概率统计基础知识
- 格式:pdf
- 大小:1.84 MB
- 文档页数:66
初中概率与统计知识点整理概率与统计是数学中的一个重要分支,主要研究随机现象的规律性和数量关系。
初中阶段的概率与统计主要包括概率的基本概念、概率的计算方法、抽样调查、数据的整理与分析等内容。
下面将对初中概率与统计的知识点进行整理。
一、概率的基本概念1.随机事件:不确定性的事件称为随机事件,用大写字母A、B、C等表示。
2.样本空间:随机试验的所有可能结果组成的集合称为样本空间,用Ω表示。
3.事件的概率:事件A发生的可能性大小称为事件A的概率,用P(A)表示,0≤P(A)≤14.必然事件和不可能事件:概率为1的事件称为必然事件,概率为0的事件称为不可能事件。
5.互斥事件和对立事件:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。
二、概率的计算方法1.古典概型:指每次试验结果只有有限种可能且各结果发生的概率相等的情况。
2.几何概率:指通过几何方法计算概率,如在长方形中随机取点计算概率。
3.组合方法:根据有放回或无放回以及是否考虑顺序进行组合的计算方法。
三、抽样调查1.抽样方法:包括简单随机抽样、系统抽样、分层抽样、整群抽样等。
3.抽样误差:由于采样方法、样本数量不足等导致的偏差称为抽样误差。
四、数据的整理与分析1.数据的度量:包括中心位置度量(如均值、中位数)、离散程度度量(如极差、方差)和分布形状度量(如偏度、峰度)等。
2.统计图表:包括直方图、饼图、折线图、箱线图等。
3.数据的描述性分析:通过数据的度量和统计图表,描述数据的特征和规律。
以上是初中概率与统计的主要知识点整理,希望对您的学习有所帮助。
在学习过程中,要注重理解概念,掌握计算方法,提高数据整理与分析的能力,培养科学思维和统计思维,不断强化应用能力,为今后的学习打下扎实的基础。
祝您学习进步!。
初中概率统计知识点总结概率统计是数学中的一个分支,是对现实生活中事件出现的可能性进行研究和计算的一门学科,也是统计学的一部分。
概率统计的应用非常广泛,从商业到科学领域都有应用。
初中阶段的概率统计主要介绍了概率的概念、概率计算和统计学的基础知识,下面我们来总结一下初中概率统计的主要知识点。
一、概率的基本概念1. 事件和样本空间事件是指在一次随机试验中可能发生的结果,通常记作A、B等。
样本空间是指随机试验的所有可能结果的集合,一般用Ω表示。
2. 概率的定义概率是指某一事件发生的可能性大小,通常用P(A)表示事件A的概率。
概率的取值范围是0到1,其中0表示事件A不可能发生,1表示事件A一定发生。
3. 等可能事件如果事件A和事件B在同一个样本空间中,且发生的可能性相同,称事件A和事件B是等可能事件,此时有P(A) = P(B) = 1/ n (n 是样本空间中的元素个数)。
4. 互斥事件如果事件A和事件B不能同时发生,称事件A和事件B是互斥事件,此时有P(A∪B) = P(A) + P(B)。
5. 事件的对立事件如果事件A的对立事件发生的概率为1-P(A),称事件A的对立事件。
二、概率的计算1. 加法法则对于任意两事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 条件概率在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),有P(A|B) = P(A∩B) / P(B)。
3. 乘法法则对于两个事件A和B,有P(A∩B) = P(A) * P(B|A) = P(B) * P(A|B)。
4. 全概率公式对于事件B和事件A的任意一个划分,有P(A) = ΣP(Bi) * P(A|Bi)。
五、统计学的基础知识1. 数据的表示统计学中常用的数据表示有频数分布、频率分布、累积频数、累积频率等。
2. 平均数一组数据的平均数是指所有数据的和除以数据的个数,用来表示一组数据的中心倾向。
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
概率与统计的基础知识统计学是一门研究如何收集、整理、分析、解释和呈现数据的学科。
概率是统计学的基础,它被用来描述和分析在不同情况下事件发生的可能性。
本文将介绍概率与统计的基础知识,包括概率的定义、概率的计算方法、统计的概念以及统计的应用。
一、概率的定义概率是描述事件发生可能性的数值,它介于0到1之间。
0表示事件不可能发生,1表示事件一定发生。
根据概率的定义,我们可以得出以下公式:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A包含的有利结果的数量,n(S)表示样本空间中可能结果的总数。
二、概率的计算方法1. 经典概率经典概率又称为古典概率,适用于样本空间中所有可能结果都是等可能发生的情况。
在这种情况下,事件A发生的概率可以通过以下公式计算:P(A) = n(A) / n(S)2. 相对频率概率相对频率概率是通过实验的结果来估计概率的方法。
通过多次实验,统计事件A发生的次数,然后将次数除以总实验次数,即可得到相对频率概率。
3. 主观概率主观概率是个体主观判断下对事件发生概率的估计。
它是依据经验、直觉和专业知识来进行的估计。
三、统计的概念统计是利用数据进行推断、决策和预测的过程。
在统计学中,数据被分为两种类型:定性数据和定量数据。
1. 定性数据定性数据是用于描述某种特征或属性的数据。
它通常用文字或符号进行表示,如性别、颜色、态度等。
2. 定量数据定量数据是用于表示数量或度量的数据。
它通常用数字进行表示,如身高、体重、温度等。
统计中的两个重要概念是总体和样本。
总体是指研究对象的全体,而样本是指从总体中随机选取的一部分。
四、统计的应用统计学在各个领域都有广泛的应用,以下是几个常见的应用领域:1. 生物统计学生物统计学是将统计学应用于生物学研究的领域。
它可以帮助研究人员分析生物实验数据、评估药物疗效以及研究遗传变异等。
2. 经济统计学经济统计学是将统计学应用于经济学研究的领域。
概率与统计高一知识点概率与统计是高中一年级数学的重要内容之一,它研究的是随机事件发生的规律性和现象的定量描述。
在本文中,我们将介绍高一学生需要了解的概率与统计的几个基本知识点。
一、随机事件与概率概率是描述事件发生可能性大小的数值,而随机事件是指具有不确定性的实验结果。
在概率的研究中,我们可以通过数学方法求解随机事件发生的可能性。
在高一阶段,学生需要了解概率的概念、性质和计算方法,包括基本概率公式、条件概率、事件的独立性等基本概念。
二、频率与概率的关系频率是指某一事件在多次实验中出现的次数,而频率与概率之间存在一定的关系。
当实验次数足够多时,频率会逐渐接近概率。
这是概率的一个重要性质,也是概率在统计中得以应用的基础之一。
通过频率与概率的关系,我们可以通过实验的方式估算出某一事件发生的概率。
三、样本空间与事件样本空间是指一个随机事件中所有可能结果的集合,而事件是指样本空间的一个子集。
样本空间和事件的概念在概率的计算中起着重要的作用,通过对样本空间和事件的分析,可以确定事件发生的可能性。
四、排列组合与概率在概率的计算中,排列组合是一种常用的方法。
排列是指从多个元素中选取若干个进行排序的方式,而组合是指从多个元素中选取若干个进行组合的方式。
通过排列组合的方法,我们可以计算事件的总数,从而求解概率。
五、事件的独立性事件的独立性是指两个或多个事件之间相互不受影响的性质。
在概率的计算中,事件的独立性是一个重要的前提条件。
对于独立事件,它们的概率之间存在一定的关系,可以通过乘法原理进行计算。
六、期望期望是概率论中一个重要的概念,用于描述随机变量的平均值。
在概率与统计中,我们经常需要计算事件和随机变量的期望,通过期望值的计算,可以描述事件或随机变量的平均水平。
总结:概率与统计作为高中数学中的一门重要课程,涉及了随机事件、概率、频率和概率的关系、样本空间与事件、排列组合与概率、事件的独立性以及期望等多个知识点。
通过对这些知识点的学习,可以帮助学生理解和应用概率与统计的基本概念和方法,以解决实际问题。
统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
概率与统计知识点总结概率与统计是数学中的重要分支,广泛应用于各个领域。
它们是研究随机现象的规律性和统计规律的数学方法。
本文将对概率与统计的基础知识点进行总结,并介绍其应用领域。
一、概率1. 概率的基本概念概率是事件发生的可能性大小的度量。
其中,随机试验是指具有不确定性的实验,样本空间是指该实验的所有可能结果的集合,事件是样本空间的子集。
2. 概率的计算规则概率的计算通常使用频率来估计,频率是指在大量重复试验中某一事件发生的次数与总试验次数之比。
根据频率计算概率的规则有加法规则和乘法规则。
3. 条件概率与独立事件条件概率是指事件A在事件B发生条件下发生的概率,表示为P(A|B)。
独立事件是指两个事件互不影响,其概率的乘积等于各自概率的积。
4. 事件的组合与排列组合是指从n个不同元素中取出m个元素(m≤n)的方式数,用C(n,m)表示。
排列是指从n个不同元素中按一定顺序取出m个元素(m≤n)的方式数,用P(n,m)表示。
二、统计1. 统计的基本概念统计是指通过收集、整理和分析数据来描述和推断总体的方法。
其中,总体是指研究对象的全体,样本是从总体中抽取的一部分。
2. 数据的表示与整理数据可以使用表格、图表等形式进行表示。
常用的图表有条形图、饼图、折线图等。
数据的整理包括频数分布、频率分布等。
3. 统计指标统计指标是对数据进行度量和描述的工具,常用的统计指标有均值、中位数、众数、标准差等。
均值是指一组数据的算术平均值,中位数是指一组数据中居于中间位置的数值,众数是指一组数据中出现频次最高的数值。
4. 抽样与推断抽样是从总体中随机抽取样本的方法。
通过对样本的分析,可以对总体进行推断。
常用的推断方法有参数估计和假设检验。
三、概率与统计的应用领域1. 自然科学概率与统计在物理学、化学、生物学等自然科学中有广泛应用。
例如,在物理学中,概率与统计可以用来描述微粒的运动规律;在化学中,可以用来研究物质反应的速率与产率;在生物学中,可以用来研究生物种群的数量与分布。