高中数学导数变化率导数求导计算经典例题讲解突破题型
- 格式:docx
- 大小:155.78 KB
- 文档页数:9
(完整版)变化率与导数、导数的计算知识点与题型归纳1●⾼考明⽅向1.了解导数概念的实际背景.2.理解导数的⼏何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x 的导数. 4.能利⽤基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.★备考知考情由近⼏年⾼考试题统计分析可知,单独考查导数运算的题⽬很少出现,主要是以导数运算为⼯具,考查导数的⼏何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、⽅程、斜率与倾斜⾓的关系,以平⾏或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014⼴东理科10、⽂科11. 2014⼴东理科10 曲线52-=+xy e在点()0,3处的切线⽅程为;2014⼴东⽂科11曲线53=-+xy e 在点()0,2-处的切线⽅程为;⼀、知识梳理《名师⼀号》P39知识点⼀导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0.(2)称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.注意:《名师⼀号》P40 问题探究问题1f′(x)与f′(x0)有什么区别?f′(x)是⼀个函数,f′(x0)是常数,f′(x0)是函数f′(x)在点x0处的函数值.例.《名师⼀号》P39 对点⾃测11.判⼀判(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)f′(x0)与[f(x0)]′表⽰的意义相同.()(3)f′(x0)是导函数f′(x)在x=x0处的函数值.()答案(1)×(2)×(3)√23知识点⼆导数的运算公式及法则 1.基本初等函数的导数公式注意:(补充)常量函数的导数为零11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();17.()log ,'()(0,1);ln 8.nn x xx x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x ==则42.导数的运算法则注意:(补充)复合函数的导数(())y f u x =,'''(())()y f u x u x =g注意:《名师⼀号》P40 问题探究问题3对函数求导时,其基本原则是什么?求函数的导数时,要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利⽤运算法则求导数.对于不具备求导法则结构形式的要适当恒等变形;对于⽐较复杂的函数,如果直接套⽤求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进⾏合'221.(()())''()'()2.(()())''()()()'()()'()()()()'3.()()4.(())''()1'()5.[]'()()f x g x f x g x f x g x f x g x f x g x f x f x g x f x g x g x g x cf x cf x g x g x g x ±=±?=?+-= ==-理变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误., 称为曲线在点P处的切线的斜率.即:'0000()()()lim lim→?→+?-===x xf x x f xyk f xx x切线5导数的⼏何意义函数在x=x0处的导数——曲线y=f(x)在点(x0,f(x0))处切线的斜率.导数的物理意义——瞬时速度例.周练13-1⼀个物体的运动⽅程为s=1-t+t2,其中s的单位是⽶,t的单位是秒,那么物体在3秒末的瞬时速度是() A.7⽶/秒B.5⽶/秒C.6⽶/秒D.4⽶/秒注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.注意:《名师⼀号》P40 问题探究问题2过点P的切线与在点P处的切线有什么区别?在点P处的切线,P是切点,⽽过点P的切线,P不⼀定是切点,后者包括前者.67⼆、例题分析: (⼀) 导数的计算例1.(补充)⽤导数定义求函数1()f x x=的导数。
高二数学复习典型题型与知识点专题讲解14 导数的概念及其意义+导数的运算一、典例精析拓思维(名师点拨) 知识点1 变化率与导数 知识点2 导数几何意义 知识点3 导数的四则运算 知识点4 复合函数求导 二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 变化率与导数例1.(2021·江苏·高二专题练习)函数()221y f x x ==-在区间[]1,1x +∆上的平均变化率yx∆∆等于( ).A .4B .42x +∆C .()242x +∆D .4x 【答案】B 【详解】因函数()221y f x x ==-,则()f x 在区间[]1,1x +∆上的函数增量y ∆有:()()()()()22112112142y f x f x x x ∆=+∆-+∆---=∆+∆=,于是有42yx x∆=+∆∆, 所以所求平均变化率yx∆∆等于42x +∆.故选:B练习1-1.(2021·江苏·高二专题练习)已知函数()224f x x =-的图象上一点()1,2-及邻近一点()1,2x y +∆-+∆,则yx∆=∆( ) A .4B .4x ∆C .42x +∆D .()242x +∆ 【答案】C 【详解】解:∵()()()()()22112142424y f x f x x x ∆=+∆-=+∆---=∆+∆,∴24yx x∆=∆+∆, 故选:C .名师点评:平均变化率函数()y f x =从1x 到2x 的平均变化率是2121()()f x f x y x x x -∆=∆-. 例2.(2021·全国·高二课时练习)已知函数()f x 在0x 处的导数为0()f x ',则()()000lim x f x m x f x x∆→-∆-∆等于( )A .0()mf x 'B .0()mf x '-C .0(1)f m x -'D .01()f x m' 【答案】B 【详解】因为函数()f x 在0x 处的导数为0()f x ', 所以()()0000im)l (x f x m x f f x x x m ∆→-∆-'=-∆,所以()()()()0000000liml ()imx x f x m x f x f x m x f x m xxf m x m ∆→∆→-∆--∆-=-=-∆-'∆,故选:B.练习2-1.(2021·山西·晋城市第一中学校高二阶段练习)设()f x 为可导函数,且当0x ∆→时,()()1112f f x x--∆→-∆,则曲线()y f x =在点()() 1,1f 处的切线斜率为( )A .2B .1-C .1D .2- 【答案】D 【详解】解:由导数的几何意义,点()() 1,1f 处的切线斜率为(1)f ', 因为0x ∆→时,()()1112f f x x--∆→-∆,所以()()()()11(1)liml 11222imx x f f x f f x xxf ∆→∆→--∆--∆='=-∆∆=,所以在点()() 1,1f 处的切线斜率为2-, 故选:D.名师点评:瞬时变化率函数()y f x =在0x x =处的瞬时变化率0000()()lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆. 在实际解题时要注意00()()f x x f x +∆-中两()中的量做差得到的结果才是分母中的x ∆.如在例2()()0000lim()x f x m x f x f x x∆→-∆-'≠∆,在该式中,分子两()中的量作差后得到的()()00x m x x m x -∆-=-∆,所以()()0000lim ()x f xm x f x f x m x∆→-∆-'=-∆,所以在题目中的分母要凑配常数,即:()()()()()000000lim()lim()x x m m f x m x f x f x m x f x f x xxm ∆→∆→---∆--∆-'=∆-=∆.知识点2 导数几何意义例1.(2021·全国·高二单元测试)如图,函数()y f x =的图象在点(2,)P y 处的切线是l ,则(2)(2)f f '+=( )A .-3B .-2C .2D .1 【答案】D 【详解】解:由题图可得函数()y f x =的图象在点P 处的切线与x 轴交于点(4,0),与y 轴交于点(0,4),则切线:4l x y +=,(2)2f ∴=,(2)1f '=-,(2)(2)211f f '+=-=,故选:D.练习1-1.(2021·全国·高二单元测试)已知()y f x =的图象如图所示,则()A f x '与()B f x '的大小关系是( ) A .()()A B f x f x ''> B .()()A B f x f x ''= C .()()A B f x f x ''<D .()A f x '与()B f x '大小不能确定 【答案】A 【详解】根据题意,由图象可得f (x )在x =x A 处切线的斜率大于在x =x B 处切线的斜率, 则有()()A B f x f x ''>; 故选:A名师点评:函数()y f x =在0x x =处的导数0()f x '的几何意义是在曲线()y f x =上点00(,)P x y 处的切线的斜率(0()k f x '=).例2.(2021·陕西汉中·一模(理))已知函数3C :()ln f x x x =+,则曲线在点(1,(1))f 处的切线方程为___________. 【答案】430x y --= 【详解】解:因为21()3f x x x'=+, 所以(1)4k f '==, 又(1)1,f =故切线方程为14(1)y x -=-, 整理为430x y --=, 故答案为:430x y --=练习2-1.(2021·四川成都·一模(文))曲线()3f x x x =-在点(2,6)处的切线方程为_______.【答案】11160x y --= 【详解】因为()3f x x x =-,所以()231f x x '=-,()211f '=所以切线方程为()6112y x -=-,即11160x y --= 故答案为:11160x y --=名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时需另设切点求解.如本例2,求函数3C :()ln f x x x =+,在点(1,(1))f 处的切线方程,此时切点为(1,(1))f ,只需求出斜率(1)k f '=.例3.(2021·河南·南阳中学高三阶段练习(文))曲线()ln 3f x x =+的过点()1,1-的切线方程为________.【答案】20x y -+= 【详解】设切点坐标为()00,ln 3x x +,()1f x x'=,()001f x x '∴=,∴切线方程为()0001ln 3y x x x x --=-, 切线过点()1,1-,()00011ln 31x x x ∴--=--, 化简得:0011ln x x +=,解得:01x =, ∴切线方程为2y x =+,即20x y -+=.故答案为:20x y -+=.练习3-1.(2021·全国·高二课时练习)已知函数()32698f x x x x =-+-+,则过点()0,0可作曲线()y f x =的切线的条数为___________.【答案】2 【详解】∵点()0,0不在函数()y f x =的图象上,∴点()0,0不是切点,设切点为()320000,698P x x x x -+-+(00x ≠),由()32698f x x x x =-+-+,可得()23129'=-+-f x x x ,则切线的斜率()20003129k f x x x '==-+-,∴3220000006983129x x x x x x -+-+-+-=,解得01x =-或02x =,故切线有2条. 故答案为:2名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时无论00(,)P x y 是否在曲线上,都需另设切点求解.如本例3,求曲线()ln 3f x x =+的过点()1,1-的切线方程,此时应设切点00(,)P x y ,在利用导数0()k f x '=,求出切线方程,再利用()1,1-在切线上,求出切点00(,)P x y ,从而求出切线方程.注意和例题2做对比.知识点3 导数的四则运算例1.(2021·江苏·高二专题练习)求下列函数的导数;(1)32235y x x =-+(2)22log xy x =+(3)31sin x y x-=(4)sin sin cos x y x x =+【答案】(1)266y x x '=- (2)12ln 2ln 2x y x '=+(3)()2323sin cos 1sin x x x x y x--'=(4)11sin 2y x'=+(1)解:因为32235y x x =-+,所以266y x x '=-; (2)解:因为22log xy x =+,所以12ln 2ln 2x y x '=+; (3)解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (4) 解:因为sin sin cos xy x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++练习1-1.(2021·全国·高二课时练习)已知函数()f x 的导数为()f x ',而且()()232ln f x x xf x '=++,求()2f '. 【答案】94-【详解】()()1232f x x f x ''=++,()()124322f f ''∴=++,解得:()924f '=-.名师点评:导数的运算法则: (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[](()0)()()f x f xg x f x g x g x g x g x ''⋅-⋅'=≠ 知识点4 复合函数求导例1.(2021·全国·高二课时练习)求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-.【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2xx -⋅(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数, 由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x xy y u x u x '''=⋅=⋅=-⋅.练习1-1.(2021·全国·高二课时练习)求下列函数的导数: (1)7(35)y x =+;(2)57e x y -=;(3)ln(4)y x =-+;(4)213x y -=;(5)sin 26y x π⎛⎫=- ⎪⎝⎭;(6)34(35)y x =-.【答案】(1)621(35)y x '=+(2)57e 5x y -'=(3)14y x '=- (4)212ln 33x y -'=⨯(5)2cos 26y x π⎛⎫'=- ⎪⎝⎭(6)149(35)4x y --'= (1)667(35)(35)21(35)y x x x ''=+⨯+=+;(2)5757e e (57)5x x x y --'⨯'=-=;(3) 11(4)44y x x x ''=⨯-+=-+- (4)1212ln 3(21)2ln 333x x x y --'⨯-=⨯'=;(5)cos 2(2)2cos 2666y x x x πππ⎛⎫⎛⎫''=-⨯-=- ⎪ ⎪⎝⎭⎝⎭(6)314149(33(35)45)(35)4x y x x --'=---'=⨯.名师点评:复合函数(())y f g x =的导数和函数()y f μ=,()g x μ=的导数间的关系为x x y y μμ'''=⋅,即y 对x 的导数等于y 对μ的导数与μ对x 的导数的乘积.二、题型归类练专练一、单选题1.(2021·全国·高二课时练习)函数()2f x x =在1x =附近(即从1到1x +∆之间)的平均变化率是( )A .2x +∆B .2x -∆C .2D .22()x +∆ 【答案】C 【详解】Δy =f (1+Δx )-f (1)=2(1+Δx )-2=2Δx . 所以2 2.y x x x∆∆==∆∆ 故选:C2.(2021·全国·高一课时练习)函数2()1f x x =+,当自变量x 由1变到1.1时,函数()f x 的平均变化率为( ) A .2.1B .1.1C .2D .1 【答案】A 【详解】由题意,函数的平均变化率为:()()221.11 1.112.11.110.1f f --==-. 故选:A.3.(2021·江苏·高二专题练习)函数()12f x x=在2x =处的导数为( ) A .2B .12C .14D .18- 【答案】D 【详解】()()()()000011222222111lim lim lim lim 2428x x x x f x f x f x x x x x ∆→∆→∆→∆→-∆+∆-+∆⨯⎛⎫===-⋅=- ⎪∆∆∆+∆⎝⎭,所以函数()f x 在2x =处的导数为18-.故选:D.4.(2021·江苏·高二专题练习)设函数()f x 在0x x =附近有定义,且有()()()002f x f x x b x x a +-=+∆∆∆,其中a ,b 为常数,则( ) A .()f x a '=B .()f x b '=C .()0f x a '=D .()0f x b '=【答案】C【详解】因为()()()002f x f x x b x x a +-=+∆∆∆,所以()()00f x x f x a b x x+∆-=+∆∆,则()()()0000lim lim x x f x x f x a b x a x∆→∆→+∆-=+∆=∆,即()0f x a '=. 故选:C.5.(2021·全国·高二课时练习)已知曲线y =13x 3上一点P 82,3⎛⎫ ⎪⎝⎭,则该曲线在P 点处切线的斜率为( )A .4B .2C .-4D .8【答案】A【详解】3322200011()133lim lim lim 33()3x x x x x x y y x x x x x x x ∆→∆→∆→+∆-∆'⎡⎤===+⋅∆+∆=⎣⎦∆∆ 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在P 点处切线的斜率为4.故选:A6.(2021·河南·温县第一高级中学高三阶段练习(文))已知函数2()ln 2f x x m x x =-+的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线20x y +=垂直,则m =( ) A .54B .54-C .12D .12- 【答案】C【详解】函数2()ln 2f x x m x x =-+的导数为()22m f x x x'=-+, 可得在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1322f m ⎛⎫=⎪⎭'- ⎝, 又切线与直线20x y +=垂直,所以()13212m -⋅-=-,解得12m =. 故选:C .7.(2021·四川·树德中学高三期中(文))设函数()()ln f x g x x x =++,曲线()y g x =在点1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为( )A .4y x =B .48=-y xC .22y x =+D .21y x =+【答案】A【详解】因为曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,所以(1)3(1)2g g =⎧⎨='⎩, 因为()()ln =++f x g x x x ,则1()()1f x g x x''=++,所以1(1)(1)141f g ''=++=, 且(1)(1)1ln14f g =++=,因此曲线()y f x =在点(1,(1))f 处的切线方程为()441y x -=-,即4y x =,故选:A.8.(2021·江苏·扬州中学高二阶段练习)已知()()220x f x e xf '=-,则()1f '=( )A .243e -B .2423e -C .ln 2e +D .221e - 【答案】B【详解】()()2e 20x f x xf '=-,则()()22e 20x f x f ''=-,()()0220f f ''=-,()203f '=.()242e 3x f x '=-,()2412e 3f '=-.故选:B二、填空题9.(2021·河南·高二期末(文))已知函数()2e sin x f x x m x =⋅-的图象在0x =处的切线与直线310x y ++=垂直,则实数m =___________.【答案】-1【详解】()2sin x f x x e m x =⋅-的定义域为R ,则()22cos x x f x e x e m x '=+⋅-,则函数在0x =处的切线斜率为1(0)2k f m '==-,又直线310x y ++=的斜率213k =-, 由切线和直线垂直,则121k k ,即1(2)()13m -⨯-=-, 解得1m =-.故答案为:1-10.(2021·山东·高三阶段练习)曲线2()ln(2)f x x x =+在点(1,(1))f 处的切线方程为________.【答案】3ln 22y x =+-【详解】()11()2222f x x x x x x ''=⋅+=+, (1)3k f '∴==,又(1)1ln 2f =+,∴切线方程为(1ln 2)3(1)y x -+=-,即3ln 22y x =+-故答案为:3ln 22y x =+-11.(2021·陕西蒲城·高三期中(理))已知函数()sin cos f x x x x =+,则()f π'-=_____.【答案】π【详解】由()sin cos f x x x x =+求导得:()sin cos sin cos f x x x x x x x '=+-=,于是得()cos()f ππππ'-=--=,所以()f ππ'-=.故答案为:π12.(2021·云南师大附中高三阶段练习(理))已知函数cos2()1x f x x =+,则曲线()y f x =在点(0,(0))f 处的切线方程为____________.【答案】+10x y -=【详解】解:由题,得()()()22sin 21cos 21x x x f x x -⋅+-=+',则(0)1f '=-,而(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x -=-,即10x y +-=.故答案为:+10x y -=.三、解答题13.(2021·山西·芮城中学高二阶段练习)已知曲线3S 2y x x =-:(1)求曲线S 在点(2,4)A 处的切线方程;(2)求过点(1,1)B -并与曲线S 相切的直线方程.【答案】(1)10160x y --=(2)20x y --=或5410x y +-=(1)∵32y x x =-,则232y x '=-,∴当2x =时,10y '=,∴点A 处的切线方程为:()4102y x -=-,即10160x y --=.(2)设()3000,2P x x x -为切点,则切线的斜率为()20032f x x '=-,故切线方程为:()()()320000232y x x x x x --=--, 又知切线过点()1,1-,代入上述方程()()()32000012321x x x x ---=--,解得01x =或012x =-, 故所求的切线方程为20x y --=或5410x y +-=.14.(2021·北京市第十五中学南口学校高三期中)已知函数321()33f x x x x =--,求曲线()y f x =在1x =处的切线的方程. 【答案】143y x =-+ 因为321()33f x x x x =--,所以111(1)1333f =--=-,2()23f x x x '=-- 所以(1)1234f '=--=-所以曲线()y f x =在1x =处的切线的方程为()11413y x +=--,即143y x =-+。
5.2.2 导数的四则运算法则课标要求素养要求能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.在利用导数的运算法则求函数的导数的过程中,发展学生的数学运算素养.新知探究已知f (x )=x ,g (x )=1x . Q (x )=f (x )+g (x ),H (x )=f (x )-g (x ) 问题1 f (x ),g (x )的导数分别是什么? 提示 f ′(x )=1,g ′(x )=-1x 2.问题2 试求y =Q (x ),y =H (x )的导数.并观察Q ′(x ),H ′(x )与f ′(x ),g ′(x )的关系. 提示 ∵Δy =(x +Δx )+1x +Δx -⎝ ⎛⎭⎪⎫x +1x =Δx +-Δx x (x +Δx ),∴Δy Δx =1-1x (x +Δx ).∴Q ′(x )=错误!未指定书签。
0lim x ∆→Δy Δx =错误!未指定书签。
0lim x ∆→⎣⎢⎡⎦⎥⎤1-1x (x +Δx )=1-1x 2.同理,H ′(x )=1+1x 2.显然Q (x )的导数等于f (x ),g (x )的导数的和.H (x )的导数等于f (x ),g (x )的导数的差.导数运算法则 注意两函数商的导数中分式的分子上是“-”法则语言叙述[f (x )±g (x )]′=f ′(x )±g ′(x )两个函数和(或差)的导数,等于这两个函数的导数的和(或差)[微判断]1.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).(√)2.当g (x )≠0时,⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x ).(√)3.函数f (x )=x ln x 的导数是f ′(x )=x .(×) 提示 f ′(x )=(x )′ln x +x (ln x )′=ln x +1. [微训练]1.(多选题)下列求导运算正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2 B.(sin x +cos x )′=cos x -sin x C.⎝ ⎛⎭⎪⎫ln x x ′=1-ln x x 2 D.(x 2cos x )′=-2x sin x解析 A 中⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2,A 不正确;D 中,(x 2cos x )′=2x cos x -x 2sin x ,D 不正确;BC 正确. 答案 BC2.设f (x )=x 3+ax 2-2x +b ,若f ′(1)=4,则a 的值是( ) A.94 B.32 C.-1D.-52解析f′(x)=3x2+2ax-2,故f′(1)=3+2a-2=4,解得a=3 2.答案 B3.设f(x)=xe x,则f′(0)=________.解析f′(x)=e x-x e x(e x)2=1-xe x,故f′(0)=1.答案 1[微思考]1.设f(x)=tan x,如何求f′(x)?提示f(x)=tan x=sin xcos x,所以f′(x)=cos2x+sin2xcos2x=1cos2x.2.设f(x)=x4+2x3-3x2+1x2,如何求f′(x)?提示f(x)=x4+2x3-3x2+1x2=x2+2x-3+x-2,故f′(x)=2x+2-2x-3.题型一利用运算法则求函数的导数【例1】求下列函数的导数. (1)y=(2x2-1)(3x+1);(2)y=x2-x+1 x2+x+1;(3)y=3x e x-2x+e;(4)y=ln x x2+1.解(1)法一可以先展开后再求导:y=(2x2-1)(3x+1)=6x3+2x2-3x-1,∴y′=(6x3+2x2-3x-1)′=18x2+4x-3.法二可以利用乘法的求导法则进行求导:y′=(2x2-1)′(3x+1)+(2x2-1)(3x+1)′=4x(3x+1)+3(2x2-1)=12x2+4x+6x2-3=18x 2+4x -3.(2)把函数的解析式整理变形可得: y =x 2-x +1x 2+x +1=x 2+x +1-2x x 2+x +1=1-2x x 2+x +1, ∴y ′=-2(x 2+x +1)-2x (2x +1)(x 2+x +1)2=2x 2-2(x 2+x +1)2.(3)根据求导法则进行求导可得: y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x ln 3·e x +3x e x -2x ln 2=(3e)x ln 3e -2x ln 2. (4)利用除法的求导法则进行求导可得: y ′=(ln x )′(x 2+1)-ln x ·(x 2+1)′(x 2+1)2=1x (x 2+1)-ln x ·2x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.规律方法 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导. 【训练1】 求下列函数的导数. (1)y =(x 2+1)(x -1); (2)y =3x +lg x ; (3)y =x 2+tan x ; (4)y =e xx +1.解 (1)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=3x 2-2x +1.(2)y ′=(3x )′+(lg x )′=3x ln 3+1x ln 10.(3)因为y =x 2+sin xcos x , 所以y ′=(x 2)′+⎝ ⎛⎭⎪⎫sin x cos x ′=2x +cos 2x -sin x (-sin x )cos 2x =2x +1cos 2x . (4)y ′=(e x )′(x +1)-(x +1)′e x(x +1)2=e x (x +1)-e x (x +1)2=x e x (x +1)2.题型二 求导法则的应用 角度1 求导法则的逆向应用【例2-1】 已知f ′(x )是一次函数,x 2·f ′(x )-(2x -1)·f (x )=1对一切x ∈R 恒成立,求f (x )的解析式.解 由f ′(x )为一次函数可知,f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b ,把f (x ),f ′(x )代入关于x 的方程得x 2(2ax +b )-(2x -1)·(ax 2+bx +c )=1,即(a -b )x 2+(b -2c )x +c -1=0,又该方程对一切x ∈R 恒成立,所以⎩⎨⎧a -b =0,b -2c =0,c -1=0,解得⎩⎨⎧a =2,b =2,c =1,所以f (x )=2x 2+2x +1.规律方法 待定系数法就是用设未知数的方法分析所要解决的问题,然后利用已知条件解出所设未知数,进而将问题解决.待定系数法常用来求函数解析式,特别是已知具有某些特征的函数.【训练2】 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +1.求y =f (x )的函数表达式. 解 ∵f ′(x )=2x +1, ∴f (x )=x 2+x +c (c 为常数),又∵方程f (x )=0有两个相等的实根,即x 2+x +c =0有两个相等的实根,Δ=12-4c =0,即c =14,∴f (x )=x 2+x +14.角度2 求导法则在导数几何意义中的应用【例2-2】 已知函数f (x )=ax 3-x 2-x +b (a ,b ∈R ,a ≠0),g (x )=3e4e x ,f (x )的图象在x =-12处的切线方程为y =34x +98. (1)求a ,b 的值.(2)直线y =34x +98是否与函数g (x )的图象相切?若相切,求出切点的坐标;若不相切,请说明理由. 解 (1)f ′(x )=3ax 2-2x -1.∵f (x )的图象在x =-12处的切线方程为y =34x +98,∴f ′⎝ ⎛⎭⎪⎫-12=34,即3a ·⎝ ⎛⎭⎪⎫-122+1-1=34,解得a =1,又f (x )的图象过点⎝ ⎛⎭⎪⎫-12,34, ∴⎝ ⎛⎭⎪⎫-123-⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+b =34,解得b =58. 综上,a =1,b =58.(2)设直线y =34x +98与函数g (x )的图象相切于点A (x 0,y 0). ∵g ′(x )=3e 4e x ,∴g ′(x 0)=3e 4e x 0=34,解得x 0=-12,将x 0=-12代入g (x )=3e 4e x ,得点A 的坐标是⎝ ⎛⎭⎪⎫-12,34,∴切线方程为y -34=34⎝ ⎛⎭⎪⎫x +12,化简得y =34x +98,故直线y =34x +98与函数g (x )的图象相切,切点坐标是⎝ ⎛⎭⎪⎫-12,34. 规律方法 (1)此类问题主要涉及切点,切点处的导数、切线方程三个主要元素,解题方法为把其它题设条件转化为这三个要素间的关系,构建方程(组)求解.(2)准确利用求导法则求出函数的导数是解此类问题的第一步,也是解题的关键,务必做到准确.【训练3】 (1)已知函数f (x )=axx 2+b,且f (x )的图象在x =1处与直线y =2相切. (1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象切于P 点,求直线l 的斜率k 的取值范围.解 (1)由题意得f ′(x )=(ax )′(x 2+b )-ax (x 2+b )′(x 2+b )2=a (x 2+b )-2ax 2(x 2+b )2=-ax 2+ab (x 2+b )2,因为f (x )的图象在x =1处与直线y =2相切, 所以⎩⎪⎨⎪⎧f ′(1)=-a +ab (1+b )2=0,f (1)=a 1+b =2,解得⎩⎨⎧a =4,b =1,则f (x )=4xx 2+1; (2)由(1)可得,f ′(x )=-4x 2+4(x 2+1)2,所以直线l 的斜率 k =f ′(x 0)=-4x 20+4(x 20+1)2=-4(x 20+1)+8(x 20+1)2=-4·1x 20+1+8(x 20+1)2设t =1x 20+1,则t ∈(0,1], 所以k =4(2t 2-t )=8⎝ ⎛⎭⎪⎫t -142-12,则在对称轴t =14处取到最小值-12,在t =1处取到最大值4, 所以直线l 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-12,4.一、素养落地1.通过利用导数的运算法则求导数提升数学运算素养.2.导数的求法对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.首先,在化简时,要注意化简的等价性,避免不必要的运算失误;其次,利用导数公式求函数的导数时,一定要将函数化为基本初等函数中的某一个,再套用公式求导数. 3.和与差的运算法则可以推广[f (x 1)±f (x 2)±…±f (x n )]′=f ′(x 1)±f ′(x 2)±…±f ′(x n ). 4.积、商的求导法则(1)若c 为常数,则[cf (x )]′=cf ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); (3)当f (x )=1时,有⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )[g (x )]2(g (x )≠0).二、素养训练1.函数y =(x +1)(x -1)的导数等于( ) A.1 B.-12xC.12xD.-14x解析 因为y =(x +1)(x -1)=x -1, 所以y ′=x ′-1′=1. 答案 A2.已知函数f (x )=x e x +ax ,若f ′(0)=2,则实数a 的值为( ) A.-1 B.0 C.1D.2 解析 f ′(x )=e x (x +1)+a ,故f ′(0)=1+a =2,所以a =1.答案 C 3.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.答案 C4.曲线f (x )=x ln x 在点(1,f (1))处的切线的方程为________.解析 f ′(x )=1+ln x ,则在点(1,f (1))处切线的斜率k =f ′(1)=1,又f (1)=0,故所求的切线方程为y -0=1×(x -1),即x -y -1=0. 答案 x -y -1=05.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 解析 由于f ′(0)是常数, 所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 答案 1基础达标一、选择题1.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为( ) A.π6 B.3π4 C.π4D.π3解析 因为f ′(x )=x 2-2x ,k =f ′(1)=-1,所以在x =1处的切线的倾斜角为3π4. 答案 B2.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)2解析 y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2.答案 A3.下列运算中正确的是( ) A.(ax 2+bx +c )′=a (x 2)′+b (x )′+(c )′ B.(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′-(x 2)′x 2D.(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′+(c )′正确; B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′错误;C 项中,⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2错误;D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′错误. 答案 A4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A.-1 B.-2 C.2D.0解析 f ′(x )=4ax 3+2bx ,f ′(x )是奇函数, 故f ′(-1)=-f ′(1)=-2. 答案 B5.已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的大致图象是( )解析 ∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x .易知f ′(x )=12x -sin x是奇函数,其图象关于原点对称,故排除B ,D.由f ′⎝ ⎛⎭⎪⎫π6=π12-12<0,排除C ,故选A. 答案 A 二、填空题6.函数f (x )=e x sin x 的图象在点(0,f (0))处切线的倾斜角为________.解析 由题意得,f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ),∴函数f (x )的图象在点(0,f (0))处切线的斜率k =f ′(0)=1,则所求的倾斜角为π4. 答案 π47.已知函数f (x )=⎩⎪⎨⎪⎧13x 3-4x ,x <0,-1x -ln x ,0<x <1,若f ′(a )=12,则实数a 的值为________.解析 f ′(x )=⎩⎪⎨⎪⎧x 2-4,x <0,1x 2-1x ,0<x <1,若f ′(a )=12,则⎩⎪⎨⎪⎧0<a <1,1a 2-1a =12或⎩⎨⎧a <0,a 2-4=12,解得a=14或a =-4. 答案 14或-48.设f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,若h (x )=f (x )+2g (x ),则h ′(5)=________.解析 由题意知f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1, ∵h ′(x )=f ′(x )g (x )-[f (x )+2]g ′(x )[g (x )]2,∴h ′(5)=f ′(5)g (5)-[f (5)+2]g ′(5)[g (5)]2=3×4-(5+2)×142=516.答案 516 三、解答题9.求下列函数的导数: (1)f (x )=(x 2+9)⎝ ⎛⎭⎪⎫x -3x(2)f (x )=sin xx n .解 (1)f (x )=x 3+6x -27x ,f ′(x )=3x 2+27x 2+6. (2)f ′(x )=(sin x )′x n -sin x ·(x n )′(x n )2=x n cos x -nx n -1sin x x 2n=x cos x -n sin xx n +1.10.已知抛物线f (x )=ax 2+bx -7经过点(1,1),且在点(1,1)处的切线方程为4x -y -3=0,求a ,b 的值.解 由抛物线f (x )=ax 2+bx -7经过点(1,1), 得1=a +b -7,即a +b -8=0.因为f ′(x )=2ax +b ,且抛物线在点(1,1)处的切线方程为4x -y -3=0,所以f ′(1)=4,即2a +b -4=0.由⎩⎨⎧a +b -8=0,2a +b -4=0,解得⎩⎨⎧a =-4,b =12.能力提升11.若曲线C 1:y =x 2与曲线C 2:y =e xa (a >0)存在公共切线,则实数a 的取值范围为( ) A.(0,1) B.⎝ ⎛⎦⎥⎤1,e 24 C.⎣⎢⎡⎦⎥⎤e 24,2 D.⎣⎢⎡⎭⎪⎫e 24,+∞解析 y =x 2在点(m ,m 2)处的切线斜率为2m ,y =e x a (a >0)在点⎝ ⎛⎭⎪⎫n ,1a e n 处的切线斜率为1a e n ,如果两个曲线存在公共切线,那么2m =1a e n.又由斜率公式可得2m =m 2-1a e nm -n,由此得到m =2n -2,则4n -4=1a e n 有解,所以函数y =4x -4与y =1a e x的图象有交点即可.当直线y =4x -4与函数y =1a e x 的图象相切时,设切点为(s ,t ),则1a e s =4,且t =4s -4=1a e s ,即有切点(2,4),a =e 24,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫e 24,+∞.故选D. 答案 D12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +bx 2, ∴f ′(2)=74,②由①②得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.创新猜想13.(多选题)过点P (2,-6)作曲线f (x )=x 3-3x 的切线,则切线方程为( ) A.3x +y =0 B.24x -y -54=0 C.3x -y =0D.24x -y +54=0解析 设切点为(m ,m 3-3m ), f (x )=x 3-3x 的导数为f ′(x )=3x 2-3, 则切线斜率k =3m 2-3, 由点斜式方程可得切线方程为 y -m 3+3m =(3m 2-3)(x -m ),将点P (2,-6)代入可得-6-m 3+3m =(3m 2-3)(2-m ), 解得m =0或m =3.当m =0时,切线方程为3x +y =0; 当m =3时,切线方程为24x -y -54=0. 答案 AB14.(多空题)如图所示的图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则这个图象的序号是________,f (-1)=________.解析∵f′(x)=x2+2ax+a2-1,∴f′(x)的图象开口向上,排除图象②④;又a≠0,∴f′(x)不是偶函数,其图象不关于y轴对称,故f′(x)的图象的序号为③.由图象特征可知,f′(0)=0,∴a2-1=0,且对称轴x=-a>0,∴a=-1,∴f(x)=13x3-x2+1,则f(-1)=-1 3.答案③-1 3。
【人教A 版】高中数学重点难点突破:导数的计算 同步讲义(学生版)【重难点知识点网络】: 1.几个常用函数的导数 几个常用函数的导数如下表:(1)若()f x c =,则()0f x '=;(2)若()()f x x αα*=∈Q ,则()_______f x '=;(3)若()sin f x x =,则()cos f x x '=;(4)若()cos f x x =,则()______f x '=;(5)若()x f x a =,则()ln (01)x f x a a a a '=>≠且;(6)若()e x f x =,则()e x f x '=;(7)若()log a f x x =,则()______(01)f x a a '=>≠且;(8)若()ln f x x =,则1()f x x'=. 3.导数运算法则(1)[()()]___________f x g x '±=;(2)[()()]_____________f x g x '⋅=;(3)()[]____________(()0)()f xg x g x '=≠. 4.复合函数的导数 (1)复合函数的定义一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数(composite function),记作(())y f g x =. (2)复合函数的求导法则复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为___________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【重难点题型突破】: 一、求函数的导数(1)基本初等函数的求导公式是求导的基本依据,一定要记清形式,学会使用公式求导. (2)应用导数运算法则求函数的导数的技巧:①求导之前,对三角恒等式先进行化简,然后再求导,这样既减少了计算量,又可少出错. ②利用代数恒等变形可以避开对商的形式求导.③在函数中有两个以上的因式相乘时,要注意多次使用积的求导法则,能展开的先展开成多项式,再求导.(3)应用导数运算法则求函数的导数的原则:结合函数解析式的特点先进行恒等变形,把一个函数化成几个基本初等函数的加、减、乘、除的形式,再用运算法则求导. 例1.下列求导运算正确的是()A .211()1x x x '+=+B .21(log )ln 2x x '=C .3(3)3log x xx '=D .2(cos )2sin x x x x '=-【变式训练1-1】、已知函数2()(1)22(1)f x f x x f '=++,则(2)f '=() A .0 B .2- C .4-D .6-【变式训练1-2】、已知函数2l ()n f x a x =的导函数是()f 'x ,且)8(4f '=,则实数a =______________.二、复合函数求导对于复合函数的求导,一般步骤为:(1)弄清复合关系,将复合函数分解成基本初等函数形式; (2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量. 例2.求下列函数的导数: (1)2()(11)y x x +-=;(2)22()ln f x x x =-; (3)e 1e 1x xy +=-.例3.求下列函数的导数:(1)221()(31)y x x =-+;(2)sin cos 22x x y x =-;(3)2359x x x x y x-+-=【变式训练3-1】.求下列函数的导函数: (1)3sin cos y x x x =;(2)1()23()()y x x x =+++.三、导数几何意义的应用利用导数的几何意义解题时需注意:(1)切点既在原函数的图象上也在切线上,则切点坐标既适合原函数的解析式,也适合切线方程,常由此建立方程组求解;(2)在切点处的导数值等于切线的斜率.例4.)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则() A .a=e ,b =-1 B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-例5.(2019天津文11)曲线cos 2xy x =-在点()0,1处的切线方程为__________.【变式训练5-1】、曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .2-D .2【变式训练5-2】.(2015新课标2)已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相 切,则=a .【人教A 版】高中数学重点难点突破:导数的计算 同步讲义(教师版)【重难点知识点网络】: 1.几个常用函数的导数 几个常用函数的导数如下表:(1)若()f x c =,则()0f x '=;(2)若()()f x x αα*=∈Q ,则()_______f x '=;(3)若()sin f x x =,则()cos f x x '=;(4)若()cos f x x =,则()______f x '=;(5)若()x f x a =,则()ln (01)x f x a a a a '=>≠且;(6)若()e x f x =,则()e x f x '=;(7)若()log a f x x =,则()______(01)f x a a '=>≠且;(8)若()ln f x x =,则1()f x x'=. 3.导数运算法则(1)[()()]___________f x g x '±=;(2)[()()]_____________f x g x '⋅=;(3)()[]____________(()0)()f xg x g x '=≠. 4.复合函数的导数 (1)复合函数的定义一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数(composite function),记作(())y f g x =. (2)复合函数的求导法则复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为___________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【重难点题型突破】: 一、求函数的导数(1)基本初等函数的求导公式是求导的基本依据,一定要记清形式,学会使用公式求导. (2)应用导数运算法则求函数的导数的技巧:①求导之前,对三角恒等式先进行化简,然后再求导,这样既减少了计算量,又可少出错. ②利用代数恒等变形可以避开对商的形式求导.③在函数中有两个以上的因式相乘时,要注意多次使用积的求导法则,能展开的先展开成多项式,再求导.(3)应用导数运算法则求函数的导数的原则:结合函数解析式的特点先进行恒等变形,把一个函数化成几个基本初等函数的加、减、乘、除的形式,再用运算法则求导. 例1.下列求导运算正确的是()A .211()1x x x '+=+B .21(log )ln 2x x '=C .3(3)3log x xx '=D .2(cos )2sin x x x x '=-【答案】:B【解析】:因为⎝ ⎛⎭⎪⎫x +1x ′=x ′+⎝ ⎛⎭⎪⎫1x ′=1-1x 2,所以A 选项错误; 又(log 2x )′=1x ln 2,所以选项B 正确; 又(3x)′=3xln 3,所以选项C 错误;[来源:]又(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x ,所以选项D 错误.【变式训练1-1】、已知函数2()(1)22(1)f x f x x f '=++,则(2)f '=()A .0B .2-C .4-D .6-【答案】D【解析】由题可得(1)(1)22(1)f f f '=++,即(1)(1)2f f '=--,因为()2(1)2f x f x ''=+,所以(1)2(1)2f f ''=+,解得(1)2f '=-,故(1)0f =,所以2()22f x x x =-+,所以()42f x x '=-+,所以(2)6f '=-,故选D .【变式训练1-2】、已知函数2l ()n f x a x =的导函数是()f 'x ,且)8(4f '=,则实数a =______________.【答案】42±【解析】由题意得22(l ()n )a x a x f 'x '==,因为)8(4f '=,所以284a =,解得42a =±.二、复合函数求导对于复合函数的求导,一般步骤为:(1)弄清复合关系,将复合函数分解成基本初等函数形式;(2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量. 例2.求下列函数的导数: (1)2()(11)y x x +-=;(2)22()ln f x x x=-;(3)e 1e 1x xy +=-. 【答案】(1)2321y x x '=+-;(2)341()f x x x=--';(3)22e (e 1)x x y -'=-.【解析】(1)方法1:22[(1)]11()(1)()y x x x x '=+'-++-'2()()11)1(2x x x =+⋅-++ 2321x x =+-.方法2:因为232()(21)11y x x x x x x =++-=+--,所以32212(31)y x x x x x '=+--'=+-.(2)224322()141()x x f x x x x x''-=-'-=-. (3)222(e 1)(e 1)(e 1)(e 1)'e (e 1)(e 1)e 2e (e 1)(e 1)(e 1)x x x x x x x x xx x x y '+--+---+-===--'-. 例3.求下列函数的导数:(1)221()(31)y x x =-+;(2)sin cos 22x x y x =-;(3)25x x x y x=【参考答案】见试题解析.【试题解析】(1)方法1:∵232()()21316231y x x x x x =-+=+--, ∴()()3232262316231184 3.()()()y x x x x x x x x '=+--'='+'-'-'=+-方法2:22()()2131213()(1)y x x x x '=-'++-+'2224313211246()3()x x x x x x =++-=++- 21843x x =+-.(2)∵sincos 22x xy x =-, ∴111(sin )()(sin )1cos 222y x x '=x 'x 'x '=--=-. (3)∵3122359y x x x -=-+-, ∴31223)()(5)((9)y x 'x ''x'-'=-+-1322313109()22x x -=⨯-+-⨯-⋅21)1x=+-. 【变式训练3-1】.求下列函数的导函数: (1)3sin cos y x x x =;(2)1()23()()y x x x =+++.【答案】(1)233sin2cos22y x x x x '=+;(2)231211y x x '=++. 【解析】(1)3[(sin )cos ]y x x x '='33sin c ()()os sin cos x x x x x x ='+'333[()(sin sin cos sin sin )]()x x x x x x x x ='+'+-2333sin cos c (os si )n n )si (x x x x x x x x =++-232323sin cos cos sin x x x x x x x =+-233sin2cos2.2x x x x =+ (2)方法1:123[()()()]y x x x '=+++'()()()[12]3123()()()x x x x x x =++'+++++'213()()()()12x x x x x =+++++++2(23)33()2x x x x =+++++231211.x x =++方法2:因为2321233())())()()()236116x x x x x x x x x +++=+++=+++,所以322[()()()]()123611631211y x x x x x x x x '=+++'=+++'=++.三、导数几何意义的应用利用导数的几何意义解题时需注意:(1)切点既在原函数的图象上也在切线上,则切点坐标既适合原函数的解析式,也适合切线方程,常由此建立方程组求解;(2)在切点处的导数值等于切线的斜率.例4.)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则() A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =- 【解析】:e ln x y a x x =+的导数为'e ln 1x y a x =++,又函数e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+,可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-. 故选D .例5.(2019天津文11)曲线cos 2x y x =-在点()0,1处的切线方程为__________.【解析】:由题意,可知1sin 2y x '=--.因为1sin 002y x '=--==所以曲线cos y x =)0,1处的切线方程112y x -=-,即220x y +-=. 【变式训练5-1】、曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( ) A .12- B .12C.2- D.2 【解析】22cos (sin cos )sin (cos sin )1(sin cos )(sin cos )x x x x x x y x x x x +--'==++,所以 2112(sin cos )444y x πππ'===+。
考点13 变化率与导数、导数的运算1.设曲线(e为自然对数的底数)上任意一点处的切线为,总存在曲线上某点处的切线,使得,则实数的取值范围()A.B.C.D.【答案】D2.已知函数在点处的切线为,动点在直线上,则的最小值是()A.4 B.2 C.D.【答案】D【解析】由题得所以切线方程为即,故选D.3.函数,则在其图像上的点处的切线的斜率为A.B.C.D.【答案】D【解析】把点的坐标(1,-2)代入函数的解析式得-2=1+2a-3,所以a=0,所以f(x)=,所以,所以切线的斜率为-2.故答案为:D.学&科网4.将函数f(x)=ln(x+1)(x≥0)的图像绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角θ,曲线C都仍然是一个函数的图像,则α的最大值为( )A.π B.C.D.【答案】D5.曲线在处的切线的倾斜角是()A.B.C.D.【答案】C【解析】当时,,则倾斜角为故选.学科*网6.已知函数是定义在区间上的可导函数,为其导函数,当且时,,若曲线在点处的切线的斜率为,则的值为()A.4 B.6 C.8 D.10【答案】A7.已知函数的导函数为,且满足(其中为自然对数的底数),则()A.B.C.-1 D.1【答案】B【解析】根据题意,f(x)=2xf'(e)+lnx,其导数,令x=e,可得,变形可得故选:B.8.已知函数,记是的导函数,将满足的所有正数从小到大排成数列,,则数列的通项公式是()A.B.C.D.【答案】C9.已知函数,则的值为()A.B.0 C.D.【答案】D【解析】由题意,化简得,而,所以,得,故,所以,,所以,故选D.学科*网10.函数是定义在R上的可导函数,其图象关于轴对称,且当时,有则下列不等关系不正确的是A.B.C.D.【答案】A11.已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是()A.函数图象的对称轴方程为B.函数的最大值为C.函数的图象上存在点P,使得在P点处的切线与直线平行D.方程的两个不同的解分别为,,则最小值为【答案】C12.已知函数,则曲线在点处的切线倾斜角是_________。
考点9 变化率与导数、导数的计算选择题1.(2011·山东高考文科·T4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A )-9 (B )-3 (C )9 (D )15【思路点拨】本题先求导,再由导数意义求切线方程,最后求切线与y 轴交点的纵坐标.【精讲精析】选C.因为y /=3x 2,切点为P (1,12),所以切线的斜率为3,故切线方程为3x-y+9=0,令x=0,得y=9,故选C.2.(2011·山东高考文科·T10)函数2sin 2x y x =-的图象大致是( )【思路点拨】本题先求导数,根据导数与函数单调性的关系判断函数图象的形状.【精讲精析】选 C.因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得C 正确.3.(2011·湖南高考文科T7)曲线y=sin x 1M(,0)sin x cos x 24π-+在点处的切线的斜率为( ) (A )21- (B )21 (C )22- (D )22 【思路点拨】本题考查导数的运算,导数的几何意义是:切线的斜率.【精讲精析】选B.首先求出函数的导数,再求出在点M 处的导数,得到该点处的切线的斜率.4.(2011·江西高考理科·T4)若()224ln f x x x x =--,则()'f x >0的解集为( )(A )()0,+∞ (B )()()1,02,-⋃+∞(C )()2,+∞ (D )()1,0-【思路点拨】首先求出f(x)的导数,再解分式不等式.【精讲精析】选C.{}44f (x)2x 2,f (x)0,2x 20,x xx 1)(x 2)0,1x 0x 2,f (x)x x x 0,x 2.=-->-->+-><<>>>''-由条件得:令即(整理得:解得:或又因为的定义域为所以5.(2011·江西高考文科·T4)曲线=x y e 在点A (0,1)处的切线斜率为( )(A )1 (B )2 (C )e (D )1e【思路点拨】首先求函数的导数,再根据导数的几何意义即得.【精讲精析】选A.'x '0x 0y e ,e 1.====由条件得:根据导数的几何意义可得,k=y。
2017年高考数学基础突破——导数与积分第1讲 变化率与导数【知识梳理】1.函数()y f x =在x =x 0处的导数 (1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 考点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s 1+Δt -s 1 Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【例3】某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒C .8米/秒 D .674米/秒考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A. )(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f '【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s t 0+Δt -s t 0Δt 叫做这段时间内物体的平均速度C .Δs Δt 不一定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度 2.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min ) ( )A. 03.0B. 03.0-C.003.0D. 003.0-4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-35.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-37.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是8.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.9.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开始到4 s 时物体运动的平均速度和4 s 时的瞬时速度.10.求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.11.若2)1()(-=x x f ,求(2)f '.12.)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.2017年高考数学基础突破——导数与积分第1讲 变化率与导数(教师版)【知识梳理】1.函数()y f x =在x =x 0处的导数 (1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1解析:v =Δs Δt =(8+2.12)-(8+22)2.1-2=2.12-220.1=4.1,故应选B.【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 知识点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s 1+Δt -s 1 Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度 【解析】 由平均速度的概念知:v =s 1+Δt -s 1Δt=5Δt +10.故应选D.【例3】某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒C .8米/秒 D .674米/秒【解析】∵ΔsΔt = 4+Δt 2+34+Δt -16-34Δt =Δt 2+8Δt +-3Δt 4 4+Δt Δt =Δt +8-316+4Δt,∴lim Δt →0Δs Δt =8-316=12516. 故选B.考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【解析】法一 ∵Δy =(1+Δx )+11+Δx -(1+11)=Δx -1+11+Δx = Δx 21+Δx ,∴ΔyΔx =Δx1+Δx. ∴y ′|x =1=limΔx →0Δy Δx =lim Δx →0Δx 1+Δx=0. 法二 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx -1x +1x +Δx=Δx x 2+x ·Δx -1 x x +Δx,∴y ′=lim Δx →0Δy Δx =lim Δx →0x 2+x ·Δx -1x x +Δx =x 2-1x 2=1-1x2.∴y ′|x =1=1-1=0.【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法. 变式训练1.用定义求函数f (x )=x 2在x =1处的导数.解析:法一 Δy =f (1+Δx )-f (1)=(1+Δx )2-1=2Δx +(Δx )2,∴ f ′(1)=lim Δx →0Δy Δx =lim Δx →02Δx + Δx 2Δx=lim Δx →0 (2+Δx )=2,即f (x )=x 2在x =1处的导数f ′(1)=2.法二 Δy =f (x +Δx )-f (x )=(x +Δx )2-x 2=2Δx ·x +(Δx )2,∴ ΔyΔx=2Δx ·x + Δx2Δx=2x +Δx .∴0()lim (2)2x f x x x x ∆→'=+∆=,∴ (1)2f '=,即f (x )=x 2在x =1处的导数f ′(1)=2.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A.)(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 【解析】00000x 0x 000()()()()limlim =()2()()f x x f x x f x x f x x f x x x x x x ∆→∆→+∆--∆+∆--∆'=∆+∆--∆,故选B.【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s t 0+Δt -s t 0Δt 叫做这段时间内物体的平均速度C .Δs Δt 不一定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度 【解析】D 错误,应为t =t 0时的瞬时速度,选D2.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 2. 解析】D.3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min ) ( )A. 03.0B. 03.0-C.003.0D. 003.0-【解析】B4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-3 【答案】C【解析】Δy Δx = x +Δx 3-x 3Δx =3Δx ·x 2+3 Δx 2·x + Δx 3Δx =3x 2+3Δx ·x +(Δx )2,∴limΔx →0Δy Δx=3x 2,∴y ′|x =1=3. 5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)【答案】 B【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3Δx 2+6Δx , ∴limΔx →0ΔyΔx=lim Δx →0(6x 0+3Δx +6)=6x 0+6=0.,∴x 0=-1,y 0=-2. 6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-3【解析】A7.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是3.【答案】 17.58.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【答案】 10米/秒 【解析】v ′(5)=limΔt →0s 5+Δt -s 5Δt=lim Δt →0(10+Δt )=10.9.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开始到4 s 时物体运动的平均速度和4 s 时的瞬时速度.【解析】自运动开始到t s 时,物体运动的平均速度v (t )=s t t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4)=(2+6t )Δt +3(Δt )2.limΔt →0ΔsΔt=lim Δt →0(2+6t +3·Δt )=2+6t , ∴4 s 时物体的瞬时速度为2+6×4=26(m/s).10.求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.解析:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2, 200(1)(1)2(1)lim lim(3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆.11.若2)1()(-=x x f ,求)2('f .解析:xx f x x f x y o o ∆-∆+=∆∆)()(xx x f x f ∆---∆+=∆-∆+=22)12()12()2()2(=x xx x ∆+=∆∆+∆222所以:f ’(2)= 2)2(lim 0=∆+→∆x x12.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.解析:设2)()(m x a x f -=,则2222)(2)(+=-=-='x am ax m x a x f 解得1,1==m a ,所以12)1x ()(22++=-=x x x f 。
120难点34 导数的运算法则及基本公式应用导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导.●难点磁场(★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标.●案例探究[例1]求函数的导数:)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目.知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数.错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错.技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.xx x x x x x x x x x x x x x x x xx x x x x x x x xx x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解(2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -byv =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一:设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x =f ′(12+x )·21112+x ·2x =),1(122+'+x f x x解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′121=f ′(12+x )·21(x 2+1)21-·(x 2+1)′ =f ′(12+x )·21(x 2+1) 21-·2x=12+x xf ′(12+x )[例2]利用导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C n n ,(n ∈N *)命题意图:培养考生的思维的灵活性以及在建立知识体系中知识点灵活融合的能力.属 ★★★★级题目.知识依托:通过对数列的通项进行联想,合理运用逆向思维.由求导公式(x n )′=nx n -1,可联想到它们是另外一个和式的导数.关键要抓住数列通项的形式结构.错解分析:本题难点是考生易犯思维定势的错误,受此影响而不善于联想.技巧与方法:第(1)题要分x =1和x ≠1讨论,等式两边都求导.解:(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时, ∵x +x 2+x 3+…+x n =xx x n --+11, 两边都是关于x 的函数,求导得 (x +x 2+x 3+…+x n )′=(x x x n --+11)′ 即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n ,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1, 令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n , 即S n =C 1n +2C 2n +…+n C n n =n ·2n -1●锦囊妙计1.深刻理解导数的概念,了解用定义求简单的导数.xy ∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′122 (x )=x y x ∆∆→∆lim 0,知道导数的等价形式:)()()(lim )()(lim 0000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆. 2.求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键.3.对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.4.复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.●歼灭难点训练一、选择题1.(★★★★)y =e sin x cos(sin x ),则y ′(0)等于( )A.0B.1C.-1D.22.(★★★★)经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0 B.x -y =0或25x +y =0 C.x +y =0或25x -y =0 D.x -y =0或25x -y =0 二、填空题 3.(★★★★)若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________.4.(★★★★)设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________.三、解答题5.(★★★★)已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程.6.(★★★★)求函数的导数(1)y =(x 2-2x +3)e 2x ;(2)y =31xx -. 7.(★★★★)有一个长度为5 m 的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚1.4 m 时,梯子上端下滑的速度.8.(★★★★)求和S n =12+22x +32x 2+…+n 2x n -1,(x ≠0,n ∈N *).参考答案难点磁场解:由l 过原点,知k =00x y (x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0, ∴00x y =x 02-3x 0+2123y ′=3x 2-6x +2,k =3x 02-6x 0+2又k =00x y ,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23 由x ≠0,知x 0=23 ∴y 0=(23)3-3(23)2+2·23=-83 ∴k =00x y =-41 ∴l 方程y =-41x 切点(23,-83) 歼灭难点训练一、1.解析:y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案:B 2.解析:设切点为(x 0,y 0),则切线的斜率为k =00x y ,另一方面,y ′=(59++x x )′=2)5(4+-x ,故 y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0得x 0(1)=-3,y 0(2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从而得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- ,由于切线过原点,故得切线:l A :y =-x 或l B :y =-25x . 答案:A二、3.解析:根据导数的定义:f ′(x 0)=kx f k x f k ---+→)()]([(lim000(这时k x -=∆)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---⋅-=--∴→→→x f k x f k x f k x f k x f k x f k x f k k k 答案:-14.解析:设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案:n !三、5.解:设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2)对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①124对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l 方程为y =0或y =4x -46.解:(1)注意到y >0,两端取对数,得ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2xxx e x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1⋅+-=⋅+-⋅+-+-=⋅+-+-='∴+-+-=++--=++-'+-='⋅∴(2)两端取对数,得 ln|y |=31(ln|x |-ln|1-x |), 两边解x 求导,得 31)1(31)1(131)1(131)111(311x x x x y x x y x x x x y y --=⋅-⋅='∴-=---='⋅7.解:设经时间t 秒梯子上端下滑s 米,则s =5-2925t -,当下端移开1.4 m 时,t 0=157341=⋅,又s ′=-21 (25-9t 2)21-·(-9·2t )=9t 29251t -,所以s ′(t 0)=9×2)157(9251157⨯-⋅=0.875(m/s)8.解:(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+,两边同乘以x ,得 x +2x 2+3x 2+…+nx n =221)1()1(x nx x n x n n -++-++两边对x 求导,得 S n =12+22x 2+32x 2+…+n 2x n -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
变化率与导数、导数的计算考纲解读 1.以基本初等函数为背景考查导数运算法则与公式;2.考查常见函数的导数的几何意义及应用.[基础梳理]1..导数的概念(1)函数y =f (x )在x =x 0处导数的定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0f (x 0+Δx )-f (x 0)Δx=li m Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n-1中n ≠0且n∈Q ,(cos x )′=-sin x .5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[三基自测]1.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .e C.ln 22 D .ln 2答案:B2.若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案:C3.若函数f (x )=sin π3,则f ′(x )=( )A .cos π3B.π3cos π3C.13cos π D .0 答案:D4.曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=05.(2017·高考全国卷Ⅰ改编)曲线y =x 2在点(1,1)处的切线的斜率为__________. 答案:2[经典例题]考点一 导数的运算|易错突破[例1] (1)已知函数f (x )=x (2 018+ln x )且f ′(x 0)=2 019,则x 0=( ) A .e 2 B .1 C .ln 2D .e (2)若函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. (3)若f (x )=sin ⎝⎛⎭⎫2x +π3,求f ′⎝⎛⎭⎫π3. [解析] (1)∵f (x )=x (2 018+ln x )=2 018x +x ln x , ∴f ′(x )=2 018+ln x +x ·1x =2 019+ln x ,又f ′(x 0)=2 019,∴ln x 0=0,∴x 0=1.(2)∵f ′(x )=1x -2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3,解得f ′(-1)=-2,∴f ′(1)=1+4+3=8. (3)∵f (x )=sin ⎝⎛⎭⎫2x +π3, ∴f ′(x )=⎝⎛⎭⎫2x +π3′cos ⎝⎛⎭⎫2x +π3=2cos ⎝⎛⎭⎫2x +π3, ∴f ′⎝⎛⎭⎫π3=2cos ⎝⎛⎭⎫2π3+π3=-2. [答案] (1)B (2)8 (3)-2[易错提醒][纠错训练]1.已知t 为实数,f (x )=ln(2x -t ),若f ′(0)=1,则t =( ) A .0 B .-1 C.12D .-2解析:∵f (x )=ln(2x -t ), ∴f ′(x )=22x -t∴f ′(0)=-2t =1,∴t =-2,故选D.答案:D2.已知函数y =f (x )的导函数为f ′(x ),且f (x )=x 2f ′⎝⎛⎭⎫π3+sin x ,则f ′⎝⎛⎭⎫π3=( ) A.36-4π B.36-2π C.36+4πD.36+2π解析:∵f (x )=x 2f ′⎝⎛⎭⎫π3+sin x ,∴f ′(x )=2xf ′⎝⎛⎭⎫π3+cos x ,∴f ′⎝⎛⎭⎫π3=2f ′⎝⎛⎭⎫π3×π3+cos π3,解得f ′⎝⎛⎭⎫π3=36-4π.故选A.答案:A考点二 导数的几何意义|模型突破角度1 求切线方程[例2] (1)(2018·贵州模拟)曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0(2)曲线f (x )=x 2过点P (-1,0)的切线方程是__________. [解析] (1)∵f (x )=sin x +e x . ∴f ′(x )=cos x +e x , ∴f (x )在(0,1)处的切线的斜率 k =f ′(0)=cos 0+e 0=2, ∴切线方程为y -1=2(x -0), 即2x -y +1=0,故选C.(2)由题意,得f ′(x )=2x .设直线与曲线相切于点(x 0,y 0),则所求切线的斜率k =2x 0,由题意知2x 0=y 0-0x 0+1=y 0x 0+1①,又y 0=x 20②,解得x 0=0或x 0=-2, 所以k =0或k =-4,所以所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0.[答案] (1)C (2)y =0或4x +y +4=0 [模型解法]角度2 求参数的值[例3] (1)已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为__________.(2)已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值是__________. [解析] (1)易知f (1)=0,f ′(x )=1x ,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧g ′(x 0)=2x 0+m =1x 20+mx 0=x 0-1,得x 20=1,解得⎩⎪⎨⎪⎧ x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3. (2)y ′=3x 2+a , 又点(1,3)为切点, ∴⎩⎪⎨⎪⎧3=k ×1+1,3=13+a ×1+b ,k =3+a ,解得b =3.[答案] (1)-1或3 (2)3 [模型解法]角度3 判断函数图象或解析式[例4] (1)如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )(2)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x[解析] (1)函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.(2)设三次函数的解析式为y =ax 3+bx 2+cx +d (a ≠0),则y ′=3ax 2+2bx +c .由已知得y =-x 是函数y =ax 3+bx 2+cx +d 在点(0,0)处的切线,则y ′|x =0=-1⇒c =-1,排除选项B 、D.又∵y =3x -6是该函数在点(2,0)处的切线,则y ′|x =2=3⇒12a +4b +c =3⇒12a +4b -1=3⇒3a +b =1.只有A 选项的函数符合,故选A.[答案] (1)D (2)A [模型解法][高考类题]1.(2016·高考全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:当x ≥0时,令函数f (x )=2x 2-e x ,则f ′(x )=4x -e x ,易知f ′(x )在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又f ′(0)=-1<0,f ′⎝⎛⎭⎫12=2-e>0,f ′(1)=4-e>0,f ′(2)=8-e 2>0,所以存在x 0∈⎝⎛⎭⎫0,12是函数f (x )的极小值点,即函数f (x )在(0,x 0)上单调递减,在(x 0,2)上单调递增,且该函数为偶函数,符合条件的图象为D.答案:D2.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为__________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.答案:y =x +13.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.答案:1-ln 2[真题感悟]1.[考点一、二](2014·高考陕西卷)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x解析:设所求函数解析式为y =f (x ),由题意知f (5)=-2,f (-5)=2,且f ′(±5)=0,代入验证易得y =1125x 3-35x 符合题意,故选A.答案:A2.[考点二](2015·高考全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =__________.解析:因为f (x )=ax 3+x +1,所以f ′(x )=3ax 2+1,所以f (x )在点(1,f (1))处的切线斜率为k =3a +1,又f (1)=a +2,所以切线方程为y -(a +2)=(3a +1)(x -1),因为点(2,7)在切线上,所以7-(a +2)=3a +1,解得a =1.答案:13.[考点一](2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为__________.解析:由题意得f ′(x )=(2x +3)e x ,则得f ′(0)=3. 答案:34.[考点二](2015·高考陕西卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,则曲线y =e x 在点(0,1)处的切线的斜率k 切=1,又曲线y =1x (x >0)上点P处的切线与曲线y =e x 在点(0,1)处的切线垂直,所以曲线y =1x (x >0)在点P 处的切线的斜率为-1,设P (a ,b ),则曲线y =1x (x >0)上点P 处的切线的斜率为y ′|x =a =-a -2=-1,可得a=1,又P (a ,b )在y =1x上,所以b =1,故P (1,1).答案:(1,1)。