . 精确到百分位,有两个有效数字B . 精确到万位,有两个有效数字C . 精确到百分位,有三个有效数字D . 精确到万位,有三个有效数字7. (2分)(2014·来宾) 将分式方程 = 去分母后得到的整式方程,正确的是()A . x﹣2=2xB . x2﹣2x=2xC . x﹣2=xD . x=2x﹣48. (2分)下列说法中,错误的是()A . 4的算术平方根是2B . 9的平方根是±3C . 8的立方根是±2D . 立方根等于-1的实数是-19. (2分)(2016·嘉善模拟) 如图,直线y1= x+2与双曲线y2= 交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A . x>﹣6或0<x<2B . ﹣6<x<0或x>2C . x<﹣6或0<x<2D . ﹣6<x<210. (2分) (2016八上·萧山月考) 如图(1),与图(1)中的三角形相比,图(2)中的三角形发生的变化是()A . 向左平移3个单位长度B . 向左平移1个单位长度C . 向上平移3个单位长度D . 向下平移1个单位长度11. (2分)布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红-黄-蓝”的概率是()A .B .C .D .12. (2分)(2017·武汉模拟) 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A,B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A . 6B . 8C . 10D . 1213. (2分)(2016·滨州) 如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A . ∠EMB=∠ENDB . ∠BMN=∠MNCC . ∠CNH=∠BPGD . ∠DNG=∠AME14. (2分) (2017九下·莒县开学考) 如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A . 60°B . 65°C . 70°D . 75°二、填空题: (共4题;共4分)15. (1分)(2016·武侯模拟) 分解因式:2x2﹣8x+8=________16. (1分)(2013·南京) 已知如图所示的图形的面积为24,根据图中的条件,可列出方程:________.17. (1分) (2016九上·宜春期中) 抛物线y=x2﹣2x﹣8与x轴的交点坐标是________.18. (1分)(2017·天山模拟) 如图,AB是⊙O的直径,AB=15,AC=9,则cos∠ADC=________.三、计算题: (共2题;共10分)19. (5分) (2019七上·台安月考)20. (5分)(2016·扬州) 解不等式组,并写出该不等式组的最大整数解.四、解答题: (共5题;共51分)21. (5分)有一个两位数,十位上的数是个位上的数的2倍,如果把这两个数字的位置调换,那么所得的新的两位数比原来的两位数小27,求这个两位数.22. (15分)某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为_____.23. (5分)(2017·深圳模拟) 四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的圆O过点E.(Ⅰ)求证:四边形ABCD是菱形.(Ⅱ)若CD的延长线与圆相切于点F,已知直径AB=4.求阴影部分的面积.24. (11分)(2017·成武模拟) 数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=________25. (15分) (2015九上·宜昌期中) 如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如图,建立直角坐标系,求此抛物线的解析式;(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?参考答案一、选择题: (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题: (共4题;共4分)15-1、16-1、17-1、18-1、三、计算题: (共2题;共10分)19-1、20-1、四、解答题: (共5题;共51分) 21-1、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、25-3、。
2016年浙江省舟山市南海实验中学中考数学模拟试卷(5月份)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.(3分)如果+□=0,则“□”表示的数应是()A.﹣3 B.3 C.D.﹣2.(3分)下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xy D.x6÷x3=x23.(3分)校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这1 9位同学的()A.平均数B.中位数C.众数D.方差4.(3分)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.6.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.7.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中准确的是()A. B.C. D.8.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论有()A.2个 B.3个 C.4个 D.5个9.(3分)如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.10.(3分)已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG 绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.)11.(4分)分解因式:2a2﹣2=.12.(4分)光的速度大约是300000千米/秒,将300000用科学记数法表示为.13.(4分)已知一圆锥的底面半径是1,母线长是4,它的侧面积是.14.(4分)已知x2﹣2=y,则2x(x﹣3y)+2y(3x﹣1)﹣2是.15.(4分)李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.16.(4分)Rt△ABD的两顶点A、B分别在x轴和y轴上运动,其中∠ABD=90°,∠D=30°,AB=4,则顶点D到原点O的距离的最小值为,顶点D到原点O的距离的最大值为.三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:()﹣2+﹣2cos60°;(2)化简:(2a+1)(2a﹣1)﹣4a(a﹣1)18.(6分)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19.(6分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).20.(8分)已知:一次函数y1=x+2与反比例函数y2=相交于A、B两点且A 点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.(3)当y1>y2时,求x的取值范围.21.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?(4)若有外型完全相同的A、B、C、D粽各一个煮熟后,小王吃了俩个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率?22.(10分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为40cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到0.1)(数据:sin25°≈0.42,cos25°≈0.9,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.4)23.(10分)如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用50张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:方法一:如图2,每张卡纸剪出3个立方体表面展开图;方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.(1)在图3中画出第二个长方体表面展开图,用阴影表示;(2)写出y关于x的函数解析式;(3)设每只模型(包括立方体和长方体)均获利为w(元),w满足函数w=1.6﹣若想将模型作为教具卖出,且制作的长方体的个数不超过立方体的个数,则应该制作立方体和长方体各多少个,使获得的利润最大?最大利润是多少?24.(12分)如图:已知正方形OABC的边OC、OA分别在x轴和y轴的正半轴上,点B坐标为(4,4).二次函数y=x2+bx+c的图象经过点A,B,且与x轴的交点为E、F.点P在线段EF上运动,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连接AD.(1)求b、c的值及点E和点F的坐标;(2)当点P在线段OC上时,求证:OP=CD;(3)在点P运动过程中,当△AOP与以A、B、D为顶点的三角形相似时,求点P的坐标;(4)在点P运动到OC中点时,能否将△AOP绕平面内某点旋转90°后使得△AOP 的两个顶点落在x轴上方的抛物线上?若能,请直接写出旋转中心M的坐标;若不能,请说明理由.2016年浙江省舟山市南海实验中学中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.(3分)如果+□=0,则“□”表示的数应是()A.﹣3 B.3 C.D.﹣【解答】解:和其相反数相加为0,则其相反数为﹣.故选D.2.(3分)下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xy D.x6÷x3=x2【解答】解:A、x2与x3不是同类项,不能合并,错误;B、(x3)2=x6,正确;C、2x与3y不是同类项,不能合并,错误;D、x6÷x3=x3,错误;故选B3.(3分)校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这1 9位同学的()A.平均数B.中位数C.众数D.方差【解答】解:由题意可得,19位同学取前10名,只要知道这19名同学的中位数,即排名第10的同学的成绩即可,故选B.4.(3分)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.5.(3分)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.【解答】解:左视图从左往右,2列正方形的个数依次为2,1;依此画出图形.故选C.6.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.7.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中准确的是()A. B.C. D.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.8.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:∵图象与x轴的交点A、B的横坐标分别为﹣1,3,∴对称轴为x=﹣==1,∴b=﹣2a,∴2a+b=0,∴结论①不正确.∵x=1时,y<0,∴a+b+c<0,∴结论②不正确.∵点A的坐标为(﹣1,0),∴a﹣b+c=0,又∵b=﹣2a,∴a﹣(﹣2a)+c=0,∴c=﹣3a,∴结论③正确.如图1,连接AD,BD,作DE⊥x轴于点E,,要使△ABD是等腰直角三角形,则AD=BD,∠ADB=90°,∵DE⊥x轴,∴点E是AB的中点,∴DE=BE,即||==2,又∵b=﹣2a,c=﹣3a,∴||=2,a>0,解得a=,∴只有当a=时,△ABD是等腰直角三角形,∴结论④正确.要使△ACB为等腰三角形,则AB=BC=4,AB=AC=4,或AC=BC,Ⅰ、当AB=BC=4时,在Rt△OBC中,∵OB=3,BC=4,∴OC2=BC2﹣OB2=42﹣32=16﹣9=7,即c2=7,∵抛物线与y轴负半轴交于点C,∴c<0,c=﹣,∴a=﹣=.Ⅱ、当AB=AC=4时,在Rt△OAC中,∵OA=1,AC=4,∴OC2=AC2﹣OA2=42﹣12=16﹣1=15,即c2=15,∵抛物线与y轴负半轴交于点C,∴c<0,c=﹣,∴a=﹣=.Ⅲ、当AC=BC时,∵OC⊥AB,∴点O是AB的中点,∴AO=BO,这与AO=1,BO=3矛盾,∴AC=BC不成立.∴使△ACB为等腰三角形的a值可以有两个:.∴结论⑤不正确.综上,可得正确的结论有两个:③④.故选:A.9.(3分)如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN 的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A10.(3分)已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG 绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.【解答】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,NE=CD=2.5.∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,故选:C.二、填空题(本大题共6小题,每小题4分,共24分.)11.(4分)分解因式:2a2﹣2=2(a+1)(a﹣1).【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).12.(4分)光的速度大约是300000千米/秒,将300000用科学记数法表示为 3.0×105.【解答】解:将300000用科学记数法表示为3.0×105.故答案为:3.0×105.13.(4分)已知一圆锥的底面半径是1,母线长是4,它的侧面积是4π.【解答】解:把圆锥的侧面展开,圆锥的侧面积等于半径为4,弧长为2π的扇形的面积,∴侧面积=×4×2π=4π14.(4分)已知x2﹣2=y,则2x(x﹣3y)+2y(3x﹣1)﹣2是2.【解答】解:∵x2﹣2=y,∴2x(x﹣3y)+2y(3x﹣1)﹣2=2x2﹣6xy+6xy﹣2y﹣2=2x2﹣2y﹣2=2x2﹣2×(x2﹣2)﹣2=2x2﹣2x2+4﹣2=2,故答案为:2.15.(4分)李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=4﹣2.【解答】解:∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,以DE的垂直平分线为y轴建立直角坐标系,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF=,∴△PFM∽△PON,∵m=,∴FM=﹣,∴=,即=,解得:ON=4﹣2.故答案为:4﹣2.16.(4分)Rt△ABD的两顶点A、B分别在x轴和y轴上运动,其中∠ABD=90°,∠D=30°,AB=4,则顶点D到原点O的距离的最小值为2﹣2,顶点D到原点O的距离的最大值为2+2.【解答】解:取AB的中点C,连接OC、CD、OD,如下图所示,∵∠ABD=90°,∠D=30°,AB=4,∴AD=8,OC=BC=AC=2,BD===4,∴CD===2,∴CD﹣OC≤OD≤CD≤CD+OC,∴2﹣2≤OD≤2+2.∴则顶点D到原点O的距离的最小值为2﹣2,顶点D到原点O的距离的最大值为2+2.故答案为:2﹣2,2+2.三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:()﹣2+﹣2cos60°;(2)化简:(2a+1)(2a﹣1)﹣4a(a﹣1)【解答】解:(1)原式=4+2﹣1=5;(2)原式=4a2﹣1﹣4a2+4a=4a﹣1.18.(6分)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.19.(6分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.20.(8分)已知:一次函数y1=x+2与反比例函数y2=相交于A、B两点且A 点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.(3)当y1>y2时,求x的取值范围.【解答】解:(1)∵A点的纵坐标为4,∴x+2=4,x=2,A(2,4).将A(2,4)代入y=得,k=xy=2×4=8,函数解析式为y=.将y=x+2与y=组成方程组得解得,,或故A(2,4),B(﹣4,﹣2).(2)∵y=x+2与y轴交于(0,2)点,∴D(0,2).S△AOB=S△DOB+S△AOD=×2×4+×2×2=4+2=6;(3)如图,根据图象可得:﹣4<x<0或x>2.21.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?(4)若有外型完全相同的A、B、C、D粽各一个煮熟后,小王吃了俩个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率?【解答】解:(1)调查的居民数有:240÷40%=600(人);(2)C类的人数是:600﹣180﹣60﹣240=120(人).(3)爱吃D粽的人数是:8000×40%=3200(人);(4).则P=.22.(10分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为40cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到0.1)(数据:sin25°≈0.42,cos25°≈0.9,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.4)【解答】(1)解:作BE⊥OD于点E,如右图所示,在Rt△BOE中,OE=,在Rt△BDE中,DE=,则,∵tan25°≈0.47,tan55°≈1.4,∴BE≈14cm.故B点到OP的距离大约为14cm;(2)在Rt△BDE中,BD=≈33.3cm.故滑动支架的长33.3cm.23.(10分)如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用50张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:方法一:如图2,每张卡纸剪出3个立方体表面展开图;方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.(1)在图3中画出第二个长方体表面展开图,用阴影表示;(2)写出y关于x的函数解析式;(3)设每只模型(包括立方体和长方体)均获利为w(元),w满足函数w=1.6﹣若想将模型作为教具卖出,且制作的长方体的个数不超过立方体的个数,则应该制作立方体和长方体各多少个,使获得的利润最大?最大利润是多少?【解答】解:(1)图如图所示,(2)y=3x+2(50﹣x)=x+100(3)设总利润为Z,∵2(50﹣x)≤3x∴x≥20Z=yw=(x+100)(1.6﹣)=﹣x2+0.6x+160=﹣(x﹣30)2+169当x=30时,Z最大=169,3×30=90,2×(50﹣30)=40∴应该制作立方体90个和长方体40个时,获得的利润最大,最大利润是169元.24.(12分)如图:已知正方形OABC的边OC、OA分别在x轴和y轴的正半轴上,点B坐标为(4,4).二次函数y=x2+bx+c的图象经过点A,B,且与x轴的交点为E、F.点P在线段EF上运动,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连接AD.(1)求b、c的值及点E和点F的坐标;(2)当点P在线段OC上时,求证:OP=CD;(3)在点P运动过程中,当△AOP与以A、B、D为顶点的三角形相似时,求点P的坐标;(4)在点P运动到OC中点时,能否将△AOP绕平面内某点旋转90°后使得△AOP 的两个顶点落在x轴上方的抛物线上?若能,请直接写出旋转中心M的坐标;若不能,请说明理由.【解答】(1)解:把(0,4),(4,4)分别代入y=﹣x2+bx+c中,得,解得;令y=0得﹣x2+x+4=0,∴x1=2+2,x2=﹣2+2;∴E(﹣2+2,0),F(2+2,0)(2)证明:∵正方形OABC,∴OA=OC,∠AOP=∠OCD=90°,∴∠OAP+∠APO=90°,∵OH⊥AP,∴∠COD+∠APO=90°,∴∠OAP=∠COD,在△AOP与△OCD中,∴△AOP≌△OCD(AAS),∴OP=CD.(3)解:设P(t,0)①当P点在线段OC上时,如原图所示;∵∠OAP<45°,∠BAD<45°∵若△AOP∽△ABD,AO=AB,∴OP=BD,∴OP=BD=CD=2,∴t=2∴P1(2,0).②点P在线段CF上时,如图1所示:∵∠ADB>∠ODC,∵∠APO=∠ODC,∴∠ABD>∠APO,∴若△AOP∽△ABD,则=,在△AOP与△OCD中∴△AOP≌△OCD(AAS),∴OP=CD,∴DB=PC=t﹣4,∴=,解得t=2﹣2(舍去)或t=2+2,∴P2(2+2,0).③点P在线段OE上时,如图2所示;∵∠COD+∠ODC=90°,∠HOP+∠APO=90°,∠COD=∠HOP,∴∠ODC=∠APO,∵∠ODC>∠ADB,∴∠APO>∠ADB,∴若△AOP∽△ABD,则=,在△AOP与△OCD中∴△AOP≌△OCD(AAS),∴OP=CD,∴DB=PC=4﹣t,∴=,解得t=2+2(舍去)或t=2﹣2,∴P3(2﹣2,0).(4)(2,2),(0,4),(1,3),(﹣,);解:△AOP绕点M(2,2)顺时针旋转90°,且A与B重合,O与A重合,A、O 两个顶点落在x轴上方的抛物线上;△AOP绕点M(0,4)逆时针旋转90°,O与B重合,O与A两个顶点落在x轴上方的抛物线上;如图3所示:设△AOP绕点M顺时针旋转90°得到△A′O′P′,且P′、A′两点在抛物线y=﹣x2+x+4上,设O′(x,y),则P′(x,y﹣2),A′(x+4,y)∴,解得,作MG⊥O′A′于G,MH⊥OC于H,设M(a,b),∵△O′MG≌△MOH,∴O′G=MH=b,MG=OH=a,∴,解得,∴M(1,3).如图4所示:设△AOP绕点M逆时针旋转90°得到△A″O″P″,且P″、A″两点在抛物线y=﹣x2+x+4上,设O″(x,y),则P′(x,y+4),A′(x﹣2,y),同理证得M(﹣,);故将△AOP绕平面内M点旋转90°后使得△AOP的两个顶点落在x轴上方的抛物线上的M点的坐标为(2,2),(0,4),(1,3),(﹣,).。