同济大学第六版考研重点知识点及习题
- 格式:doc
- 大小:84.00 KB
- 文档页数:19
线性代数(同济教材,第六版)知识点的细分目录第一章行列式0101 排列与逆序数0102 行列式定义0103 几个特殊行列式0104 行列式性质0105 行列式按行(列)展开0106 单元小结0107 单元测试第二章矩阵及其运算0201 矩阵的引入0202 矩阵的运算0203 矩阵的转置与对称矩阵0204 逆矩阵0205 伴随矩阵与克拉默法则0206 分块矩阵0207 单元小结0208 单元测试第三章矩阵的初等变换与线性方程组0301 矩阵的初等变换030101 用消元法求解线性方程组030102 矩阵的初等变换及其相关定理030103 矩阵之间的等价关系0302 初等矩阵030201 初等矩阵的定义030202 有关初等矩阵的定理030203 用初等变换求逆矩阵030204 用初等变换解矩阵方程0303 矩阵的秩030301 k阶子式的概念030302 矩阵秩的概念和基本性质030303 矩阵秩的计算030304 矩阵秩的性质续(放在辅导难点部分)0304 线性方程组的解030401 线性方程组解的判定030402 线性方程组的解法030403 两个推广(放在辅导难点部分)0305 单元小结0306 单元测试第四章向量组的线性相关性0401 向量组及其线性组合040101 n维向量空间的概念040102 向量组的线性组合040103 向量组之间的线性表示0402 向量组的线性相关性040201 线性相关、线性无关的概念040202 线性相关性的判定040203 线性相关、线性无关的性质0403 向量组的秩040301 最大线性无关组与向量组的秩040302 矩阵的秩与向量组的秩的关系040303 向量组之间的线性表示和秩的关系0404 线性方程组的解的结构040401 齐次线性方程组040402 非齐次线性方程组0405 向量空间040501 向量空间的概念040502 子空间040503 基、维数与坐标040504 过渡矩阵和坐标变换0406 单元小结0407 单元测试第五章相似矩阵及二次型0501向量的内积、长度及正交性050101向量的内积及长度050102向量的正交性050103施密特正交化方法050104正交矩阵及正交变换0502方阵的特征值与特征向量050201特征值与特征向量的概念050202特征值与特征向量的性质0503相似矩阵050301相似矩阵的概念及性质050302矩阵的相似对角化0504对称矩阵的对角化050401实对称矩阵050402实对称矩阵的正交对角化0505二次型及其标准型050501二次型及其标准形050502用正交变换化二次型为标准形0506用配方法化二次型为标准形0507正定二次型050701正定二次型的概念及惯性定理050702正定二次型的判定0508 单元小结0509 单元测试。
目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
第一章行列式1.利用对角线法如此计算如下三阶行列式:(1)381141102---; 解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8-0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1)=-24+8+16-4=-4.(2)ba c a cbc b a ; 解ba c a cbc b a =acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ; 解222111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)yx y x x y x y y x y x +++. 解 yx y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3=3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3=-2(x 3+y 3).2.按自然数从小到大为标准次序,求如下各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32.(3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n -1) 2 4 ⋅⋅⋅ (2n );解 逆序数为2)1(-n n : 3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n -1)2, (2n -1)4, (2n -1)6,⋅⋅⋅, (2n -1)(2n -2)(n -1个)(6)1 3 ⋅⋅⋅ (2n -1) (2n ) (2n -2) ⋅⋅⋅ 2.解 逆序数为n (n -1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n -1)2, (2n -1)4, (2n -1)6,⋅⋅⋅, (2n -1)(2n -2)(n -1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n )2, (2n )4, (2n )6,⋅⋅⋅, (2n )(2n -2)(n -1个)3.写出四阶行列式中含有因子a 11a 23的项.解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44,(-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42.4.计算如下各行列式: (1)71100251020214214;解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c . (2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd ae ac ab ---; 解 efcf bf de cd bd ae ac ab ---e c b e c b e c b adf ---= abcdef adfbce 4111111111=---=. (4)dc b a 100110011001---.解 d c b a 100110011001---dc b a ab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc c cdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5.证明:(1)1112222b b a a b ab a +=(a -b )3; 证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------===== a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++; 证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++ bzay by ax x by ax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bzay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22 zy x y x z x z y b y x z x z y z y x a 33+= yx z x z y z y x b y x z x z y z y x a 33+= yx z x z y z y x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3,c 3-c 2,c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3,c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+⋅⋅⋅+a n -1x +a n . 证明 用数学归纳法证明.当n =2时,2121221a x a x a x a x D ++=+-=,命题成立.假设对于(n -1)阶行列式命题成立,即 D n -1=x n -1+a 1x n -2+⋅⋅⋅+a n -2x +a n -1,如此D n 按第一列展开, 有1 11 00 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+⋅⋅⋅+a n -1x +a n . 因此,对于n 阶行列式命题成立.6.设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转,依次得nnn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 证明D D D n n 2)1(21)1(--==,D 3=D .证明 因为D =det(a ij ),所以nnn n n n n nn n a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n n n n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7.计算如下各行列式(D k 为k 阶行列式): (1)a aD n 1 1⋅⋅⋅=, 其中对角线上元素都是a ,未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n a a a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a a n n n n n a a a +⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1). (2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行,得ax x a a x x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 , 再将各列都加到第一列上,得a x a x a x a a a a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1)( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有n nn n n n n n n n a a a n a a a n a a a D )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++ 此行列式为X 德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D ∏≥>≥++---=112)1()]([)1(j i n n n j i ∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121 )1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n D 2n -2, 即D 2n =(a n d n -b n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ),其中a ij =|i -j |; 解 a ij =|i -j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2⋅⋅⋅a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a .8.用克莱姆法如此解如下方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D ,284112035122412111512-=-----=D , 426110135232422115113-=----=D ,14202132132212151114=-----=D , 所以 111==D D x ,222==D D x ,333==D D x ,144-==DDx . (2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D ,150751001651000651000650000611==D ,114551010651000650000601000152-==D , 70351100650000601000051001653==D ,395510601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x ,66511452-=x ,6657033=x ,6653954-=x ,6652124=x .9.问λ,μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0,得μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10.问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0,λ=2或λ=3.于是, 当λ=0,λ=2或λ=3时,该齐次线性方程组有非零解.第二章 矩阵与其运算1.线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换.解由:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2.两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1,z 2,z 3到x 1,x 2,x 3的线性变换. 解由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 与A T B .解⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4.计算如下乘积:(1)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5.设⎪⎭⎫ ⎝⎛=3121A ,⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA ? 解AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB ,⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6.举反列说明如下命题是错误的: (1)假设A 2=0, 如此A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 如此A 2=0, 但A ≠0. (2)假设A 2=A ,如此A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 如此A 2=A ,但A ≠0且A ≠E . (3)假设AX =AY ,且A ≠0,如此X =Y .解 取⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X ,⎪⎭⎫ ⎝⎛=1011Y , 如此AX =AY ,且A ≠0,但X ≠Y .7.设⎪⎭⎫ ⎝⎛=101λA ,求A 2,A 3,⋅⋅⋅,A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅⋅⋅⋅⋅⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8.设⎪⎪⎭⎫ ⎝⎛=λλλ001001A ,求A k . 解首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅⋅⋅⋅⋅⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明:当k =2时,显然成立. 假设k 时成立,如此k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9.设A ,B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10.设A ,B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明充分性:因为A T =A ,B T =B , 且AB =BA , 所以(AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A ,B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11.求如下矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1,故A -1存在.因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0,故A -1存在.因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫ ⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0,故A -1存在.因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅⋅⋅a n ≠0) . 解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021,由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12.解如下矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13.利用逆矩阵解如下线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x . 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x . 14.设A k =O (k 为正整数),证明(E -A )-1=E +A +A 2+⋅⋅⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅⋅⋅+A k -1),所以 (E -A )(E +A +A 2+⋅⋅⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅⋅⋅+A k -1.证明一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅⋅⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅⋅⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅⋅⋅+A k -1)(E -A ),两端同时右乘(E -A )-1,就有(E -A )-1(E -A )=E +A +A 2+⋅⋅⋅+A k -1.15.设方阵A 满足A 2-A -2E =O ,证明A 与A +2E 都可逆,并求A -1与(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明由A 2-A -2E =O 得A 2-A =2E ,两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆,而A +2E =A 2,|A +2E |=|A 2|=|A |2≠0,故A +2E 也可逆. 由A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16.设A 为3阶矩阵,21||=A ,求|(2A )-1-5A *|. 解因为*||11A A A =-,所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17.设矩阵A 可逆,证明其伴随阵A *也可逆,且(A *)-1=(A -1)*. 证明由*||11A A A =-,得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1,所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18.设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)假设|A |=0,如此|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明.假设|A *|≠0, 如此有A *(A *)-1=E ,由此得 A =AA *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 如此AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .假设|A |≠0, 如此|A *|=|A |n -1;假设|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19.设⎪⎪⎭⎫ ⎝⎛-=321011330A ,AB =A +2B , 求B . 解由AB =A +2E 可得(A -2E )B =A ,故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而 ⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1,-2,1),A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得(A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1=-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2,-1,2)]-1 )21 ,1 ,21(diag 4-==2diag(1,-2,1).22. 矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23.设P -1AP =Λ,其中⎪⎭⎫ ⎝⎛--=1141P ,⎪⎭⎫ ⎝⎛-=Λ2001,求A 11.解由P -1AP =Λ,得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3,⎪⎭⎫ ⎝⎛-=1141*P ,⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P ,⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114. 25. 设矩阵A 、B 与A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A ,⎪⎭⎫ ⎝⎛=30122A ,⎪⎭⎫ ⎝⎛-=12131B ,⎪⎭⎫ ⎝⎛--=30322B ,如此 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27.取⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28.设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,求|A 8|与A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A ,⎪⎭⎫ ⎝⎛=22022A ,如此 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29.设n 阶矩阵A 与s 阶矩阵B 都可逆,求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 如此⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 如此 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求如下矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A ,⎪⎭⎫ ⎝⎛=2538B , 如此⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A ,⎪⎭⎫ ⎝⎛=4103B ,⎪⎭⎫ ⎝⎛=2112C , 如此 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把如下矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步:r 2+(-2)r 1,r 3+(-3)r 1.)~⎪⎪⎭⎫⎝⎛---020*********(下一步:r 2÷(-1),r 3÷(-2).)~⎪⎪⎭⎫⎝⎛--010*********(下一步:r 3-r 2.)~⎪⎪⎭⎫⎝⎛--300031001201(下一步:r 3÷3.)~⎪⎪⎭⎫⎝⎛--100031001201(下一步:r 2+3r 3.)~⎪⎪⎭⎫⎝⎛-100001001201(下一步:r 1+(-2)r 2,r 1+r 3.)~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320; 解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步:r 2⨯2+(-3)r 1,r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步:r 3+r 2,r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步:r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步:r 2-3r 1,r 3-2r 1,r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步:r 2÷(-4),r 3÷(-3) ,r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步:r 1-3r 2,r 3-r 2,r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步:r 1-2r 2,r 3-3r 2,r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步:r 2+2r 1,r 3-8r 1,r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步:r 1↔r 2,r 2⨯(-1),r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步:r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1,2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是 E (1, 2(-1)) ⎪⎪⎭⎫ ⎝⎛-=100010101.⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654. 3. 试利用矩阵的初等变换, 求如下方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267. (2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 4.(1)设⎪⎪⎭⎫ ⎝⎛--=113122214A ,⎪⎪⎭⎫ ⎝⎛--=132231B , 求X 使AX =B ; 解因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ,⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X , 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫ ⎝⎛---=101110011A ,AX =2X +A , 求X . 解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫ ⎝⎛---011100101010110001~, 所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如,⎪⎪⎭⎫ ⎝⎛=010*********A ,R (A )=3. 0000是等于0的2阶子式,010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A ,B 的秩的关系怎样? 解R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1,0,1,0,0),(1,-1,0,0,0).解用向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是向量.9. 求如下矩阵的秩, 并求一个最高阶非零子式: (1)⎪⎪⎭⎫ ⎝⎛---443112112013;解⎪⎪⎭⎫ ⎝⎛---443112112013(下一步:r 1↔r 2. ) ~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步:r 2-3r 1,r 3-r 1. ) ~⎪⎪⎭⎫ ⎝⎛----564056401211(下一步:r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为,41113-=-是一个最高阶非零子式. (2)⎪⎪⎭⎫ ⎝⎛-------815073*********; 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步:r 1-r 2,r 2-2r 1,r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步:r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2,71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步:r 1-2r 4,r 2-2r 4,r 3-3r 4. ) ~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步:r 2+3r 1,r 3+2r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步:r 2÷16r 4,r 3-16r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3,070023085570≠=-是一个最高阶非零子式. 10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 如此A 与B 的标准形是一样的. 设A 与B 的标准形为D , 如此有A ~D ,D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1;(2)R (A )=2;(3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时,R (A )=1;(2)当k =-2且k ≠1时,R (A )=2;(3)当k ≠1且k ≠-2时,R (A )=3.12. 求解如下齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进展初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数). (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进展初等行变换,有 A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021, 于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x , 故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1,k 2为任意常数). (3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ; 解 对系数矩阵A 进展初等行变换,有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====00004321x x x x , 故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x . 解 对系数矩阵A 进展初等行变换,有 A =⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1,k 2为任意常数).13. 求解如下非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ; 解 对增广矩阵B 进展初等行变换,有 B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331, 于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ; 解 对增广矩阵B 进展初等行变换,有 B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201, 于是 ⎪⎩⎪⎨⎧=+=--=z z z y z x 212,。
高等数学考研指定教材:同济大学数学系主编高等数学上下册第六版第一章函数与极限7天考小题学习内容复习知识点与对应习题大纲要求第一节:映射与函数一般章节函数的概念,常见的函数有界函数、奇函数与偶函数、单调函数、周期函数、复合函数、反函数、初等函数具体概念和形式.集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看习题1-1:4,5,6,7,8,9,13,15,16重点1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极第二节:数列的极限一般章节数列定义,数列极限的性质唯一性、有界性、保号性本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看习题1-2:1第三节:函数的极限一般章节函数极限的基本性质不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等 P33例4,例5例7不用做,定理2,3的证明不用看,定理4不用看习题1-3:1,2,3,4第四节:无穷大与无穷小重要无穷小与无穷大的定义,它们之间的关系,以及与极限的关系无穷小重要,无穷大了解例2不用看,定理2不用证明习题1-4:1,6第五节:极限的运算法则掌握极限的运算法则6个定理以及一些推论注意运算法则的前提条件是否各自极限存在定理1,2的证明理解,推论1,2,3,定理6的证明不用看P46例3,例4,P47例6习题1-5:1,2,3,4,5重点第六节:极限存在准则理解两个重要极限重要两个重要极限要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限,函数极限的存在问题夹逼定理、单调有界数列必有极限,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看P51例1习题1-6:1,2,4第七节:无穷小的比较重要无穷小阶的概念同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小,重要的等价无穷小尤其重要,一定要烂熟于心以及它们的重要性质和确定方法定理1,2的证明理解P57例1P58例5习题1-7:全做限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.第八节:函数的连续性与间断点重要,基本必考小题函数的连续性,间断点的定义与分类第一类间断点与第二类间断点,判断函数的连续性连续性的四则运算法则,复合函数的连续性,反函数的连续性和间断点的类型;例1-例5习题1-8:1,2,3,4,5重点第九节:连续函数的运算与初等函数的连续性了解连续函数的运算与初等函数的连续性包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性定理3,4的证明不用看例4-例8 习题1-9:1,2,3,4,5,6重点第十节:闭区间上连续函数的性质重要,不单独考大题,但考大题特别是证明题会用到理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理零点定理对于证明根的存在是非常重要的一种方法.一致连续性不用看例1-例2习题1-10:1,2,3,5要会用5题的结论自我小结总复习题一:除了7,8,9以外均做,3,5,11,14重点本章测试题-检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第二章导数与微分6天小题的必考章节学习内容复习知识点与对应习题大纲要求第一节: 导数的概念重要导数的定义、几何意义、物理意义数三不作要求,可不看,数三要知道导数的经济意义:边际与弹性,单侧与双侧可导的关系,可导与连续之间的关系非常重要,经常会出现在选择题中,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些面曲线的切线方程和法线方程.导数定义年年必考例1-例6习题2-1:3,4,5,6,7,8,11,15,16,17,18,19,重点20物理量,理解函数的可导性与连续性之间的关系.第二节:函数的求导法则考小题复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,幂、指数函数求导法,反函数求导法,分段函数求导法基本求导法则与求导公式要非常熟定理1,3的证明不用看,例1,17不用做,定理2的证明理解,例6,7,8重点做习题2-2:除2,3,4,12不用做,其余全做,13,14重点做 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节:高阶导数重要,考的可能性很大高阶导数和N阶导数的求法归纳法,分解法,用莱布尼兹法则用泰勒展开式求高阶导例1-例7 习题2-3:5,6,7,11不用做,其余全做,4,12重点做第四节:隐函数及由参数方程所确定的函数的导数考小题由参数方程确定的函数的求导法数三不用看,变限积分的求导法,隐函数的求导法相关变化率不用看例1-例10习题2-4:9,10,11,12均不用做,数三5,6,7,8也可以不做,其余全做,4重点做第五节:函数的微分考小题函数微分的定义,微分运算法则,微分几何意义微分在近似计算中的应用不用看,考纲不作要求例1-例6 习题2-5:5,6,7,8,9,10,11,12均不用做,其余全做自我小结总复习题二:4,10,15,16,17,18均不用做,其余全做,2,3,6,7,14重点做,数三不用做12,13第二章测试题第三章微分中值定理与导数的应用8天考大题难题经典章节学习内容复习知识点与对应习题大纲要求第一节:微分中值定理最重要,与中值定理应用有关的证明题微分中值定理及其应用费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义四个定理要会证明,及其重要例1,习题3-1:除了13,15不用做,其余全部重点做1.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定第二节:洛必达法则重要,基本必考洛比达法则及其应用洛比达法则要会证明,重要例1-例10,习题3-2:全做,1,3,4重点做理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.第三节:泰勒公式掌握其应用泰勒中值定理,麦克劳林展开式可不看公式的证明例1-例3 习题3-3:8,9不用做,其余全做10123重点做第四节:函数的单调性与曲线的凹凸区间考小题求函数的单调性、凹凸性区间、极值点、拐点、渐近线选择题及大题会用到例1-例12习题3-4:3125,512,812,9135,102不用做,其余全做,3,4,5,6,13,15重点做第五节:函数极值与最大值最小值考小题为主函数的极值一个必要条件,两个充分条件,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例5,6,7不用看习题3-5:123698,9,10,11,12,13,14,15,16均不用做,其余全做第六节:函数图形的描绘重要简单了解利用导数作函数图形一般出选择题及判断图形题,对其中的渐进线和间断点要熟练掌握,一元函数的最值问题三种情形;例1-例3 习题3-6:2-5第七节:曲率数三不作要求,仅数一、数二要求曲率、曲率的计算公式,与曲率相关的问题弧微分、曲率中心计算公式、渐屈线、渐伸线不用看例1-例3,习题3-7:1-6第八节:方程近似解不用看自我小结总复习题三:数一、数二全做,数三15不用做;其中22,3,7,8,9,10,34,113,12,17,18,20重点做第三章测试题总结第四章不定积分7天重要,本章数二考大题可能性更大学习内容复习知识点与对应习题大纲要求第一节:不定积分的概念与原函数与不定积分的概念与基本性质它们各自的定义,之间的关系,求不定积分与求微分1.理解原函数概念,理解不定积分性质重要或导数的关系,基本的积分公式,原函数的存在性,原函数的几何意义和力学意义数三不作要求例1-例16 习题4-1:1,2,3,4,6的概念.2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.第二节:换元积分法重要,第二类换元积分法更为重要不定积分的换元积分法,第二类换元法例1-例27习题4-2:1,212389101325均不用做,其余全做第三节:分部积分法考研必考不定积分的分部积分法例1-例10 习题4-3:1-24第四节:有理函数积分重要有理函数积分法,可化为有理函数的积分, 例1-例8 习题4-4:1-24不定积分计算总复习题四:1-40第五节:积分表的使用不用看自我小结总结本章第五章定积分6天重要,考研必考学习内容复习知识点与对应习题大纲要求第一节:定积分的概念与性质理解定积分的概念与性质可积存在定理定积分的7个性质理解及熟练应用,性质7积分中值定理要会证明定积分近似计算不用看习题5-1:1,2,3,6,8,9,10均不用做,其余全做,5,11,12重点做1.理解原函数概念,理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.第二节:微积分基本公式重要微积分的基本公式积分上限函数及其导数极其重要,要会证明牛顿-莱布尼兹公式重要,要会证明例5不用做,例6极其重要,记住结论习题5-2:6124567,7,8均不用做,其余全做,2数三不做,92,10,11,12,13重点做第三节:定积分的换元积分法与分部积分法重要,分部积分法更为重要定积分的换元法与分部积分法例1-例10 例5,例6,例7,例12经典例题,记住结论习题5-3:1123612141516,71389不用做,其余全做,重点做147****2526,2,6,77101213第四节:反常积分考小题反常积分无界函数反常积分与无穷限反常积分例1-例5习题:5-4:全做,3题结论记住第五节:反常积分的审敛法不用看总复习题五:13,2345,15,16不用做,其余全做,重点做3,5,7,8,9,101238910,13,14,17自我小结总结本章第六章定积分的应用4天考小题为主学习内容复习知识点与对应习题大纲要求第一节:定积分的元素法理解定积分元素法 1. 掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等及函数的平均值等.第二节:定积分在几何学上的应用面积最重要一元函数积分学的几何应用求平面曲线的弧长与曲率仅数一看,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积数三不作要求,求旋转面的面积定积分的几何应用相关计算定积分应用的一些计算习题6-2:数一全做;数二、数三21-30不用做第三节:定积分在物理学上的应用数三不用看,数一数二了解定积分的物理应用用定积分求引力,用定积分求液体静压力,用定积分求功;综合题目的求解;数三不用看,数一数二了解例1-例5 习题6-3:数一、数二做总复习题六:数一全做;数二6不用做;数三只做3,4,5自我小结总结本章第七章常微分方程 9天本章对数二相对重要,必考章节学习内容复习知识点与对应习题大纲要求第一节:微分方程基本概念了解微分方程及其阶、解、通解、初始条件和特解,例1、2、3、4,例2数三不用看习题7-1:134,224,32,423,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量第二节:可分离变量的微分方程理解可分离变量的微分方程的概念及其解法例1、2、3、4,例2,3,4数三不作要求习题7-2:1,2第三节:齐一阶齐次微分方程的形式及其解法次方程理解例2不用看,可化为齐次的方程不用看习题7-3:1,2代换解某些微分方程.4.会用降阶法解下列微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.第四节:一阶线性微分方程重要,熟记公式一阶线性微分方程、伯努利方程仅数一考,记住公式即可,例1,3,4,习题7-4:1,2,3,8仅数一做第五节:可降解的高阶微分方程仅数一、数二考,理解全微分方程会求全微分方程会用降阶法解下列微分方程:和,例1—6习题:7-5:数三不用做、数一数二只做1,2第六节:高阶线性微分方程理解线性微分方程解的结构重要微分方程的特解、通解二阶线性微分方程举例不用看;常数变易法不用看定理1,2,3,4重点看习题7-6:1,3,4第七节:常系数齐次线性微分方程最重要,考大题特征方程,微分方程通解中对应项例1,2,3,6,7例4,5不用做习题7-7:1,2第八节:常系数非齐次线性微分方程最重要,考大题会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程例1-4,例5不用看习题7-8:1,2,6重点做第九节:欧拉方程仅数一考,了解欧拉方程的通解习题7-9:数一只做5,8 第十节不用看自我小结总复习题十二:1124,22,313578,434,5,7,8,10其中8,10仅数一做第八章空间解析几何和向量代数4天仅数一考,考小题,了解学习内容复习知识点与对应习题大纲要求第一节:向量及其向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量1.理解空间直角坐标系,理解向量的概念及其表示.线性运算的模、方向、投影例1-例2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第二节:数量积,向量积,混合积向量的数量积,向量的向量积例1-例7习题7-2:3,4,6,9,10第三节:曲面及其方程曲面方程旋转曲面、柱面、二次曲面;旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程例1-例5 习题7-3:,8,9,10第四节:空间曲线及其方程空间直线及其方程空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角例1-例4 习题7-4:2,3,5,6第五节:平面及其方程平面, 平面方程,两平面之间的夹角例1-例5习题7-5:1,2,3,5,6,9第六节:空间直线及方程直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1-例7 习题7-6:1-9,11,12自我小结总复习题七:1,9-21第九章多元函数微分法及其应用 10天考大题的经典章节,但难度一般不大学习内容复习知识点与对应习题大纲要求第一节:多元函数基本概念了解二元函数的极限、连续性、有界性与最大值最小值定理、介值定理例1—8,习题8—1:2,3,4,5,6,81.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形第二节:偏导数理解偏导数的概念,高阶偏导数的求解重要例1—8,习题8—2:1,2,3,4,6,9第三节:全微分理解全微分的定义,可微分的必要条件和充分条件全微分在近似计算中应用不用看例1,2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合函数的求导法则理解,重要例1—6,习题8—4:1—12 式的不变性.4.理解方向导数与梯度的概念并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.会用隐函数的求导法则.7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.第五节:隐函数的求导公式理解,小题隐函数存在的3个定理方程组的情形不用看例1—4,习题8—5:1—9第六节:多元函数微分学的几何应用仅数一考,考小题了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程一元向量值函数及其导数不用看例2—7,习题8—6: 1—9第七节:方向导数与梯度仅数一考,考小题方向导数与梯度的概念与计算例1—5,习题8—7:1—8,10第八节:多元函数的极值及其求法重要,大题的常考题型多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值例1-9,习题8—8:1—10第九节:二元函数的泰勒公式仅数一考,了解n阶泰勒公式,拉格朗日型余项极值充分条件的证明不用看第十节最小二乘法不用看例1,习题8—9:1,2,3自我小结总复习题八:1—3,5,6,8,11—19本章测试题——检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第十章重积分7天重要,数二、数三相对于数一,本章更加重要,数二、数三基本必考大题学习内容复习知识点与对应习题大纲要求第一节:二重积分的概念与性质了解二重积分的定义及6个性质习题9—1:1,4,51. 理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标.3.会用重积分、曲线积分及曲面积分求一些几何量与物理量曲面面积、质量、质心、形心、转动惯量、引力.第二节:二重积分的计算法重要,数二、数三极其重要会利用直角坐标、极坐标计算二重积分二重积分换元法不用看例1-6,习题9—2:1,2,4,6,7,8,12,14,15,16第三节:三重积分仅数一考,理解三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算三重积分的计算重要例1-4,习题9—3:1,2,4—10第四节:重积分的应用仅数一考,了解曲面的面积、质心、转动惯量、引力第五节含参变量的积分不用看例1—7,习题9—4:2,5,6,8,10,11,14自我小结总复习题九:1,2,3,6,7,8,9,10总结第十一章曲线积分与曲面积分8天仅数一考,数二、数三均不考,数一考大题,考难题的经典章节学习内容复习知识点与对应习题大纲要求第一节:对弧长的曲线积分重要弧长的曲线积分的概念理解,性质了解及计算重要例1、2,习题10—1:1,3,4,51.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概第二节:对坐标的曲线积分重要对坐标的曲线积分概念理解、性质了解及计算重要,两类曲线积分的联系了解例1-5,习题10—2:3—8第三节:格林公式及掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,其应用重要曲线积分的基本定理不用看例1-7,习题10—3:1-6念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5.了解散度与旋度的概念,并会计算.6.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、功及流量等.第四节:对面积的曲面积分重要对面积的曲面积分的概念理解、性质了解与计算重要例1、2,习题10—4:1,4,5,6,7,8第五节:对坐标的曲面积分重要对坐标的曲面积分的概念理解、性质了解及计算重要,两类曲面积分之间的联系了解例1-3,习题10—5:3,4第六节:高斯公式重要、通量不用看与散度了解会用高斯公式计算曲面、曲线积分,散度的概念及计算沿任意闭曲面的曲面积分为零的条件不用看例1-5,习题10—6:1,3第七节:斯托克斯公式重要、环流量不用看与旋度了解会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算空间曲面积分与路径无关的条件不用看例1-4,习题10—7: 1, 2自我小结总复习题十:1-4,6, 7总结第十二章无穷级数6天数二不考,数一、数三考大题,考难题经典章节学习内容复习知识点与对应习题大纲要求第一节:常数项级数的概念和性质一般考点级数收敛、发散的定义,收敛级数的基本性质考选择题柯西审敛原理不用看例1-3,习题11—1:1—41.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条第二节:常数项级数的审敛法理解正项级数及其审敛法;交错级数及其审敛法、绝对收敛与条件收敛绝对收敛级数的性质不用看例1-10,习题11—2:1—5第三节:幂级数重要函数项级数的概念了解;幂级数及其收敛性最重要;幂级数的运算乘、除不用看。
1. 二阶行列式--------对角线法则 : |a 11 a 12a 21a 22|= a 11a 22 −a 12a 212. 三阶行列式①对角线法则 ②按行(列)展开法则3. 全排列:n 个不同的元素排成一列。
所有排列的种数用P n 表示, P n = n !逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。
整个排列的逆序数就是所有元素的逆序数之和。
奇排列:逆序数为奇数的排列。
偶排列:逆序数为偶数的排列。
n 个元素的所有排列中,奇偶各占一半,即n!2对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4.其中:j 1j 2j 3 是1,2,3的一个排列,t(j 1j 2j 3)是排列 j 1j 2j 3 的逆序数5.下三角行列式: 副三角跟副对角相识对角行列式: 副对角行列式:6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。
D = D T ②互换行列式的两行(列),行列式变号。
推论 :两行(列)相同的行列式值为零。
互换两行:r i ↔ r j③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。
第i 行乘k :r i x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。
如:⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。
如333231232221131211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---32132123312322211312113j 2j 1j )j j t (j 33a a a a a a a a a a a a 1)(∑-=n n 2211n n n 2n 1222111...a a a a ...a a 0a a a = n...λλλλλλ21n 21= n21λλλn2121)n(n λλλ1)( --=n n n j n jn 2n 12n 2j 2j 22211n 1j 1j 1211a )c (b a a a )c (b a a a )c (b a a+++n n n j n 2n 12n2j 22211n 1j 1211n n n j n 2n 12n 2j 22211n 1j 1211a c a a a c a a a c a a a b a a a b a a a b a a +=2n 2j 2j 2i 211n 1j 1j 1i 11a a ka a a a a ka a a a a ka a a++2n2j 2i 211n 1j 1i 11a a a a a a a a a a a a =第j 列的k 倍加到第i 列上:c i +kc j7. 重要性质:利用行列式的性质 r i +kr j 或 c i +kc j ,可以把行列式化为上(下)三角行列式,从而计算n 阶 行列式的值。
1. 二阶行列式--------对角线法则 : |a 11 a 12a 21a 22|= a 11a 22 −a 12a 212. 三阶行列式 ①对角线法则②按行(列)展开法则3. 全排列:n 个不同的元素排成一列。
所有排列的种数用P n 表示, P n = n !逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。
整个排列的逆序数就是所有元素的逆序数之和。
奇排列:逆序数为奇数的排列。
偶排列:逆序数为偶数的排列。
n 个元素的所有排列中,奇偶各占一半,即n!2对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4.其中:j 1j 2j 3 是1,2,3的一个排列,t(j 1j 2j 3)是排列 j 1j 2j 3 的逆序数5.下三角行列式: 副三角跟副对角相识对角行列式: 副对角行列式:6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。
D = D T ②互换行列式的两行(列),行列式变号。
推论 :两行(列)相同的行列式值为零。
互换两行:r i ↔ r j ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。
第i 行乘k :r i x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。
如:⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。
如第j 列的k 倍加到第i 列上:c i +kc j333231232221131211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---32132123312322211312113j 2j 1j )j j t (j 33a a a a a a a a a a a a 1)(∑-=n n 2211n n n 2n 1222111...a a a a ...a a 0a a a =O M M n...λλλλλλ21n 21=O n21λλλNn2121)n(n λλλ1)(ΛΛ--=n n n j n jn 2n 12n 2j 2j 22211n 1j 1j 1211a )c (b a a a )c (b a a a )c (b a a ΛΛM MMM ΛΛΛΛ+++n nn j n 2n 12n 2j 22211n 1j 1211n n n j n 2n 12n 2j 22211n 1j 1211a c a a a c a a a c a a a b a a a b a a a b a a ΛΛM M M M ΛΛΛΛΛΛM M M M ΛΛΛΛ+=n n n j n j n i n 12n 2j 2j 2i 211n 1j 1j 1i 11a a ka a a a a ka a a a a ka a a ΛΛΛM M MM ΛΛΛΛΛΛ+++n nn j n i n 12n 2j 2i 211n 1j 1i 11a a a a a a a a a a a a ΛΛΛM M M M ΛΛΛΛΛΛ=7. 重要性质:利用行列式的性质 r i +kr j 或 c i +kc j ,可以把行列式化为上(下)三角行列式,从而计算n 阶 行列式的值。
目 录第1章 行列式1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章 矩阵及其运算2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章 矩阵的初等变换与线性方程组3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章 向量组的线性相关性4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章 相似矩阵及二次型5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章 线性空间与线性变换6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第1章 行列式1.1 复习笔记一、二阶与三阶行列式1二阶行列式定义 将四个数,,,按一定位置,排成二行二列的数表:则表达式就是数表的二阶行列式,并记作2三阶行列式定义 设有9个数排成3行3列的数表记该式称为数表所确定的三阶行列式.二、全排列和对换1全排列把n个不同的元素排成一列,称为这n个元素的全排列.n个不同元素的所有排列的种数,通常用P n表示.(1)逆序数定义对于n个不同的元素,先规定各元素之间有一个标准次序(例如,个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说构成1个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.(2)分类逆序数是奇数的排列称为奇排列,逆序数是偶数的排列称为偶排列.(3)逆序数的计算设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设为这n个自然数的一个排列,考虑元素,如果比p i大的且排在p i前面的元素有t i个,则称p i这个元素的逆序数为t i.全体元素的逆序数的总和即是这个排列的逆序数.2对换(1)定义对换是在排列中,将任意两个元素对调,其余元素不动.将相邻两个元素对换称为相邻对换.(2)性质①排列中的任意两个元素对换,排列改变奇偶性.②奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.三、n阶行列式1定义称为n阶行列式,简记作,其中数a ij为行列式D的第(i,j)元素.2两类典型的n阶行列式(1)下三角形行列式(2)对角行列式3行列式的性质(1)行列式与它的转置行列式相等.(2)对换行列式的两行(列),行列式变号.(3)如果行列式有两行(列)元素成比例,则此行列式等于零.(4)行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.(5)若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和.(6)把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.四、行列式按行(列)展开1余子式与代数余子式在n阶行列式中,把(i,j)元a ij所在的第i行和第j列划去后,留下来的n -1阶行列式称为(i,j)元a ij的余子式,记作M ij,记A ij称为(i,j)元a ij的代数余子式.2定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即或 3范德蒙德行列式4代数余子式的推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.即或5代数余子式的重要性质或.1.2 课后习题详解1利用对角线法则计算下列三阶行列式:2按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)13…(2n-1)24…(2n);(6)13…(2n-1)(2n)(2n-2)…2.解:(1)此排列为标准排列,其逆序数为0;(2)此排列的首位元素4的逆序数为0,第2位元素1的逆序数为1,第3位元素3的逆序数为1,末位元素2的逆序数为2,故它的逆序数为0+1+1+2=4;(3)此排列的前两位元素的逆序数均为0,第3位元素2的逆序数为2;末位元素1的逆序数为3,故它的逆序数为0+0+2+3=5;(4)此排列的从首位元素到末位元素的逆序数依次为0,0,2,1,因此它的逆序数为0+0+2+1=3;(5)此排列中前n位元素的逆序数均为0.第n+1位元素2与它前面的n -1个数构成逆序对,所以它的逆序数为n-1;同理可知,第n+2位元素4的逆序数为n-2……末位元素2n的逆序数为0.因此该排列的逆序数为(6)此排列的前n+1位元素的逆序数均为0;第n+2位元素(2n-2)的逆序数为2;第n+3位元素2n-4与它前面的2n-3,2n-1,2n,2n-2构成逆序对,所以它的逆序为4,……,末位元素2的逆序数为2(n-1),因此该排列的逆序数为3写出四阶行列式中含有因子的项.解:根据行列式定义可知,此项必定还含有分别位于第3行和第4行的某两元素,而它们又分别位于第2列和第4列,即a32和a44或a34和a42.又因排列1324与1342的逆序数分别为1与2,所以此行列式中含有的项为与4计算下列各行列式:解:(1)(2);(3)(4)(5)(6)5求解下列方程:其中a,b,c互不相等.因此方程的解为.(2)根据题意,方程左式为4阶范德蒙德行列式,则有因a,b,c互不相等,因此方程的解为6证明:(2)将左式按第1列拆开可以得到因此有其中于是因此,(5)方法一 按第1列展开得方法二 按最后一行展开得7设n阶行列式,把D上下翻转、或逆时针旋转、或依副对角线翻转,依次得证明证:(1)通过对换行将D1变换成D,从而可找出D1与D的关系:D1的最后一行是D的第1行,把它依次与前面的行交换,直至换到第1行,共进行n-1次交换;这时最后一行是D的第2行,把它依次与前面的行交换,直至换到第2行,共进行n-2次交换……直至最后一行是D 的第n-1行,再通过一次交换将它换到第n-1行,这样就把D1变换成D,共进行次交换,故.(2)计算D2:观察可知,D2的第1,2,…,n行恰好依次是D的第n,n-1,…,1列,因此若把D2上下翻转得,则的第1,2,…,n行依次是D的第1,2,…,n列,即.于是由(1)有(3)计算D3:观察可知,若把D3逆时针旋转90°得,则的第1,2,…n列恰好是D的第n,n-1,…,1列,于是再把左右翻转就得到D.由(1)、(2)有8计算下列各行列式(D k为k阶行列式):,其中对角线上元素都是a,未写出的元素都是0;;;提示:利用范德蒙德行列式的结果.,其中未写出的元素都是0;;,其中a ij=|i-j|;,其中解:(1)方法一 化D n为上三角形行列式上式中最后那个行列式为上三角形行列式;方法二 把D n按第二行展开,由于D n的第二行除对角线元素外全为零,因此有,即于是有 (2)利用各列的元素之和相同,把从第二行起的各行全部加到第一行,再提取公因式.(3)把所给行列式上下翻转,即为范德蒙德行列式,若再将它左右翻转,由于上下翻转与左右翻转所用交换次数相等,因此行列式经上下翻转再左右翻转,即相当于转180°,其值不变.于是按范德蒙德行列式的结果可得(4)可用递推法即有递推公式另外,归纳基础为,利用这些结果可递推得(5)把第一行除外的所有行都加到第一行,并提取第一行的公因子,得(6)(7)可将原行列式化为上三角形行列式,需从第2行起,各行均减去第1行,得行列式其中.于是9设,D的(i,j)元的代数余子式记作A ij,求.解:求,则等于用1,3,-2,2替换D的第3行对应元素所得行列式,即1.3 考研真题详解一、选择题行列式等于( ).[数一、数二、数三 2014研]A. B.C. D.【答案】B【解析】二、填空题1阶行列式 [数一 2015研]【答案】【解析】将阶行列式按第一行展开2设是三阶非零矩阵,为A的行列式,A ij为a ij的代数余子式,若,则|A|=______.[数一、数二、数三 2013研]【答案】-1【解析】由可知,故3设A,B为3阶矩阵,且.[数二、数三2010研]【答案】3【解析】因为所以第2章 矩阵及其运算2.1 复习笔记一、线性方程组和矩阵1线性方程组(1)n元非齐次线性方程组设有n个未知数m个方程组的线性方程组当常数项不全为零时,该方程组称为n元非齐次线性方程组.(2)n元齐次线性方程组含有n个未知数m个方程组的线性方程组称为n元齐次线性方程组.2矩阵(1)定义由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.记为(2)分类①实矩阵 矩阵元素都为实数的矩阵.②复矩阵 矩阵元素为复数的矩阵.③行矩阵/列矩阵 又称行向量/列向量,只有一行(列)的矩阵.④n阶方阵 行数与列数都等于n的矩阵称为n阶方阵.⑤零矩阵 元素都是零的矩阵.⑥对角矩阵 对角线以外的元素都是0的方阵.⑦单位矩阵 对角线上元素都为1的对角矩阵.二、矩阵的运算1矩阵的加法(1)定义设有两个m×n矩阵A=(a ij)和B=(b ij),则矩阵A与B的和记作A+B,规定为注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算.(2)运算规律设A,B,C都是m×n矩阵,则①A+B=B+A;②(A+B)+C=A+(B+C);③设矩阵A=(a ij),记:-A=(-a ij),-A称为矩阵A的负矩阵,显然有A+(-A)=0,由此规定矩阵的减法为:A-B=A+(-B).2数与矩阵相乘(1)定义数λ与矩阵A的乘积记作λA或Aλ,规定为(2)运算规律设A、B为m×n矩阵,λ、μ为数,则①(λμ)A=λ(μA);②(λ+μ)A=λA+μA;③λ(A+B)=λA+λB.3矩阵与矩阵相乘(1)定义设A=(a ij)是一个m×s矩阵,B=(b ij)是一个s×n矩阵,则规定矩阵A 与矩阵B的乘积是一个m×n矩阵C=(c ij),其中并把此乘积记为C=AB.(2)运算规律①(AB)C=A(BC);②(AB)=(A)B=A(B)(其中λ为数);③A(B+C)=AB+AC,(B+C)A=BA+CA;④EA=AE=A;⑤.(3)注意①只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.②矩阵的乘法一般不满足交换律,即在一般情形下,AB≠BA.③对于两个n阶方阵A,B,若AB=BA,则称方阵A与B是可交换的.④若有两个矩阵A,B,满足AB=0,不能得出A=0或B=0的结论;若A≠0,而A(X-Y)=0也不能得出X=Y的结论.三、矩阵的转置1定义把矩阵A的行换成同序数的列得到一个新矩阵,称为A的转置矩阵,记作A T.2转置运算(1)(A T)T=A;(2)(A+B)T=A T+B T;(3)(λA)T=λA T;(4)(AB)T=B T A T.3对称矩阵设A为n阶方阵,如果满足A T=A,即a ij=a ji(i,j=1,2…,n),则称A为对称矩阵.四、方阵的行列式1定义由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A 的行列式,记作detA或|A|.2由A确定|A|的运算规律假设A、B为n阶方阵,λ为数:(1)|A T|=|A|;(2)|λA|=λn|A|;(3)|AB|=|A||B|.3伴随矩阵行列式|A|的各个元素的代数余子式A ij所构成的如下的矩阵称为矩阵A的伴随矩阵,简称伴随阵.一般地,五、逆矩阵1定义对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则称矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A又称B的逆矩阵,简称逆阵.2性质(1)若矩阵A是可逆的,则A的逆矩阵是唯一的.(2)若矩阵A可逆,则|A|≠0.(3)若|A|≠0,又称A为非奇异矩阵,则矩阵A可逆,且,其中A*为矩阵A的伴随矩阵.若|A|=0,称A为奇异矩阵,A不可逆.(4)A为可逆矩阵的充要条件是|A|≠0.3逆矩阵运算规律:(1)若A可逆,则A-1也可逆,且;(2)若A可逆,数λ≠0,则λA可逆,且(3)若A、B为同阶矩阵且均可逆,则AB也可逆,且;(4)若AB=E(或BA=E),则B=A-1.六、克拉默法则含有n个未知数x1,x2,…,x n的n个线性方程的方程组 (2-1-1)它的解可以用n阶行列式表示,即有克拉默法则:如果线性方程组(2-1-1)的系数矩阵A的行列式不等于零,即则方程组(2-1-1)有唯一解其中A j(j=1,2,…,n)是把系数矩阵A中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵,即七、矩阵分块法1定义将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵.2矩阵分块法(1)设矩阵A与B的行数相同、列数相同,采用相同的分块法,有其中A ij与B ij的行数相同、列数相同,则(2)设,λ为数,则.(3)设A为m×l矩阵,B为l×n矩阵,分块成其中A i1,A i2,…,A it的列数分别等于B1j,B2j,…,B tj的行数,则其中(4)设,则(5)设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即其中A i(i=1,2,…,s)都是方阵,则称A为分块对角矩阵.分块对角矩阵的行列式具有下述性质由此性质可知,若,则,并有2.2 课后习题详解1计算下列乘积:(1);(2);(3);(4);(5).解:(1);(2);(3);(4);(5)2设,求3AB-2A及A T B.解:则有因A T=A,即A为对称阵,所以3已知两个线性变换求从z1,z2,z3到x1,x2,x3的线性变换.解:依次将两个线性变换写成矩阵形式其中分别为对应的系数矩阵;在这些记号下,从z1,z2,z3到x1,x2,x3的线性变换的矩阵形式为,此处矩阵即有4假设,问:(1)AB=BA吗?(2)(A+B)2=A2+2AB+B2吗?(3)(A+B)(A-B)=A2-B2吗?5举反例说明下列命题是错误的:(1)若,则;(2)若A2=A,则或A=E;(3)若AX=AY,且A≠0,则X=Y.6(1)设,求A2,A3,…,A k;(2)设,求A4.解:(1)根据矩阵乘法直接计算得一般可得 (2-2-1)则当k=1时,式(2-2-1)成立.假设当k=n时,式(2-2-1)成立,则当k=n+1时根据数学归纳法可知式(2-2-1)成立;7(1)设,求A50和A51;(2)设,A=ab T,求A100.解:(1),则可得(2)由于b T a=-8,所以根据上式可知8(1)设A,B为n阶矩阵,且A为对称阵,证明B T AB也是对称阵;(2)设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.证:(1)由矩阵乘积的转置规则有所以由定义知B T AB为对称阵;(2)因为A T=A,B T=B,所以9求下列矩阵的逆矩阵:(1);(2);(3);(4).解:(1)根据二阶方阵的求逆公式可得(2)(3)因为,所以A可逆,并且于是(4)因为a1a2…a n≠0,所以a i≠0,i=1,2,…,n.则矩阵是有意义的,并且因为所以A可逆,而且.10已知线性变换求从变量x1,x2,x3到变量y1,y2,y3的线性变换.解:记则线性变换的矩阵形式为x=Ay,其中A是它的系数矩阵.因为所以A是可逆矩阵,则从变量x1,x2,x3到变量y1,y2,y3的线性变换的矩阵形式可写成又由于 于是即11设J是元素全为1的n(≥2)阶方阵.证明E-J是可逆矩阵,且这里E是与J同阶的单位矩阵.证:因为于是所以,是可逆矩阵,并且12设(k为正整数),证明可逆,并且其逆矩阵证:因为所以可逆,并且其逆矩阵.13设方阵A满足A2-A-2E=O (2-2-2)证明A及A+2E都可逆,并求解:(1)可先证A可逆.由式(2-2-2)得即 所以A是可逆的,且;(2)再证A+2E可逆.由,即同理,可知可逆,且.14解下列矩阵方程:(1);(2);(3);(4)AXB=C,其中.解:(1)因为矩阵的行列式等于1,不为零,所以它可逆,从而用它的逆矩阵左乘方程两边,得(2)记矩阵方程为,因所以A可逆,用右乘方程的两边可得又由于所以(3)记,则矩阵方程可写为因为,所以A,B均可逆.依次用和左乘和右乘方程两边得(4)因为,所以A,B均是可逆矩阵,且分别用和左乘和右乘方程两边得15分别应用克拉默法则和逆矩阵解下列线性方程组:(1)(2)解:(1)①可用克拉默法则:因为系数矩阵的行列式,由克拉默法则,方程组有唯一解,并且②用逆矩阵方法:因为|A|≠0,所以A可逆,于是则有(2)①用克拉默法则:因为系数矩阵的行列式,由克拉默法则方程组有唯一解,并且②用逆矩阵方法因为|A|=2≠0,所以A可逆,于是,易求得代入可得16设A为三阶矩阵,,求.解:因为,所以A可逆.于是由及,得对公式两端取行列式得17设,AB=A+2B,求B.解:由因,它的行列式det(A-2E)=2≠0,所以它是可逆矩阵.用左乘上式两边得18设.且AB+E=A2+B,求B.解:由方程,合并含有未知矩阵B的项,得又因为,其行列式,所以A-E可逆,用左乘上式两边,即可得到解:由于所给矩阵方程中含有A及其伴随阵A*,可用公式求解:用A左乘所给方程两边,得又由于,所以A是可逆矩阵,用右乘上式两边,可以得到观察可得是可逆矩阵,并且于是 20已知A的伴随阵A*=diag(1,1,1,8),且,求B.解:(1)先化简所给矩阵方程假设能求得A并且为可逆矩阵,则可解得 (2-2-3)(2)再计算A根据题意可知A是可逆矩阵,由,两边取行列式得即,所以,于是因为,所以是可逆矩阵,并且将上述结果代入式(2-2-3)可得21设,其中,求A11.解:由于,则.所以22设AP=PΛ,其中求φ(A)=A8(5E-6A+A2).解:由于,所以P是可逆矩阵.根据AP=PΛ可得,并且记多项式,则有由于是三阶对角阵,所以于是 23设矩阵A可逆,证明其伴随阵A*也可逆,且.证:因为,根据定理2的推论可以知A*可逆,且另因.用A左乘此式两边得通过比较上面两式可知结论成立.24设n阶矩阵A的伴随阵为A*,证明:(1)若|A|=0,则|A*|=0;(2).证:(1)因为 (2-2-4)当时,上式成为可用反证法求证。
总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件.(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件.)(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件.(3) f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件.∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim0000-+-=-+=→→→→ 3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B .3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 0 0)(x x x x f , ⎩⎨⎧>-≤=00)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )].解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 0 0x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0;因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x .5. 利用y =sin x 的图形作出下列函数的图形:(1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有R (2π-α)=2πr , παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=R R R r R h . 圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=R R V 22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim 23=---→x x x x .证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(l i m++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim . (4)x x x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换).(5)x c b a c b a xx x x xx xx x x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(l i m , )111(lim 3133lim 00xc x b x a x c b a x x x x x x x x -+-+-=-++→→ ])1l n (1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v .(6)xx x x xx x x tan )1(sin 1sin 1tan )]1(sin1[lim )(sin lim -⋅-→→-+=ππ, 因为e x xx =-+-→1s i n 1)]1(sin1[lim π,x x x x x x x c o s )1(s i n s i n l i mt a n )1(s i n l i m 22-=-→→ππ 01s i nc o s s i nlim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ, 所以 1)(s i n lim 0tan 2==→e xx x π. 9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sinlim )(lim 00==++→→xx x f x x , 所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.10. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln()(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形. 解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ),∞==→→++111l i m )(l i m x x e x f (提示+∞=-+→11lim1x x ), 所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 0=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.11. 证明()11 2111lim222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim 2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n ,所以()11 2111lim222=++⋅⋅⋅++++∞→nn n n n . 12. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f ,所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.13. 如果存在直线L : y =kx +b , 使得当x →∞(或x →+∞, x →-∞)时, 曲线y =f (x )上的动点M (x , y )到直线L 的距离d (M , L )→0, 则称L 为曲线y =f (x )的渐近线. 当直线L 的斜率k ≠0时, 称L 为斜渐近线.(1)证明: 直线L : y =kx +b 为曲线y =f (x )的渐近线的充分必要条件是xx f k x x x )(l i m),( -∞→+∞→∞→=, ])([lim),( kx x f b x x x -=-∞→+∞→∞→.(2)求曲线xe x y 1)12(-=的斜渐近线.证明 (1) 仅就x →∞的情况进行证明.按渐近线的定义, y =kx +b 是曲线y =f (x )的渐近线的充要条件是 0)]()([lim =+-∞→b kx x f x .必要性: 设y =kx +b 是曲线y =f (x )的渐近线, 则0)]()([lim =+-∞→b kx x f x ,于是有 0])([l i m =--∞→xb k x x f x x ⇒0)(lim =-∞→k x x f x ⇒x x f k x )(lim∞→=, 同时有 0])([lim =--∞→b kx x f x ⇒])([lim kx x f b x -=∞→. 充分性: 如果xx f k x )(lim∞→=, ])([lim kx x f b x -=∞→, 则0])([lim ])([lim )]()([lim =-=--=--=+-∞→∞→∞→b b b kx x f b kx x f b kx x f x x x , 因此y =kx +b 是曲线y =f (x )的渐近线. (2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k ,11)1l n (lim21)1(lim 2]2)12[(lim ]2[lim 011=-+=--=--=-=→∞→∞→∞→t t e x x e x x y b t x x x x x , 所以曲线xe x y 1)12(-=的斜渐近线为y =2x +1.。
同济大学第六版考研重点知识点及要求习题第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做(4)(6)(8)2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题)一、(了解)二、(了解)P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4”完全不用看p37习题1--31--4 均做5--12 均不用做第四节(重要)一、无穷小(重要)二、无穷大(了解)p40 例2不用做 p41 定理2不用证p42习题1--41做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要)二、(重要)p72三、一致连续性(不用看)p74习题1--101、2、3、5要做,要会用5的结论。
4、6、7不用做p74 总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章 (小题必考章节)第一节(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:【数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79 导数的定义要重点掌握,基本必出考题p81--82 例1--例6 认真做以便真正掌握导数的定义p85 可导性与连续性的关系要会证明)p86 习题2--1不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8 、16、18、19第二章第二节(考小题)四、基本求导法则与求导公式(要非常熟)p88--89 (1)(2)(3)的证明均不用看p89 例1 不用做p90 定理2的证明要理解p91--92 例6--8重点做p92 定理3证明不用看p96 例7不用做p97 习题2--22题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第二章第三节(重要,考的可能性大)p100 例3不用做p103 习题2--35、6、7、11均不用做,其余全做!其中4、12要重点做第二章第四节(考小题)p107--110 由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111 习题2--41大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第二章第五节(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2--55--12均不用做其他的全做p125 总习题二4、10、15--18均不用做,其余全做!其中2、3、6、7、14要重点做!数三不用做12、13第三章(考大题难题经典章节,绝对重点章节)第一节(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133 费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134 习题3--1除13、15不用做,其余全部【重点】做第三章第二节(重要,基本必然要考)p134--135 洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三章第三节(掌握其应用,可以不用证明公式其本身)p140--141 泰勒公式的证明不用看p145 习题3--38、9不用做,其余全做,其中,10 (1)(2)(3)要重点做第三章第四节(考小题)p152 习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15第三章第五节(考小题为主)p160 例5不用做p161 例6不用做p162 例7不用做1(2)(3)(6)(9)、8--16均不用做,其余全做第三章第六节(重要基础章节)p169 习题3--61 不用做2--5都要做第三章第七节(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、(了解)三、(了解)p175四、(不用看)p177 习题3--7数三均不用做数一数二只需做1--6第三章第八节(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三可不用做(这个楼主有点疑问,楼主数一,所以数三考生有异议请私信)其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第三章第八节(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三15不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章(重要、相对于数一、数三,数二考大题的可能性更大)第一节(重要)一、(理解)二、(会背,且熟练准确)三、(理解)p186 例4不用做p188--189 基本积分表一定要记得熟练、准确2(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第四章第二节(重要,其中第二类换元法更加重要)p207 习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第四章第三节(考研必考)p212 习题4--3 全做(分部积分法极其重要)第四节(重要)p218 习题4--4 全做第五节(不用看)p221 总习题四全做第五章(重要,考研必考)第一节(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)p228 三、定积分的近似计算(不用看)p231--234 四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234 习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12 第五章第二节(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237 定理1 ,要求会独立证明,极其重要p239 定理3 要求会独立证明p241 例5不用做例6 经典例题,极其重要,记住结论p243 习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中【数三】2不用做需要重点做的为9(2)、10--13第五章第三节(重要,分部积分法更重要)p247--249 例5、6、7经典例题,重点做,并记住其相应结论p252 例12 经典例题,记住结论p253 习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(25)(26)、2、6、7(7)(10)(12)(13)第五章第四节(考小题)p260 习题5--4全做,重点做1(4)、3 。
3题为经典公式,一定发要熟记第五节(不用看)【注】考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268 总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17第六章(考小题)第一节(理解)第二节(面积最重要)一、平面图形的面积p276--277 极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281 平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30 不用做数三5、6、7、8、15(4)、17、18、21--30 不用做第三节(数三不用看,数一数二了解)p291--292 习题6.3只有数一数二做数三不用做p292--293 总习题六数一全做数二6 不做数三只需做3、4、5第七章(本章对于数二相对最重要)第一节(了解)p294 例2数三不用看p298 习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5 第七章第二节(理解)p301--304 例2、3、4只有数一数二看,数三不用看p304 习题7--2只做1、2第七章第三节(理解)二、可化为齐次的方程(不用看)p306 例2--p309 均不用看p309 习题7--31只做(1)(5)(6)2只做(2)3、4不用做第七章第四节(重要,熟记公式)p312 例2 不用看p314伯努利方程只有数一看p315 习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第七章第五节(只有数一数二考,理解)p317 例2 不用看p319 例4 不用做p321 例6不用做p316--p323 数三均不用看p323 习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第七章第六节(理解)一、(不用看)二、(重要)三、(不用看)p323--324 二阶线性微分方程举例不用看p325--328 定理1、2、3、4重点看p328--330 常数变易法不用看p331 习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七章第七节、第八节(最重要,考大题备选章节)p335 例4不用做p336--338 例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346 例5不用看p347 习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6其中6重点做第七章第九节(只有数一考,理解)p348--349 欧拉方程只有数一看p349 习题7--9数一只做(5)(8)第十节(不用看)p353 总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7第八章(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程。