8章岩土工程勘察方法技术蒋冲
- 格式:ppt
- 大小:11.91 MB
- 文档页数:78
岩土工程勘察技术方案有哪些一、项目背景在土木工程中,地基工程是工程的重要部分之一。
而地基工程的基础是岩土工程。
岩土工程是土木工程的一个重要分支,主要研究岩石和土壤的力学性质、稳定性和变形规律,以及岩土的工程行为、设计、施工和监管。
岩土工程勘察技术是岩土工程的第一步,也是岩土工程的基础和关键环节。
因此,科学合理地进行岩土工程勘察技术方案是岩土工程顺利进行的基础。
二、勘察内容和方法1. 勘察内容(1)岩土地质勘察:主要包括区域地质概况、地层的分布、岩土的物理性质、地下水情况等内容。
(2)地基工程勘察:主要包括地表的地形、地貌及河流、湖泊等自然水体的特征、地基土的力学性质、压缩性质、渗透性质以及岩土的变形参数等内容。
2. 勘察方法(1)岩土地质勘察:地面勘察和地下勘察相结合,地面勘察主要采用地质剖面法、岩石外露面积法、工程地质勘察法等;地下勘察主要采用地球物理探测法、地质雷达法、地球化学勘察法等。
(2)地基工程勘察:主要采用地质勘察、岩土勘察以及工程地质勘察相结合的方法,包括地基钻孔、地基取样、地基试验、地基探测等。
三、勘察过程和方法1. 勘察过程(1)前期准备:对工程地质、地基资料、历史资料等进行详细的调查和分析,确定勘察范围和勘察目标。
(2)地质勘察:采取地质工程勘察、地形地貌勘察、地下水勘察等综合勘察方法,获得地质结构和地层信息。
(3)岩土工程勘察:包括采样、试验和分析,获取地基土和岩石的力学性质、渗透性质、变形参数等参数。
(4)勘察总结:对勘察数据进行汇总和分析,撰写勘察报告并提出相应的设计建议。
2. 勘察方法(1)岩土工程勘察:依靠现代化的勘察工具和设备,包括材料取样、试验分析和现场观测等方法。
(2)地质勘察:采用地球物理勘探、地质雷达、地球化学勘探等现代科学技术手段。
四、勘察技术方案1. 勘察任务和目标:明确勘察的目标、范围和内容,包括地质勘察和地基工程勘察等内容。
2. 勘察方法和步骤:确定勘察的方法和步骤,包括地质勘察、地质勘察、现场勘察以及室内试验等内容。
岩土工程勘察基本技术方法[详细]一、岩土工程地质分类各行业岩土工程地质分类不尽相同.这里综合介绍国标《岩土工程勘察规范》(GB50021-2001)、《建筑地基基础设计规范》(GB5007-2002)和省标《建筑地基基础设计规范》(GBJ15-31-2003)的岩土分类方法.其他行业的岩土分类大同小异.(一)岩石分类1.岩石坚硬程度划分如表1.岩石坚硬程度分类表表1坚硬程度分类坚硬岩较硬岩较软岩软岩极软岩饱和单轴抗压强度(米Pa) fr>6060≥fr>3030≥fr>1515≥fr>5fr≤5注:1.无法取得fr值时,可用点荷载强度指数换算,见国标《工程岩体分级标准》(GB50218-94)3.4.1式;2.定性划分可参考《岩土工程勘察规范》(GB50021-2001)表A.0.1.2.岩体完整程度划分如表2.岩体完整程度分类表表2完整程度完整较完善较破碎破碎极破碎完整性系数>0.750.75~0.550.55~0.350.35~0.15<0.15注:完整性指数为岩体压缩波速度与岩块压缩波速度之比的平方.应选代表性岩体、岩块测试.无波速测试资料时,可按《岩土工程勘察规范》(GB50021-2001)表A.0.2定性划分.3.按岩石坚硬程度和岩体完整程度,岩体基本质量等级分为5类,如表3.岩体基本质量等级分类表表3完整程度坚硬程度完整较完整较破碎破碎极破碎坚硬岩I II III IV V较硬岩II III IV IV V较软岩III IV IV V V软岩IV IV V V V极软岩V V V V V4.石按软化系数分为易软化岩石和不软化岩石.软化系数,fr、frd分别为饱和单轴抗压强度和干燥单轴抗压强度.Kd≤0.75为易软化岩石,Kd>0.75为不软化岩石.5.岩石风化程度按表4划分.岩石按风化程度分类表表4风化程度特征参数指标波速比Kv风化系数Kf标贯实测击数N’未风化岩质新鲜,偶见风化痕迹. 0.9~1.00.9~1.0微风化结构基本未变,仅节理面有铁锰质渲染或矿物略有变色,有少量风化裂隙.0.8~0.90.8~0.9中风化结构部分破坏,矿物成分基本未变,沿节理面出现次生矿物,风化裂隙发育.岩体被节理、裂隙分割成块状(20~50厘米).用镐难挖掘,岩芯钻方可钻进.0.6~0.80.4~0.8强风化结构大部分破坏,矿物成分显著变化,风化裂隙很发育,岩体破碎,被节理、裂隙分割成碎块状(2~20厘米).岩块用手可折断.用镐可挖掘,干钻不易钻进.0.4~0.6<0.4≥50全风化结构基本破坏,但尚可辨认.呈坚硬粘性土或密实粉土状.可用镐挖,干钻可钻进.0.2~0.430~50残积土结构全部破坏,已成土状,锹镐易挖掘,干钻易钻进,具可塑性.<0.2<30注:1.波速比为风化岩石与新鲜岩石压缩波速度之比;2.风化系数为风化岩石与新鲜岩石饱和单轴抗压强度之比.(二)土层分类1.按形成年代划分(1)老沉积土:晚更新世(Q3)及以前沉积的土层;(2)一般沉积土:全新世(Q4)早、中期沉积的土层;(3)新沉积土:全新世(Q4)中、近期沉积的土层.2.按成因类型划分分为人工填土、冲积土、洪积土、海积土、海陆混合堆积土、坡积土、残积土、风积土、冰积土等.3.按颗粒级配或塑性指数划分(1)碎石土指粒径大于2米米的颗粒质量超过总质量50%的土,按表5进一步分类.碎石土分类表表5土名颗粒形状颗粒级配漂石圆形、亚圆形为主粒径大于200米米的颗粒质量超过总质量的50%块石棱角形为主卵石圆形、亚圆形为住粒径大于20米米的颗粒质量超过总质量的50%碎石棱角为主圆砾圆形、亚圆形为住粒径大于2米米的颗粒质量超过总质量的50%角砾棱角为主注:定名时按颗粒级配由大到小以最先符合者确定.碎石土的密实度按表6划分为松散、稍密、中密和密实.在野外可根据骨架颗粒含量和排列情况、可挖性及可钻性定性划分碎石土密实度,见《建筑地基基础设计规范》(GB5007-2002)附录B.碎石土密实度划分表表6密实度修正后的重型圆锥动力触探实验锤击数N63.5松散N63.5≤5稍密5<N63.5≤10中密10<N63.5≤20密实N63.5>20注:本表适用于平均粒径等于或小于50米米、且最大粒径小于100米米碎石土.对于平均粒径大于50米米,或最大粒径大于100米米的碎石土,可用超重型动力触探鉴别,见《岩土工程勘察规范》(GB50001-2001)表3.3.8-2.野外鉴别可按该规范表A.0.6执行.(2)砂土粒径大于2米米的颗粒质量不超过总质量的50%、粒径大于0.075米米的颗粒质量超过总质量50%的土.按表7进一步分类.砂土分类表表7土名颗粒级配砾砂粒径大于2米米的颗粒质量占总质量的25~50%粗砂粒径大于0.5米米的颗粒质量超过总质量的50%中砂粒径大于0.25米米的颗粒质量超过总质量的50%细砂粒径大于0.075米米的颗粒质量超过总质量的85%粉砂颗粒大于0.075米米的颗粒质量超过总质量的50%注:定名时按颗粒级配由大到小以最先符合者确定.砂土的密实度按表8划分为松散、稍密、中密和密实4级.砂土密实度划分表表8密实度标准贯入试验实测击数N‘松散N‘≤10稍密10<N‘≤15中密15<N‘≤30密实N‘>30(3)粉土介于砂土和粘性土之间,塑性指数Ip≤10,且粒径大于0.075米米的颗粒含量不超过总质量50%的土.其密实度按表9划分为松散、稍密、中密和密实4级.粉土密实度划分表表9密实度孔隙比e标准贯入试验实测击数N‘松散N‘≤5稍密e>0.905<N‘≤10中密0.75≤e≤0.9010<N‘≤15密实e<0.75N‘>15(4)粘性土塑性指数Ip>10的土.其中Ip>17的为粘土,10<Ip≤17为粉质粘土.粘性土状态按表10划分.粘性土状态划分表表10状态液性指数IL标准贯入实验实测击数N,坚硬IL≤0N,≥30硬塑0<IL≤0.2530>N,≥15可塑0.25<IL≤0.7515>N,≥4软塑0.75<IL≤14>N,≥2流塑IL>1N,<24.特殊性土常见的有五类:(1)填土①素填土:由碎石土、砂土、粉土、粘性土的一种或几中组成,不含杂物或含杂物很少.②杂填土:含有大量建筑垃圾、工业废料或生活垃圾,其物质组成和密实度常不均匀.③冲填土:由水力冲填泥砂形成.④压实填土:经压实和夯实的填土(2)软土空隙比e≥1、且天然含水量W>液限WL的土,包括淤泥、淤泥质土、泥炭、泥炭质土等.(3)红粘土碳酸盐岩类残积土中空隙比大于1、液塑等于或大于50%的棕红、褐黄色高塑性粘土.原生红粘土经过搬运、沉积后仍保留其基本特征,且液限大于或等于45%者称为次生红粘土.(4)花岗岩残积土粒径>2米米颗粒含量超过总质量的20%者为砾质粘性土,不超过20%者为砂质粘性土,不含者为粘性土.二、岩土工程勘察等级和阶段划分(一)勘察等级按工程安全等级(表11)、场地等级(表12)和地基等级(表13),将岩土工程勘察划分为甲、乙、丙三级,见表14.工程安全等级表表11安全等级工程破坏或影响正常使用的后果工程类型一级很严重重要工程二级严重一般工程三级不严重次要工程场地等级表表12场地等级建筑抗震地段不良地质作用地质环境地形地貌地下水一级危险地段强烈发育强烈破坏复杂水文地质条件复杂二级不利地段一般发育一般破坏较复杂基础在地下水位下三级抗震设防烈度≤6度或有利地段不发育未受破坏简单对工程无影响地基等级表表13地基等级岩土种类和均匀性特殊岩土情况一级种类多,很不均匀,性质表化大,需要特殊处理严重湿陷、膨胀、盐渍、污染土,以及其他情况复杂,需作专门处理的岩土二级种类较多,不均匀,性质变化大上述之外的特殊性岩土三级种类单一,均匀,性质变化不大无特殊性岩土勘察等级划分表表14确定条件勘察等级工程安全等级场地等级地基等级一级任意任意一级任意甲级二级或三级任意一级二级二级或三级二级或三级乙级二级二级或三级三级二级或三级二级丙级三级三级三级(二)勘察阶段各类工程勘察阶段的划分不尽相同.房屋建筑和构筑物的勘察阶段分为:1.可行性研究勘察在充分收集区域地质、地形地貌、地震、矿产、当地的工程地质、岩土工程和建筑经验等资料的基础上,通过踏勘了解场地的地层、岩性、构造、不良地质作用、水文地质、工程地质条件,根据具体情况布置必要工程地质和勘探工作,对拟建场地的稳定性和适宜性做出评价.当有两个以上的拟建场地时,应进行比选分析.2.初步勘察收集拟建工程的有关文件、工程地质、岩土工程资料和工程场地地形图,根据工程重要性、地基复杂性和地貌特点布置勘探孔,初步查明地质构造、地层结构、岩土工程特性、地下水埋藏条件;查明不良地质作用的成因、分布、规模、发展趋势;在抗震设防烈度等于或大于6度区,初步评价场地和地基的地震效应;对建筑地段的稳定性作出评价;初步判定地下水对建筑材料的腐蚀性;对地基基础类型进行初步分析评价.为确定建筑物的总平面布置和选择基础方案提供依据.3.详细勘察按单体建筑物和建筑群布置勘察工作,提供详细的岩土工程资料和设计、施工所需的岩土参数;对建筑地基做出岩土工程评价,并对地基类型、基础形式、地基处理、基坑支护、工程降水和不良地质作用的防治等提出建议,为施工图设计提供依据.应进行下列工作:(1)收集附有坐标和地形的建筑总平面图,场区地面的整平标高、建筑物的性质、规模、荷载、结构特点,基础形式、埋深,地基允许变形等资料;(2)查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案建议;(3)查明建筑范围类岩土类型、分布、埋深、工程特征,分析评价地基的稳定性、均匀性和承载力;(4)对需要进行沉降计算的建筑物,提供地基变形计算参数,预测建筑物的变形特征;(5)查明河道、沟渠、墓穴、防空洞、孤石等对工程不利的埋藏物;(6)查明地下水的埋藏条件,提供地下水位及变化幅度,判定水和土对建筑材料的腐蚀性;(7)在地震设防烈度等于或大于6度的地区,划分场地土类型,确定对抗震有利、不利或危险地段,对饱和砂土、粉土进行液化判别,确定液化指数和液化等级.4.施工勘察遇下列情况之一时,应进行施工勘察:(1)基槽开挖后,岩土条件与原勘察资料不符时;(2)地基处理和基坑开挖需进一步提供或确认岩土参数时;(3)桩基工程施工需进一步查明持力层时;(4)地基中溶洞、土洞发育,需进一步查明并提出处理建议时;(5)需进一步查明地下管线或地下障碍物时;(6)施工中建筑边坡有失稳危险时.已掌握的工程地质资料和建筑经验较充分时,可简化勘察阶段.三、岩土工程勘察方法岩土工程勘察方法有工程地质测绘、勘探、原位测试、室内实验、现场检验和监测.(一)工程地质测绘工程地质测绘一般在可行性研究勘察和初步勘察阶段进行,详细勘察阶段可对某些专门问题作补充调查.工作中应充分利用遥感影像资料.测绘比例尺:可行性研究勘察选用1:5000~1:50000,初步勘察选用1:2000~1:10000,详细勘察选用1:500~1:2000.对工程有重大影响的地质单元体(滑坡、断层、软弱夹层、洞穴等),可采用扩大比例尺表示.地质观测点的布置应有代表性,在地质构造线、地层分界线、岩性分界线、标准层、地下水露头和各种地质单元体应有地质观测点.应充分利用天然和人工露头,当露头不多时,布置适量的探坑和探槽.观测点的定位可用目测法、半仪器法和仪器法;地质构造线、地层岩性分界线、软弱夹层、地下水露头和不良地质作用等特殊地质观测点,宜用仪器定位.测绘时应注意调查访问有关情况.(二)勘探1.钻探钻探方法可根据岩土类别和勘察要求按《岩土工程勘察规范》(GB50021-2001)表9.2.1选用,最常用的是回转岩芯钻探.孔径应满足取样和抽水实验要求,孔深入目的层以下3~5米.深度量测精度不低于±5厘米.岩样采取率:完整、较完整岩体和粘性土、粉土不低于80%,较破碎、破碎岩体和碎石土、砂土不低于65%;对需重点查明的部位(滑动带、软弱夹层等),应采用双层岩芯管连续取芯;当需要确定岩石质量指标RQD 时,应采用75米米口径双层岩芯管和金刚石钻头.钻探中按要求取岩样、土样、水样和进行原位测试.对受力层取样和原位测试间距为1~2米;每一主要土层原状土样或原位测试数据不少于6件(组).岩芯应由专业人员及时编录,柱状图岩土名称和性状应与原位测试和土工实验结果相互吻合.2.井探、槽探和洞探当钻探方法难于准确查明地下情况(如断层、滑坡、大坝、隧道、地下洞室等)时,采用井探、槽探和洞探.探井的深度不宜超过地下水位,竖井、平洞的深(长)度和断面按工程要求确定.3.物探应根据探测对象的埋深、规模及其与周围介质的物性差异,选择有效的方法.常见方法可查《岩土工程勘察规范》(GB50021-2001)条文说明表9.2.宜采用多种方法探测,进行综合判释,并有钻孔验证.在工程勘察中,物探既是一种勘探手段,也是一种原位测试手段,可测定岩土体的波速、动弹性模量、动剪切模量、卓越周期、电阻率、放射性辐射参数、土对金属的腐蚀性等.(三)原位测试应根据岩土条件、设计对参数的要求、地区经验和测试方法的适用性等选用(表15).标准贯入实验是目前用得最多的一种原位测试方法.利用标准贯入击数判别岩石风化程度(强风化、全风化、残积土),粘性土、粉土、砂性土状态,饱和砂土、粉土液化可能性,确定土的变形参数时,用实测击数(N,);查算地基承载力时用杆长校正后击数,可用标准值或最小平均值.(四)室内实验包括土的物理性质实验、土的压缩~固结实验、土的抗剪强度实验、土的动力性质实验、岩石实验和水质分析.岩土实验成果的应用见表16、表17.(五)现场检验和监测现场检验和监测一般在工程施工期间进行;对有特殊要求的工程,应在使用期间继续进行.包括:1.基槽检验;2.桩基检验:超声波检测、抽芯、动测(大应变、小应变)、载荷实验;3.地基处理效果检验:触探、旁压实验、波速测试;4.基坑变形监测;5.建筑沉降监测;6.不良地质作用和地质灾害(崩塌、滑坡、地面沉降、地面塌陷等)监测; 7.地下水的监测:时间应不少于1个水文年.几种主要原位测试方法的基本原理、试验目的和适用范围表15 试验名称试验类型基本原理岩土参数及应用适用范围载荷试验平板载荷试验利用P-S曲线确定各种特性指标1.确定地基土的承载力和变形模量;2.确定湿陷性黄土的湿陷起始压力,判别土的湿陷性适用于碎石土、砂土、粉土、粘性土,填土、软土和软质岩石螺旋板载荷试验1.确定地基土的承载力和变形模量;2.估算地基土固结系数、不排水抗剪强度适用于砂土、粉土、粘性土和软土桩基载荷试验1.确定单桩竖向和水平承载力;2.当埋设有桩底反力和桩身应力、应变量测元件时,可直接测定桩周土的极限侧阻力和极限端阻力以及测定桩身应力变化和桩身的弯距分布;3.估算地基土的水平抗力系数的比例系数适用于各类桩基动载荷试验确定基础竖向震动力加速度a和基底动压力Pd适用于各类桩基旁压试验预钻式旁压试验在钻孔内利用旁压器对孔壁施加水平压力量测孔壁的变形,通过压力与变形关系,求得地基土承载力、变形参数1.确定地基土承载力;2.确定地基土旁压模量适用于粘性土、粉土、砂土、碎石土、填土和软质岩石、风化岩自钻式旁压试验1.确定地基土承载力;2.确定地基土旁压模量;3.估算原位水平应力、不排水抗剪强度、剪切模量、固结系数适用于软土、粘性土、粉土、砂土静力触探试验静力触探试验用静力将探头以一定速率压入土中,利用探头内力传感器,通过电子量测仪器将探头受到的贯入阻力记录下来,根据阻力大小判定土层性质1.进行土层分类;2.确定地基土承载力;3.确定软土不排水抗剪强度、剪切模量、固结系数;4.确定变形系数;5.确定砂土相对密实度;6.估算单桩承载力;7.判定饱和砂土、饱和粉土地震液化可能性适用于粘性土、粉土、软土、砂土和填土孔压静力触探试验1.划分土的类别;2.判定粘性土状态;3.估算饱和粘性土的固结系数几种主要原位测试方法的基本原理、试验目的和适用范围表15(续) 试验名称试验类型基本原理岩土参数及应用适用范围十字板剪切试验机械式十字板剪切试验插入土中的十字板头以一定速率旋转,测出土的抵抗力矩,计算其抗剪强度1.确定软粘土不排水抗剪强度;2.估算地基土承载力;3.估算单桩承载力;4.确定软土路基临界高度;5.分析地基稳定性;6.判定软土固结历史适用于软土、粘性土电测式十字板剪切试验圆锥动力触探试验轻型动力触探试验利用一定落锤能量,将一定尺寸、一定形状的圆锥探头打入土中,根据贯入击数判定土的性质确定粘性土和粘性素填土承载力适用于粘性土、粉土、粘性素填土重型动力触探试验1.确定砂土、碎石土密实度;2.确定粘性土、粉土、砂土和碎石土承载力适用于砂土、碎石土超重型动力触探试验1.确定碎石土密实度;2.确定碎石土承载力适用于砾砂、碎石土标准标准贯入试验利用一定落锤能量,将一定尺寸的贯入器打入土中,根据贯入1.确定砂土密实度;2.确定粘性土状态;3.确定砂土承载力,估算单桩承适用于砂土、粉土、粘性土贯入试验击数判定土的性质载力;4.确定土的变形参数;5.判定饱和砂土、粉土液化现场剪切试验抗剪断试验、抗剪试验(摩擦试验)、抗切试验确定抗剪强度参数岩、土层波速测试单孔法波速测试测定剪切波和压缩波在地层中的传播时间,根据已知的传播距离计算地层中波的传播速度1.划分场地土类型;2.计算地基动弹性模量、动剪切模量、动泊松比;3.评价岩体完整性;4.计算场地卓越周期;5.判定砂土液化;6.检验地基加固效果适用于岩石和各类土层跨孔法波速测试土的物理力学性质指标的应用表16 指标符号实际应用土的分类粘性土砂土密度重度水下浮重ργρ,1.计算干密度、孔隙比等其他物理性质指标2.计算土的自重压力3.计算地基的稳定性和地基土的承载力4.计算斜坡的稳定性5.计算挡土墙的压力++++++++++比重GS计算孔隙比等其他物理力学性质指标++ 含水量W 1.计算孔隙比等其他物理力学性质指标2.评价土的承载力3.评价土的冻胀性++++++干密度ρd 1.计算孔隙比等其他物理性质指标2.评价土的密度3.控制填土地基质量+-+++-孔隙比孔隙率en1.评价土的密度2.计算土的水下浮重3.计算压缩系数和压缩模量4.评价土的承载力-+++++-+饱和度Sr1.划分砂土和粉土的湿度2.评价土的承载力--++可塑性液限塑限塑性指数液性指数WLWPIPIL1.粘性土的分类2.划分粘性土的状态3.评价土的承载力4.估计土的最优含水量5.估算土的力学性质+++++-----含水比αw评价老粘性土和红粘土的承载力+-活动度A评价含水量变化时土的体积变化+-颗粒组成有效粒径平均粒径不均匀系数曲率系数d10d50CuCc1.砂土的分类和级配情况2.大致估计土的渗透性3.计算过滤器孔径或计算反滤层4.评价砂土和粉土液化的可能性----++++最大孔隙比最小孔隙比相对密度e米axe米inDr1.评价砂土密度2.估价砂土体积的变化3.评价砂土液化的可能性---+++渗透系数K1.计算基坑的涌水量2.设计排水构筑物++++-+。
岩土工程勘察的方法岩土工程勘察是建筑工程设计、施工和地基处理的重要环节。
在本文中,我们将介绍一些常见的岩土工程勘察方法和技术,以及如何解决这些问题。
1. 地质勘察地质勘察是岩土工程勘察中最基本的方法之一。
它通常通过钻探、槽探、地震勘察等手段进行。
钻探和槽探主要用于获取地质信息,包括地质构造、地层结构、岩性等。
地震勘察则用于探测地下结构和地基情况。
2. 土壤力学测试土壤力学测试是测定土壤力学性质的方法,包括抗压强度、抗拉强度、剪切强度等。
这些测试通常通过室内试验和现场试验进行。
室内试验主要用于测定土壤的基本性质,如密度、含水量、孔隙度等。
现场试验则用于测定土壤的力学性质,如承载力、变形性能等。
3. 地下水勘察地下水勘察是探测地下水位、水质和地下水文地质条件的方法。
它通常通过钻探、地震勘察、水位观测等手段进行。
钻探和水位观测主要用于确定地下水位和地下水文地质条件。
地震勘察则用于探测地下水的分布和流动方向。
4. 解决方法在岩土工程勘察中,可能会遇到一些问题,如地质构造不清、土壤力学性质不确定等。
为了解决这些问题,我们可以采用以下方法:(1) 增加勘察孔数和深度,获取更多的地质信息。
(2) 采用多种勘察手段,如钻探、地震勘察、土壤力学测试等,综合分析问题。
(3) 对勘察数据进行统计和分析,确定土壤力学性质和地质构造。
(4) 采用数值模拟和力学计算等方法,预测地基的变形和破坏模式,为工程设计提供依据。
综上所述,岩土工程勘察是建筑工程设计、施工和地基处理的重要环节。
在本文中,我们介绍了一些常见的岩土工程勘察方法和技术,以及如何解决这些问题。
岩土工程勘察与地基施工处理技术分析蒋鹏发布时间:2022-06-30T10:46:16.326Z 来源:《建筑模拟》2022年第4期作者:蒋鹏[导读] 现阶段,岩土工程勘察工作所得出的结论可以作为工程建设的依据,不仅能够为工程的安全提供保证,还可以提升工程方案的合理性。
但实际的岩土工程勘察工作可能会受到诸多方面的影响,工作人员要明确岩土工程地质勘察中质量控制的因素,才能做好防范的准备。
基于此,本文就岩土工程勘察与地基施工处理技术进行简要分析。
徐州中矿岩土技术股份有限公司江苏徐州 221116摘要:现阶段,岩土工程勘察工作所得出的结论可以作为工程建设的依据,不仅能够为工程的安全提供保证,还可以提升工程方案的合理性。
但实际的岩土工程勘察工作可能会受到诸多方面的影响,工作人员要明确岩土工程地质勘察中质量控制的因素,才能做好防范的准备。
基于此,本文就岩土工程勘察与地基施工处理技术进行简要分析。
关键词:岩土工程勘察;地基施工;处理技术;1 工程勘察的内容与重要性在岩土工程的建设中,制定合理的方案可以保证工程施工的顺利进行,为提升工程施工的质量,地质勘察工作应根据施工环境的真实情况,到施工区域了解其结构、表面特征及多方面的内容,以获得真实的数据。
开展地质勘察工作的目标在于为施工方提供真实的数据资料,而工作人员对施工环境的分析是否准确,则直接影响着岩土工程的施工效果。
由于客观的施工条件较为复杂,所以对工作人员的专业性具备较高的要求,工作人员先要对该区域的岩土情况具备一定的了解,之后再详细制定地质勘察的工作计划,实施具体的地质勘察工作,不断完善施工环节,确保岩土工程勘察安全、顺利的进行。
2 工程勘察的方法2.1 地质测绘对岩土工程建设区域的地质测绘是最基础的地质勘察工作内容,可以作为前期的勘察方法使用,在地质测绘中,工作人员要结合地质与工程的理论,观察地质的现象再进行描绘,对工程场地内的空间分布及各方面要素进行必要的探索与分析,再以精确的比例尺绘制在地形图中,细致的勘察各部分内容并精确的绘制出来。
岩土工程勘察技术方法要点分析摘要:当前,我国经济的快速发展,建筑业也在不断地增长,在各种项目中,岩土勘察是建设工程中重要的基础性工作,其直接决定着建设施工是否得以顺利进行。
岩土工程勘察受到很多因素的影响,比如地质条件、项目类型等,对岩土工程勘察的要求也不一样。
如果选择不好勘察技术,那么勘察工作、勘察结果、勘察目的都比较盲目,并且不具有科学性以及代表性。
因此勘察中应了解岩土工程的结构特点,制定出合理的勘察方案,合理选择运用岩土工程勘察技术,切实保证工程勘察质量,是提高建筑工程质量水平的重要保障。
本文在此从岩土工程勘察的目的出发,对岩土工程勘察过程的几个具体的技术办法做了一定的分析。
关键词:勘察目的;勘察方法;数字化勘察技术;发展趋势一、岩土工程勘察概述岩土工程勘察所指的是经过工程地质的调查、测绘与勘探,并实施土试样、室内试验、原位测试与现场检验,以查明分析工程的地貌地形、地下水位与地层界面等,合理评价场地环境与工程条件,对文件进行编制勘察,并向工程提供可靠的依据,保证建筑产品更为合理美观。
岩土工程勘察的任务主要是对建筑工程场地及周围的地质和水文地质进行勘察,并为建筑物场地的选择、布局、地基的设计及施工提供重要的依据资料,它是建筑工程开始的前提,在工程的建设中具有重要的作用,岩土工程勘察的不到位或者失误会给整个工程带来难以弥补性及难以估量的损失。
二、岩土工程勘察的目的为了查明拟建场地的地质情况并为设计、施工提供地质勘察成果及各项岩土工程参数,运用各种勘察测试手段和方法,对建筑场地进行调查研究,分析判断修建各种工程建筑物的地质条件以及建设对自然地质环境的影响;研究地基和上部结构共同工作时,保证地基强度、稳定性以及不致产生过大沉降变形的措施,分析并提出地基的承载能力;提供基础设计、施工以及必要时进行地基加固所需要的工程地质和岩土工程资料。
三、岩土工程勘察过程中的几个技术要点1、工程地质测绘工程地质测绘是一项基础性岩土工程勘察工作,常在勘察的初期进行。
岩土工程勘察基本技术方法岩土工程勘察是指在土地开发、基础设施建设等过程中,对土地和地下岩石的物理力学性质、地层结构、地下水位等进行调查和测量的工作。
岩土工程勘察基本技术方法主要包括现场勘察和室内试验两个环节。
下面将详细介绍岩土工程勘察的基本技术方法。
一、现场勘察1.实地地质勘察:通过观测地表的地貌、岩石、土壤以及化石等特征,了解地层构造、岩石性质以及可能存在的地质灾害隐患。
2.孔探:在选定的勘察点上进行钻孔,通过取样、岩芯观察等方式,获取地下的土壤和岩石信息,包括密实度、含水量、颗粒分布等。
3.岩石工程地质勘察:对岩体的物理力学性质进行测量和分析,包括抗压强度、抗拉强度、刚度系数等。
4.地下水位测量:通过在勘察点上设置水位钢尺、水位计等设备,测量地下水位的深度,了解地下水的分布和变化情况。
5.地震勘测:通过地震波传播速度的测量,推断地下岩石的结构和层位。
二、室内试验1.土壤试验:对采集到的土壤样本进行各种物理力学试验,包括压缩性试验、抗剪强度试验、液塑性指标试验等。
2.岩石试验:对岩石样本进行抗压强度试验、抗拉强度试验、剪切强度试验等,以评估岩石的力学性质。
3.地下水化学分析:对采集到的地下水样本进行化学成分分析,了解地下水的污染程度和对地下环境的影响。
4.粒度分析:通过对土壤和岩石样本中颗粒的分布进行试验,得到颗粒度曲线和粒径分布特征。
5.随钻试验:在钻孔的同时进行试验,如动探、静力触探、观测孔等试验,以了解地下岩土的力学特性和地质构造。
以上所述的方法只是岩土工程勘察中的一部分基本技术方法,还有一些补充的方法,如遥感技术、地电、地磁、雷达等。
在岩土工程实践中,根据不同的项目和工程要求,可以组合使用不同的技术方法,以获取更全面的岩土工程勘察数据。
第二章岩土工程勘察基本技术与方法第一节工程地质测绘与调查一、概述工程地质测绘与调查俗称工程地质填图,它是为了查明拟建场地及其邻近地段的工程地质条件而进行的一项调查研究工作。
其本质就是运用地质、工程地质理论和技术方法,对与工程建设有关的各种地表地质现象进行详细的观察和描述,并将其中的地貌、地层岩性、构造、不良地质作用等界线以及井、泉、不良地质作用等的位置按一定的比例填绘在地形底图上,然后绘制成工程地质图件。
通过这些图件来分析各种地表地质现象的性质与规律,推测地下地质情况。
再结合工程建设的要求,对拟建场地的稳定性和适宜性作出初步评价,进而为场地选择、勘探、试验等工作的布置提供依据。
因此,工程地质测绘与调查是岩土工程勘察中的一项基础性工作。
也是岩土工程勘察工作中,尤其是初级岩土工程勘察工作中最常用的一种基本工作方法。
工程地质测绘与调查的特点是可在较短时间内查明广大地区的主要工程地质条件,不需复杂的设备、大量资金和材料。
宜在可行性研究勘察阶段或初步勘察阶段进行,在详细勘察阶段一般不进行此项工作。
但如果为了研究某一个或几个专门性的问题而必须进行时,则可在初步勘察阶段工程地质测绘与调查基础上作必要的补充即可。
工程地质测绘与调查的内容一般应包括工程地质条件的各个方面,即包括地层岩性、地形地貌、地质构造、水文地质条件、不良地质作用以及天然建筑材料等。
在实际工作中究竟要做哪些内容的测绘与调查则主要根据具体建筑物的要求以及测区的工作和研究程度而定。
凡与工程建设密切相关的内容应重点调查,而与工程建设关系不大或无关的内容则可粗略些,甚至不予研究。
如果测区的工程地质工作与研究程度较高,某些方面的内容可通过资料收集便可得到的,在测绘时就不再需要进行这方面的工作。
一般来说,在岩石出露或地貌、地质条件较复杂的场地开展此项工作时,应进行工程地质测绘。
在地质条件简单的场地,可用工程地质调查代替工程地质测绘。
二、工程地质测绘的技术要求从客观上讲,工程地质测绘与调查质量的高低在很大程度上取决于测区的自然条件。
岩土工程勘察方法及措施1、岩土工程勘察的方法1.1、工程地质测绘工程地质测绘是本工程勘察的基础工作,在勘察的初期阶段进行。
运用地质、工程地质理论,对地面的地质现象进行观察和描述,分析其性质和规律,并藉以推断地下地质情况,为勘探、测试工作等其他勘察方法提供依据。
在地形地貌和地质条件较复杂的场地,必须进行工程地质测绘但对地形平坦、地质条件简单且较狭小的场地,则可采用调查代替工程地质绘。
工程地质测绘是认识场地工程地质条件最经济、最有效的方法,高质量的测绘工作能相当准确地推断地下地质情况,起到有效地指导其他勘察方法的作用。
1.2、勘探与取样本工程勘探工作包括物探、钻探和坑探等调查地下地质情况的并且可利用勘探工程取样进行原位测试和监测。
根据勘察目的及岩土的特性选用上述各种勘探方法。
物探是一种间接的勘探手段,它的优点是较之钻探和坑探轻便、经济而迅速,能够及时解决工程地质测绘中难于推断而又急待了解的地下地质情况,所以常常与测绘工作配合使用。
它又可作为钻探和坑探的先行或辅助手段。
但是,物探成果判释往往具多解性,方法的使用又受地形条件等的限制,其成果需用勘探工程来验证。
钻探和坑探也称勘探工程,均是直接勘探手段,能可靠地了解地下地质情况,在岩土工程勘察中是必不可少的。
其中钻探工作使用最为广泛,可根据地层类别和勘察要求选用不同的钻探方法。
当钻探方法难以查明地下地质情况时,可采用坑探方法。
坑探工程的类型较多,应根据勘察要求选用。
勘探工程一般都需要动用机械和动力设备,耗费人力、物力较多,有些勘探工程施工周期又较长,而且受到许多条件的限制。
因此使用这种方法时应具有经济观点,布置勘探工程需要以工程地质测绘和物探成果为依据,切避盲目性和随意性。
1.3、原位测试与室内试验原位测试与室内试验的主要目的,是为岩土工程问题分析评价提供所需的技术参数,包括岩土的物性指标、强度参数、固结变形特性参数、渗透性参数和应力、应变时间关系的参数等。
岩土工程勘察方法岩土工程勘察方法是在建筑工程设计和施工前进行的一项重要活动,它涉及到对地下土壤和岩石进行详细调查和分析,以确定工程的地质条件和土壤力学特性。
本文将介绍岩土工程勘察的方法和步骤,以及其在工程实践中的应用。
一、岩土工程勘察的目的岩土工程勘察的目的是为了获取关于地下土壤和岩石的详细信息,以便在设计和施工中能够合理地选择工程方案,并确保工程的安全和可靠性。
通过岩土工程勘察,可以确定以下几个主要方面的内容:1. 土壤类型和性质:包括土壤的颗粒组成、比重、密实度、含水量等。
2. 岩石类型和性质:包括岩石的结构、强度、风化程度等。
3. 地下水位和水文条件:包括地下水位的深度、水位变化的规律以及地下水的水质。
4. 地下土层的分布:包括各种土层的厚度、分界面、地层的颗粒大小及含水性。
5. 地质构造和地震活动性:包括断层、褶皱、破碎带等地质构造特征,以及地震活动性的研究。
6. 地质灾害风险评估:包括滑坡、地面沉降、地震等地质灾害风险的评估和预测。
二、岩土工程勘察的方法岩土工程勘察的方法主要包括以下几个方面:1. 野外勘察:通过野外实地调查,对地表地貌、植被覆盖、水文地质条件、气象条件等进行观测和记录。
2. 取样分析:采取钻孔、探井等方式,获取地下土层和岩石的样本,并进行物理性质测试和化学成分分析。
3. 实验室试验:对采集到的样本进行室内试验,包括颗粒分析、压缩试验、剪切试验等,以确定土壤和岩石的力学性质。
4. 地球物理勘探:包括地震勘探、电法勘探、重力勘探等方法,通过观测地下波动或物理场的变化来获取地下土层和岩石的信息。
5. 遥感技术:利用遥感影像和卫星图像等手段,对地表地貌和地质构造进行识别和分析。
6. 数值模拟:通过计算机软件对地下土层和岩石进行数值模拟,以获取更准确的地质参数。
三、岩土工程勘察的步骤岩土工程勘察一般包括以下步骤:1. 勘察准备阶段:确定研究范围、制定勘察方案和计划,并调集必要的勘察设备和人员。