暑期班第14讲.概率初步与统计.文科.学生版
- 格式:doc
- 大小:1.53 MB
- 文档页数:10
文科统计概率知识点总结统计学是一门研究数据的收集、分析、解释和展示的学科。
统计学是一种通过数学方法来分析数据的学科,它有着广泛的应用领域,包括经济学、心理学、社会学和政治学等。
统计学的应用范围也非常广泛,涵盖从商业到医学的各个领域。
而概率是统计学中一个非常重要的概念,它可以帮助我们预测和理解各种现象发生的可能性。
本文将对文科统计学中的概率知识点进行总结和分析。
一、概率的概念概率是一个用来描述事件发生可能性的数学概念。
在统计学中,概率通常用来描述随机事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
在现实生活中,我们经常会面临各种不确定性,比如天气预报、投资风险、疾病传播等。
概率可以帮助我们对这些不确定性进行量化和分析。
二、概率的性质概率有一些基本的性质,这些性质对于理解和计算概率都非常重要。
其中包括:1. 互斥事件的概率:两个事件互斥指的是它们不能同时发生。
如果A和B是互斥事件,那么它们的概率满足P(A∪B) = P(A) + P(B)。
2. 独立事件的概率:两个事件独立指的是它们的发生不会相互影响。
如果A和B是独立事件,那么它们的概率满足P(A∩B) = P(A) × P(B)。
3. 补事件的概率:对于一个事件A,它的补事件指的是A不发生的情况。
补事件的概率满足P(A') = 1 - P(A)。
4. 加法法则:对于两个事件A和B,它们的概率和满足P(A∪B) = P(A) + P(B) - P(A∩B)。
5. 乘法法则:对于两个独立事件A和B,它们的概率乘积等于它们各自的概率。
这些性质可以帮助我们在实际问题中计算概率,而理解这些性质也对于我们理解概率的本质有很大帮助。
三、离散型随机变量的概率分布在统计学中,随机变量是一个可以随机取不同值的变量。
离散型随机变量是指其可能取值是有限的或者可数的,而不是连续的。
1. 离散型随机变量的概率质量函数:对于一个离散型随机变量X,其概率质量函数P(X=x)描述了X取各个可能值的概率。
概率统计文科知识点总结概率统计的知识点涉及很多,包括基本概率论、统计学基础、抽样调查、推断统计、多元统计分析等等。
同时,概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
下面我们来具体总结一下文科领域中概率统计的知识点。
1.基本概率论概率论是概率统计的基础,在文科领域中,基本概率论的内容包括了概率的定义、事件的概率、条件概率、独立事件、概率分布等内容。
了解基本概率论可以让文科学生更好地理解概率统计的相关知识,对于后续的学习具有重要的作用。
2.统计学基础统计学基础是概率统计的另一个重要内容,包括了统计量、样本集中趋势、样本离散程度、概率分布等内容。
统计学基础是文科领域中概率统计的重要组成部分,它主要用来描述和分析文科数据的规律和特征。
3.抽样调查抽样调查是文科领域中概率统计的一个重要应用,它主要用来获取文科数据样本。
在实际的文科研究中,抽样调查是获取数据的常用方法,通过对抽样调查的了解可以帮助文科学生更好地进行文科研究和分析。
4.推断统计推断统计是文科领域中概率统计的一个重要内容,它主要用来从样本数据中推断总体数据的特征和规律。
推断统计包括了点估计、区间估计、假设检验等内容,通过推断统计可以帮助文科学生更好地分析文科数据。
5.多元统计分析多元统计分析是文科领域中概率统计的一个拓展内容,它主要用来分析多个变量之间的关系。
在文科研究中,多元统计分析可以帮助文科学生更好地理解文科数据之间的关系,对于文科研究具有重要的意义。
除了上述内容之外,文科领域中概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
这些内容都是文科学生在概率统计学习中需要重点掌握的知识点。
总的来说,概率统计在文科领域中有着重要的地位,它不仅可以帮助文科学生更好地理解文科数据的规律和特征,还可以帮助文科学生更好地进行文科研究和分析。
因此,文科学生在学习概率统计的过程中需要重点掌握上述知识点,通过理论学习和实际应用,不断提高自己的概率统计分析能力。
14 概率初步教学目标:1、了解并掌握计算一类事件发生可能性的方法,体会概率的意义;2、帮助学生感受到数学与现实生活的联系,体验到数学在实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3、培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。
教学重点:概率的定义及简单的列举法计算。
教学难点:灵活应用概率的计算方法解决各种类型的实际问题。
教学过程:一、知识要点()所有可能的结果总数发生的结果数事件A A P =二、典型例题例1:从3名男生和若干女生中任意选1名同学去参加学校组织的演讲比赛,选出的同学是女生的概率为1310,试求女生的人数。
师:题目中选出的同学是女生的概率是与什么有关?生:女生人数,男生和女生人数之和。
师:分母表示男生和女生人数之和,分子表示女生人数。
化简后的分数为1310,我们可以把男女生人数之和看成13份,女生人数看成10份,那么男生就是多少份?生:3份。
师:题目中已知3名男生,说明了什么?生:1份就是1人。
师:那么女生有多少人?生:10人。
例2:在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是52.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是41,则原来盒中白色棋子有多少颗? 师:题目中取得白色棋子的概率与什么有关?生:白色棋子数量,白色和黑色棋子数量之和。
师:为什么两次取得白色棋子的概率不一样?生:中途再往盒中放进6颗黑色棋子。
师:哪种颜色棋子数量没有发生变化?生:白色棋子。
师:从两个分数我们可以看出,原来白色棋子可以看成2份,而后来白色棋子看成1份,但是白色棋子没有发生变化,该如何考虑?生:把后面一个分数也改成分子为2的分数,变成82。
师:总数从5份变成了8份,是由于多了6颗黑色棋子,那么1份是多少颗棋子? 生:2颗。
师:白色棋子有多少颗?生:4颗。
例3:甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a 、b ,则a+b=9的概率为 .师:他们抛掷的点数a 可能是哪些数?b 可能是哪些数?生:a 可能是1、2、3、4、5、6,b 可能是1、2、3、4、5、6师:a+b 一共有多少种情况?注意1+2和2+1是两种情况!生:a+b 一共有36种情况。
概率与统计初步概率与统计初步教案一、引言概率与统计是一门应用广泛的数学学科,它研究的是随机事件的发生概率以及通过收集和分析数据来推断总体特征的方法。
本课程将以初步的形式介绍概率与统计的基本概念、方法和应用。
二、概率的基本概念1.概率的定义概率是用来描述随机事件发生可能性大小的数值。
介绍概率的定义,包括频率概率和几何概率的概念。
2.概率的性质介绍概率的几个基本性质,如概率的非负性、概率的规范性、概率的可列可加性等。
3.事件的关系与运算介绍事件的包含、交、并的关系,以及事件的补运算等。
三、概率的计算方法1.古典概型的概率计算介绍古典概型的概率计算方法,包括等可能原理的应用。
2.频率概率的概率计算介绍频率概率的计算方法,包括相对频率和极大似然估计等。
3.几何概率的计算介绍几何概率的计算方法,包括正方形和圆上的点的计数等。
四、条件概率与独立性1.条件概率的概念与性质介绍条件概率的定义和性质,以及条件概率的计算方法。
2.乘法定理与贝叶斯公式介绍乘法定理和贝叶斯公式的概念和应用。
3.独立事件的概念与性质介绍独立事件的定义和性质,以及独立事件的计算方法。
五、随机变量与概率分布1.随机变量的概念与分类介绍随机变量的定义和分类,包括离散随机变量和连续随机变量。
2.概率分布函数与密度函数介绍概率分布函数和概率密度函数的概念和性质。
3.常见概率分布介绍常见的离散型概率分布和连续型概率分布,包括二项分布、正态分布等。
六、统计的基本概念和方法1.总体与样本介绍总体和样本的概念,以及总体参数和样本统计量的区别。
2.抽样与抽样分布介绍随机抽样和抽样分布的概念,包括正态总体和大样本抽样和小样本抽样。
3.参数估计介绍参数估计的概念和方法,包括点估计和区间估计。
4.假设检验介绍假设检验的概念和步骤,包括零假设和备择假设的提出和检验。
七、概率与统计的应用1.生活中的概率与统计介绍概率与统计在日常生活中的应用,如赌博、保险、抽奖等。
2.工程中的概率与统计介绍概率与统计在工程领域中的应用,如可靠性分析、质量控制等。
事件与概率 随机事件的概率A 随机事件的运算B 两个互斥事件的概率加法公式C 古典概型 古典概型 B 几何概型几何概型B⑴事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. ②了解两个互斥事件的概率加法公式. ⑵古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. ⑶随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.板块一:事件及样本空间(一)知识内容1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.高考要求第讲知识精讲在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.(二)典例分析【例1】 下列说法:①既然抛掷硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买1000张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过让运动员猜上抛均匀塑料圆板着地是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到2的概率是16,这说明一个骰子掷6次会出现一次2.其中不正确的说法有( )A .1个B .2个C .3个D .4个【例2】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例3】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”, 画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例5】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α 平面m β=,n β∥,n α∥,则m n ∥.【例6】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.【例7】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件; ⑷“两次点数之差为1”这一事件包含了几个基本事件.【例8】一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例9】同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为()x y,.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“5x y+=”这一事件包含哪几个基本事件?“3x<且1y>”呢?⑷“4xy=”这一事件包含哪几个基本事件?“x y=”呢?板块二:随机事件的概率(一)知识内容1.概率的统计定义一般地,在n次重复进行的试验中,事件A发生的频率mn,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记为()P A.从概率的定义中,我们可以看出随机事件的概率()P A满足:0()1P A≤≤.当A是必然事件时,()1P A=,当A是不可能事件时,()0P A=.2.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A和事件B至少有一个发生(即A发生,或B发生,或A B,都发生)所构成的事件C,称为事件A与B的并(或和),记作C A B= .若C A B= ,则若C发生,则A、B中至少有一个发生,事件A B是由事件A或B所包含的基本事件组成的集合.3.互斥事件的概率加法公式:若A、B是互斥事件,有()()()P A B P A P B=+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++ . 事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 4.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断. 2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆动,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.(二)典例分析【例10】 对某工厂所生产的产品质量进行调查,数据如下:950件合格品,大约需要抽查多少件产品?【例11】 某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1(2)这位运动员投篮一次,进球的概率为多少?【例12】判断下列各对事件是否是相互独立事件⑴甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.⑵容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.【例13】设M和N是两个随机事件,表示事件M和事件N都不发生的是()A.M N⋅⋅C.M N M N+B.M N⋅+⋅D.M N【例14】抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是3的倍数”,事件D为“落地时向上的数是6或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与B B.B与C C.A与D D.C与D【例15】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?【例16】(2009全国卷Ⅰ文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例17】(08天津)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例18】把10张卡片分别写上0129,,,,后,任意叠放在一起,从中任取一张,设“抽到大于3的奇数”为事件A,“抽到小于7的奇数”为事件B,求()P A,()P B和()P A B.【例19】(2007年全国I卷文)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.板块三:古典概型(一)知识内容1.古典概型:如果一个试验有以下两个特征:⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件;⑵等可能性:每个基本事件发生的可能性是均等的.称这样的试验为古典概型.2.概率的古典定义:随机事件A的概率定义为()P A=A事件包含的基本事件数试验的基本事件总数.(二)典例分析【例20】已知ABC∆的三边是10以内(不包含10)的三个连续的正整数,求ABC∆是锐角三角形的概率.【例21】一个各面都涂有色彩的正方体,被锯成1000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率;⑵有两面涂有色彩的概率;⑶有三面涂有色彩的概率.【例22】同时抛掷两枚骰子,⑴求得到的两个点数成两倍关系的概率;⑵求点数之和为8的概率;⑶求至少出现一个5点或6点的概率.【例23】 考虑一元二次方程20x mx n ++=,其中m n ,的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率.【例24】 有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、e ,⑴从中任意抽取一张,①求抽出的一张是大写字母的概率; ②求抽出的一张是A 或a 的概率; ⑵若从中抽出两张,③求抽出的两张都是大写字母的概率; ④求抽出的两张不是同一个字母的概率;【例25】 (05广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数123456,,,,,),骰子朝上的面的点数分别为X Y ,,则2log 1X Y =的概率为( ) A .16 B .536C .112D .12【例26】 李明手中有五把钥匙,但忘记了开门的是哪一把,只好逐把试开,⑴李明恰在第三次打开房门的概率是多大? ⑵李明三次内打开房门的概率是多大?【例27】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.⑴取到的2只都是次品;⑵取到的2只中恰有一只次品.【例28】(2009四川文)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡),某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中3 4是省外游客,其余是省内游客,在省外游客中有13持金卡,在省内游客中有23持银卡.⑴在该团中随即采访2名游客,求恰有1人持银卡的概率;⑵在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【例29】若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,则点P落在圆2216x y+=内的概率是.【例30】(2009江西文)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为()A.16B.14C.13D.12CE D B O A 板块四:几何概型(一)知识内容几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量.(二)典例分析【例31】 如图,在边长为25的正方形中挖去边长为23的两个等腰直角三角形,现有均匀的粒子散落在正方形,问粒子落在中间带形区域的概率是多少?【例32】向面积为S 的ABC ∆内任投一点P ,则随机事件“PBC ∆的面积小于3S”的概率为多少?【例33】 如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求:⑴AOC ∆为钝角三角形的概率; ⑵AOC ∆为锐角三角形的概率.【例34】设正四面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“14P ABCV V-≥”的事件为X,求概率()P X;②设“14P ABCV V-≥且14P BCDV V-≥”的事件为Y,求概率()P Y.【例35】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.【例36】甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即离去,求两人能会面的概率.【例37】在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.习题1. 将一枚硬币连续投掷三次,恰有两次正面朝上的概率是多少?习题2. 下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率为mn;③频率是不能脱离n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确命题的序号为 .习题3. 掷两枚均匀的骰子,记A =“点数不同”,B =“至少有一个是6点”,判断A 与B 是否为独立事件.习题4. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交弧AB ︵于P ,则同时满足:45AOP ∠≥°且75BOP ∠≥°的概率为 .家庭作业习题1. 先后抛掷两颗骰子,设出现的点数之和是121110,,的概率依次是123P P P ,,,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .123P P P >=习题2. 在12345,,,,条线路汽车经过的车站上,有位乘客等候着134,,路车的到来.假如汽车经过该站的次数平均来说2345,,,路车是相等的,而1路车是其他各路车次数的总和.试求首先到站的汽车是这位乘客所需要线路的汽车的概率.习题3. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )A .12B .13C .14D .23月测备选。
概率与统计文科讲义(学霸版)课程简介:即PPT(第1页):概率与统计,首先要做一个小说明,为什么有文科版和理科版?因为我们不只是讲解必修三的概率与统计,还要加入一些选修的内容。
其中文科生会加入选修1-2的统计案例。
而理科生会加入选修2-3里面的更多内容。
这样组合成我们文理科不同的概率与统计的知识树。
必修三是不分文理科的,文理科这里的区别在于选修内容不同而已。
(以上提到的课本都是针对人教A版)概率与统计我们需要识记的东西比较多,尤其统计那里不是很容易懂,我更希望你能够懂得统计到底在做什么,而不是只会根据题目给的公式代数计算,这个是小学生的工作,不是高中生的。
这节课我们学习:1、概率与统计的知识树构建;2、如何运用知识树解题。
概率与统计属于CBA方法中的C——Common Sense类,概率会出小题,比较简单。
统计问题会出现在18或19题的位置,12分。
所以这一章的内容不难,但是分值比重却很大。
曾经的统计大题非常简单,大家都是看着题目里给出的公式,然后直接代数计算就结束了。
但是这样的日子很可能一去不复返,我们的统计题不能总是那么考了,现在的重点是要求你能理解为什么在统计,越来越接近真实的统计,所以题目文字量越来越大,有时光是读题就已经头大了,但是,真实的统计就是这样的。
计算谁不会?就算你我不会,计算机也会呀,所以要重新审视一下统计题目的地位了。
好了,摆正心态,不要认为今天的内容非常简单,让我们开始今天的学习吧。
PPT(第2页):我们依然不像B类一样过多介绍知识点特点,因为知识点都是识记类的。
我们直接来看对应模块一般怎么出题,以及应对策略。
1、概率会怎么出题?概率我们文科生就相对简单很多,古典概型和几何概型都不难,古典概型会数数就好,几何概型会算面积就可以了。
记得考虑问题要全面,数数的时候手指头要掰得开,嘿嘿。
2、统计题目又怎么考?刚刚介绍过,必考大题。
而现在也越来越难,与其说越来越难,不如说越来越像真正的统计。
概率与统计文科高考知识点概率与统计是文科高考中的重要考点之一,它既是数学的一门分支,也是我们日常生活中经常用到的一种思维工具。
在本文中,我们将探讨概率与统计在文科高考中的基本概念和应用。
概率是指某一事件在一次试验中发生的可能性,它是通过数值来描述的。
我们通常用0到1之间的数值来表示概率,其中0表示不可能事件,1表示必然事件。
在概率的计算中,我们可以利用排列组合的方法进行推导。
比如,当我们投掷一个硬币时,硬币正面朝上的概率是1/2,而反面朝上的概率也是1/2,两者之和为1。
概率的计算方式有很多,常见的有古典概率和条件概率。
古典概率是指在样本空间中,各个事件发生的概率是相等的。
比如,当我们掷一个骰子时,出现每个面的概率都是1/6。
而条件概率是指在给定一些条件下,某个事件发生的概率。
比如,当我们知道某个人是男性时,他患某种疾病的概率是多少。
概率在文科高考中的应用非常广泛。
例如,在历史考试中,我们可以通过统计往年的试题分布来推测今年的考点。
在政治考试中,我们可以通过统计选民的投票意向来预测选举结果。
在文学作品的研究中,我们可以通过统计词频来揭示作者的写作风格。
而统计则是指对一组数据进行整理、分析和解释的方法。
在文科高考中,统计常常以表格、图表和描述性统计等形式展示。
通过数据的分析,我们可以得出结论,并提供依据用于问题的解决。
在统计中,常常涉及到两个重要的概念:平均数和标准差。
平均数是一组数据的中心趋势的度量,它等于所有数据之和除以数据的个数。
标准差则是一组数据的离散程度的度量,它可以告诉我们数据分布的广泛程度。
通过求解平均数和标准差,我们可以在文科高考中对数据进行分析,判断一组数据的特征和趋势。
除了平均数和标准差,还有其他一些统计方法在文科高考中也是非常重要的。
例如,相关性分析可以用来研究两个变量之间的关系。
回归分析则可以用来建立一个数学模型,通过已知的自变量来预测因变量。
这些方法不仅可以帮助我们从数据中提取有用的信息,还可以为文科研究提供理论框架和理论支持。
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率1,0AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:db c a d cb a bcd a n K22满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意2k KP 0.10 0.05 0.01 0.005 0k 2.7063.8416.6357.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ . 18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间[25,30)[30,35)[35,40)[40,45)[45,50]人数25ab(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.31 B.21 C.32 D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.107 B.85 C.83 D.10322.在区间[-2,3]上随机选取一个数x ,则1x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为()A.1?x yB.1?x yC.xy 2188? D.176?y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程axb y ???中的b ?为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程at by ???;(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程at b y ???中,t by atn t yt n y t b ni ini ii ??,?1221. 28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80)[80,90)[90,100)[100,110)频数 3 4 8 15 分组[110,120)[120,130)[130,140)[140,150]频数15x32乙校:分组[70,80)[80,90)[90,100)[100,110)频数 1 2 8 9 分组[110,120)[120,130)[130,140)[140,150]频数1010y3(1)计算y x,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算db c a d cb abcadn K22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩x (分)89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;甲校乙校总计优秀非优秀总计2k KP 0.10 0.05 0.010 0k 2.7063.8416.635(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:ax b y ???,其中x byaxx y y x x b ni ini i i??,?121;90,93y x ,30,4051251yy x x xx ii i i i.30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85aa1.25a1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁)频数频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350 [35,40) 30 b [40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
第九章 概率与统计初步一、计数原理1、 (分类计数)加法原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……在第n 类办法中有n m 种不同的方法,那么完成这件事情,共有:n m m m N +++= 21种不同的方法;2、 (分步计数)分步乘法原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第n 步有n m 种不同的方法,那么完成这件事情,共有:n m m m N ⨯⨯⨯= 21种不同的方法;3、 区分做事情的方法是“分类”还是“分步”主要看能否一步做完,能够一步做完的就是分类(用加法原理),不能一步做完的,就是分步(用乘法原理);二、排列与组合1、 排列数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有排列的个数,叫做从n 个不同的元素中取出m 个不同元素的排列数,用符号n mA 表示,且:2、 n 的阶乘:自然数1到n 的连乘积,叫做n 的阶乘,记作:!n ,且:3、 组合数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数,用符号n mC 表示,且:组合数公式也可写为:4、 组合数的两个性质:()()n m n m n n m n mn n m C C C C C 1121--+-+==5、 排列与组合的区别:排列与顺序有关;组合与顺序无关。
()()()()n m m n n n n A n m ≤+---=,121 ()()10,1221!=⋅--=!规定: n n n n ()()()()()()1,,1221121!0=≤⋅--+---==n n m nmC n m m m m m n n n n m A C 规定: ()!!!m n m n C n m -⋅=()!!m n n A nm -=为:易知排列数公式也可写三、概率1、 基本概念(1) 随机现象:在相同的条件下,具有多种可能的结果,而事先又无法确定会出现哪种结果的现象;(2) 随机试验的特征:可以在相同的条件下重复进行;试验的所有可能结果是可以明确知道的,并且这些可能结果不止一个;每次试验之前不能准确预言哪一个结果会发生;(3) 随机事件:随机试验的结果叫做随机事件,简称事件,常用大写字母A 、B 、C表示;(4) 必然事件:在一次随机试验中必然要发生的事件,用Ω表示(Ω读作“omiga ”,Ω对应的小写希腊字母是“ω”); (5) 不可能事件:在一次随机试验中不可能发生的事件,用φ表示(φ读作“fai ”); (6) 基本事件:随机事件中不能分解的事件称为基本事件,即:最简单的随机事件;(7) 复合事件:由若干个基本事件组成的事件称为复合事件; 2、 频数与频率(1) 频数:在n 次重复试验中,事件A 发生了m 次()n m ≤≤0,m 叫做事件A 发生的频数;(2) 频率:在n 次重复试验中,事件A 发生的频数在试验总次数中所占的比例nm ,叫做事件A 发生的频率; 3、 概率(1) 一般地,当试验的次数充分大时,如果事件发生的频率总稳定在某个常数附近,那么就把这个常数叫做事件发生的概率,记作:; (2) 概率的性质:i. 对于必然事件Ω:()1=ΩP ii. 对于不可能事件φ:()0=φP iii. ()10≤≤A P4、 古典概型(1) 古典概型:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性相同,那么称这个随机试验属于古典概型;(2) 概率:设试验共有n 个基本事件,并且每一个基本事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件发生的概率为:(3) 事件的“交”:“B A ”表示B A 、同时发生,记作:AB ;(4) 事件的“并”:“B A ”表示B A 、中至少有一个会发生,又称为事件A 与事件B 的和事件;()nA A P m==基本事件总数包含的基本事件(5) 事件的“否”:A 表示事件A 的对立事件;(A 读作a bar ,“A 拔”)(6) 互为对立的事件:若事件A 是事件B 的对立面,且Ω==B A B A ,φ;(对立事件的理解:在任何一次随机试验中,事件A 与B 有且仅有一个发生) (7) 互斥事件(互不相容事件):不可能同时发生的两个事件,即:φ=B A ;(对立事件是互斥事件,但互斥事件不一定是对立事件)(8) 相互独立事件:在随机试验中,如果事件A 的发生不会影响事件B 发生的可能性的大小,即在事件A 发生的情况下,事件B 发生的概率等于事件B 原来的概率,那么称事件A 与事件B 相互独立;(事件A 发生与否,不影响事件B 的概率) (9) 若A 、B 是互斥事件,则:()()()B P A P B A P +=(10) 若A 、B 是对立事件,则:()()B P A P +=1,即:()()A P A P -=1 (11) 若A 、B 不是互斥事件,则:()()()()B A P B P A P B A P -+= (12) 若A 、B 是相互独立事件,则:()()()()B P A P AB P B A P ⋅==四、总体、样本与抽样方法例1:为了了解全校1120名一年级学生的身高情况,从中抽取100名学生进行测量; 1、 总体:在统计中,所研究对象的全体;例1中“全校1120名一年级学生的身高”是总体;2、 个体:组成总体的每一个对象;例1中“全校每一位一年级学生的身高”是个体;3、 样本:被抽取出来的个体的集合;例1中“抽取的100名一年级学生的身高”是样本;4、 样本容量:样本所含个体的数目;例1中“100”是样本容量;5、 抽样的方法有三种:简单随机抽样、系统抽样、分层抽样;6、 说明:当总体中的个数比较小时,常采取简单随机抽样;当总体中的个数比较多,且其分布没有明显的不均匀情况,常采用系统抽样;当总体由差异明显的几个部分组成时,常采用分层抽样;五、用样本估计总体1、 样本均值:()n x x x nx +++=2112、 样本方差:()()()[]2222121x x x x x x nS n -++-+-= 3、 样本标准差:()()()[]222211x x x x x x nS n -++-+-=4、 说明:均值反映了样本和总体的平均水平;方差和标准差则反映了样本和总体的波动大小程度;5、作频率分布直方图的方法:①把横轴分成若干段,每一线段对应一个组的组距;②然后以此线段为底作一矩形,它的高等于该组的频率/组距;这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图。
要求层次重难点简单随机抽样 B 统计⑴随机抽样 ①理解随机抽样的必要性和重要性. ②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. ⑵总体估计 ①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点. ②理解样本数据标准差的意义和作用,会计算数据标准差. ③能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④会用样本的频率分布估计总体分布,会用样本的基本数字分层抽样和系统抽样 A 频率分布表,直方图、折线图、茎叶图 B样本数据的基本的数字特征(如平均数、标准差)B 用样本的频率分布估高考要求第十四讲 概率初步与统计板块一:统计 典例分析:【例1】 为了让人们感知丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31.如果该班有45名学生,那么根据提供的数据估计本周全班同学各家共丢弃塑料袋( ) A .900个 B .1080个 C .1260个 D .1800个【例2】 (2008天津11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工______人.【例3】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例4】 (2008湖南12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示: 则该地区生活不能自理的老人中男性比女性约多_____________人.知识精讲40-50岁50岁以上40岁以下【例5】 (2009广东12)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是 .若用分层抽样方法,则40岁以下年龄段应抽取______人.【例6】 一个总体中有100个个体,随机编号为0,1,2,,99 ,依编号顺序平均分成10个小组,组号依次为1,2,3,,10 .现用某种抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m k +的个位数字相同.若6m =,则在第7组中抽取的号码是___________.【例7】 一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件.【例8】 用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是___________.【例9】 (2009江苏6)某校甲、乙两个班级各有5名编号为12345,,,,的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s = .【例10】(2008山东9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()A B【例11】(2009上海18)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【例12】(2008上海9)已知总体的各个体的值由小到大依次为23371213.718.320,,,,,,,,,,且总a b体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是.【例13】(2009安徽17)某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.⑴完成所附的茎叶图;⑵用茎叶图处理现有的数据,有什么优点?⑶【例14】 (2009广东18)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图. ⑴根据茎叶图判断哪个班的平均身高较高; ⑵计算甲班的样本方差.⑶现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.【例15】 (2009年福建12)某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示,记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是 .板块二:概率初步 典例分析:【例16】 (2008江苏2)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6六个点的正方体形玩具)先后抛掷2次,则出现向上的点数之和为4的概率为 .【例17】 (2008江苏6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 .乙班甲班9886539201988931820215161718【例18】(2009山东)在区间[]11-,上随机取一个数x,πcos2x的值介于0到12之间的概率为()A.13B.2πC.12D.23【例19】(2009浙江17)有20张卡片,每张卡片上分别标有两个连续的自然数k,1k+,其中0,1,2,,19k= .从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14”为A,则()P A=_____________.【例20】(2009江西10)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为()A.16B.14C.13D.12【例21】(2009安徽10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于()A.1B.12C.13D.0【例22】(2008海南宁夏19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5678910,,,,,.把这6名学生的得分看成一个总体.⑴求该总体的平均数;⑵用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.【例23】(2008广东19)⑴求x的值;⑵现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?⑶已知245z≥,求初三年级中女生比男生多的概率.y≥,245【例24】(2009天津)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A B C,,三个区中抽取7个工厂进行调查.已知A B C,,个工厂.,,区中分别有182718⑴求从A B C,,区中应分别抽取的工厂个数;⑵若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.【例25】(2009山东)一汽车厂生产A B C,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.⑴求z的值.⑵用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.⑶用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.家庭作业习题1.(2008陕西3)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30B.25C.20D.15习题2.(2008湖北11)一个公司共有1000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是.习题3. (2008山东8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( ) A .304.6 B .303.6 C .302.6 D .301.6习题4. (2009辽宁9)ABCD 为长方形,2=AB ,1=BC ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .π14-C .π8D .π18-习题5. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6六个点的正方体形玩具)先后抛掷2次,则出现向上的点数之和为奇数的概率为 .习题6. (2009海南19)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数). ⑴A 类工人中和B 类工人各抽查多少工人? ⑵从A 类工人中抽查结果和从B 类工人中的抽查结果分别如下表1和表2 表1表2①的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论) 2 9 1 1 5 83 0 2 6 3 1 0 24 7B 类工人生产能力频率分布直方图A 类工人生产能力频率分布直方图习题1. 某校高三年级一共有900个学生,其中女生400人.为了解该年级学生的健康情况,使用分层抽样法进行抽样调查.已知从男生中任意抽取了25人,则需要从女生中任意抽取______人进行调查.习题2. (2009山东)在区间ππ22⎡⎤-⎢⎥⎣⎦,上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13B .2πC .12D .23习题3. 现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. ⑴求1A 被选中的概率;⑵求1B 和1C 不全被选中的概率.月测备选。