人教版初三数学上册配方法习题
- 格式:doc
- 大小:38.51 KB
- 文档页数:2
21.2.1 配方法知能演练提升一、能力提升1.若将一元二次方程x 2-8x-5=0化成(x+a )2=b (a ,b 为常数)的形式,则a ,b 的值分别是( )A.-4,21B.-4,11C.4,21D.-8,692.一元二次方程y 2-y-34=0配方后可化为( )A.(y +12)2=1B.(y -12)2=1C.(y +12)2=34D.(y -12)2=34 3.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为 .4.方程(x-3)2=(5x+2)2的解为 .5.若关于x 的一元二次方程ax 2=b (ab>0)的两个根分别是m+1与2m-4,则b a = .6.对于4个数a ,b ,c ,d ,定义一种新运算:|a b c d |=ad-bc ,上述记号就叫做2阶行列式.若|x +1 x -11-x x +1|=6,则x= . 7.用配方法解下列方程:(1)x 2+4x-4=0;(2)x 2+3x-18=0;(3)2x 2-7x+6=0.★8.试说明:不论m 为何值,关于x 的方程(m 2-8m+17)x 2+2mx+1=0都是一元二次方程.二、创新应用★9.有n 个方程:x 2+2x-8=0;x 2+2×2x-8×22=0;……x 2+2nx-8n 2=0.小莉同学解第1个方程x 2+2x-8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=-2.”(1)小莉的解法是从步骤 开始出现错误的;(2)用配方法解第n 个方程x 2+2nx-8n 2=0.(用含n 的式子表示方程的根)知能演练·提升一、能力提升1.A2.B3.164.x 1=-54,x 2=16 直接开平方,得x-3=±(5x+2),故x-3=5x+2或x-3=-5x-2,解得x 1=-54,x 2=16.5.4 由题意,得x 2=b a (ab>0),∴x=±√b a ,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,则一元二次方程ax 2=b (ab>0)的两个根分别是2与-2,故√b a =2,b a =4.6.±√2 根据运算规则|a b c d |=ad-bc , 得|x +1 x -11-x x +1|=(x+1)2-(x-1)(1-x ), 故(x+1)2-(x-1)(1-x )=6,解得x=±√2.7.解 (1)移项,得x 2+4x=4,配方,得x 2+4x+4=4+4,即(x+2)2=8,解得x+2=±2√2.故x 1=-2+2√2,x 2=-2-2√2.(2)移项,得x 2+3x=18,配方,得x 2+3x+94=18+94,即(x +32)2=814, 解得x+32=±92.故x 1=3,x 2=-6.(3)原式可化为x 2-72x=-3,配方,得x 2-72x+4916=-3+4916,即(x -74)2=116. 解得x-74=±14, 故x 1=2,x 2=32. 8.解 因为m 2-8m+17=(m-4)2+1>0,所以不论m 为何值,关于x 的方程(m 2-8m+17)x 2+2mx+1=0都是一元二次方程.二、创新应用9.解 (1)⑤(2)移项,得x 2+2nx=8n 2,配方,得x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,由此可得x+n=±3n ,解得x 1=-4n ,x 2=2n.。
人人人人人人人人人人21.2.1人人人人人人人一、选择题1.一元二次方程x2−4x−1=0配方后可化为( )A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=52.用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A. (x+4)2=−9B. (x+4)2=−7C. (x+4)2=25D. (x+4)2=73.用配方法解方程x2−6x+8=0时,方程可变形为( )A. (x−3)2=1B. (x−3)2=−1C. (x+3)2=1D. (x+3)2=−14.已知方程x2−10x+n=0可以配方成(x−m)2=15的形式,那么x2−10x+m=n可以配方成下列的( )A. (x−5)2=20B. (x−5)2=30C. (x−5)2=15D. (x−5)2=405.若方程4x2−(m−2)x+1=0的左边是一个完全平方式,则m的值是( )A. −2B. −2或6C. −2或−6D. 2或−66.配方法解方程2x2−4x−6=0,变形正确的是( )A. (x+2)2=10B. (x−2)2=10C. (x+1)2=4D. (x−1)2=47.下列方程可用直接开平方法求解的是( )A. 9x2=25B. 4x2−4x−3=0C. x2−3x=0D. x2−2x−1=98.小马用配方法解一元二次方程4x2−bx+c=0时,先移项得到4x2−bx=−c,然后系数化为1时,方程右边忘记除以4,得到(x−2)2=7,则正确的变形为( )A. (x+2)2=194B. (x−2)2=34C. (x−2)2=194D. (x−2)2=16二、填空题9.x2−32x+______ =(x−______ )2.10.若(m2+n2−1)2=9,则m2+n2=.11.解方程:4(x−2)2−25=0.解:移项,得.方程左右两边同除以4,得.直接开平方,得,即x−2=52或x−2=−52.解得x1=,x2=.12.用配方法解方程2x2−8x−16=0时,可将方程变形为(x−m)2=n的形式,则方程m2x2−n2=0的解是。
21.2 解一元二次方程 21.2.1 配方法一、单项选择题1. 下列方程中,无实数根的是( )A .x 2=4B .x 2=2C .4x 2+25=0D .4x 2-25=02. 方程x 2-3x +2=0的解是 ( )A .1和2B .-1和-2C .1和-2D .-1和23.用配方法解方程x 2+2x=8的解为 ( )A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=2 4.用配方法解方程01322=−−x x 应该先变形为 ( )A .98)31(2=−xB .98)31(2−=−x C .910)31(2=−x D .0)32(2=−x 5.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).A .-2B .-4C .-6D .2或66.方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .15C .12或15D .不能确定7. 方程(x+1)2-3=0的根是( )A .x 1=1+3,x 2=1-3B .x 1=1+3,x 2=-1+3C .x 1=-1+3,x 2=-1-3D .x 1=-1-3,x 2=1+38. 下列各命题中正确的是( )①方程x 2=-4的根为x 1=2,x 2=-2②∵(x-3)2=2,∴x-3=2±,即x=3±2③∵x 2-16=0,∴x=±4④在方程ax 2+c=0中,当a≠0,c >0时,一定无实根A .①②B .②③C .③④D .②④9. 把方程x 2+23x-4=0左边配成一个完全平方式后,所得方程是( )A .(x+43)2=1673− B .(x+23)2=415− C .(x+23)2=415 D .(x+43)2=1673 10. 将二次三项式3x 2+8x-3配方,结果为( )A .3(x+38)2+355 B .3(x+34)2-3 C .3(x+34)2-325 D .(3x+4)2-19 11. 已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么x 2-6x+q=2可以配方成下列的( )A .(x-p )2=5B .(x-p )2=9C .(x-p+2)2=9D .(x-p+2)2=512. 用配方法解方程2250x x −−=时,原方程应变形为( )A .()216x +=B .()216x −=C .()229x +=D .()229x −=二、填空题13. +−x x 82_________=(x -__________)2. 14. x x 232−+_________=(x -_________)2. 15. 把右面的式子配成完全平方式:x 2-6x+ =(x- )216. 用配方法将右面的式子转化为(x+m )2+n 的形式:x 2+px+q=(x+ )2+17. 若方程x 2-m=0有整数根,则m 的值可以是 (只填一个)18. 若2(x 2+3)的值与3(1- x 2)的值互为相反数,则x 值为19. 若(x 2+ y 2-5)2=4,则x 2+ y 2=20. 关于x 的方程2x 2+3ax-2a=0有一个根是x=2,则关于y 的方程y 2+a=7的解是21. 方程x 2-6x +8=0的解是22.方程的解是______________.23.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.24.关于x 的方程x 2+mx -8=0的一个根是2,则m=______,另一根是______.三、解答题25. 用配方法解方程x 2+4x =-326. 用配方法解方程241210x x −−=.27. 应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取 任何实数值,二次三项式的值都是正数.042=−x x28. 用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?29. 用配方法说明下列结论:(1)代数式x2+8x+17的值恒大于0;(2)代数式2x-x2-3的值恒小于030. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48(1)求3※5的值(2)求x※x+2※x-2※4=0中x的值(3)若无论x是什么数,总有a※x=x,求a的值答案:一、1---12 CADCD BCDDC BB二、13. 16 4 14. ⋅43,169 15. 23 26 16. 2p 442p q − 17. 1,4,9,…,答案不唯一18. ±319. 3或720. y 1=3 y 2=-321. x 1=2 x 2=4;22. x 1=0 x 2=423. -224. 2 -4三、25. 解: 两边同加上一次项系数一半的平方,配方得x 2+4x+4=-3+4, 即(x+2)2=1,从而21x +=±,得到x 1=-1,x 2=-3.26. 解: 二次项系数化为1,得21304x x −−=,,移项,得2134x x −=, 配方,得2134x x −+=2233(-)+(-)22,得到52x ⎛⎫−= ⎪⎝⎭232,则322x −=±,∴1233,2222x x =−=−− 27. 解: 2x 2-4x +6=2(x 2-2x)+6=2(x 2-2x+1)+6-2=2(x -1)2+4,无论x 取任何实数值,2(x -1)2≥0,则2(x -1)2+4>0.所以无论x 取任何实数值,二次三项式的值都是正数.28. 解;x 2-4x +5= x 2-4x +4+1=(x -2)2+1,无论x 取何值,(x -2)2≥0,所以(x -2)2+1>0.即代数式x 2-4x +5的值总大于0,且当x =2时,代数式x 2-4x +5的值最小,最小值是1.29. 解:(1)x 2+8x+17= x 2+8x+16-16+17=(x+4)2+1∵(x+4)2≥0 ∴(x+4)2+1>0即代数式x 2+8x+17的值恒大于0(2)2x-x 2-3= -x 2+2x -3= -(x 2-2x +3)= -(x 2-2x+1-1 +3)= -[(x-1)2+2]= -(x-1)2-2∵-(x-1)2≤0 ∴-(x-1)2-2<0即代数式2x-x 2-3的值恒小于030. 解:(1)3※5=4×3×5=60(2)x ※x+2※x-2※4=04x 2+8x-32=0x 2+2x-8=0x 2+2x=8x 2+2x+1=8+1(x+1)2=9x+1=±3x+1=3,x+1= -3x1=2,x2=-4(3)a※x=x4ax=x1;当x=0时,a为任意数当x≠0时,a=4。
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法1.若x2=a(a≥0),则x就叫做a的平方根,记为x=__±a___(a≥0),由平方根的意义降次来解一元二次方程的方法叫做直接开平方法.2.直接开平方,把一元二次方程“降次”转化为__两个一元一次方程___.3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么x=__±p___或mx+n=__±p___.知识点1:可化为x2=p(p≥0)型方程的解法1.方程x2-16=0的根为( C )A.x=4 B.x=16C.x=±4 D.x=±82.方程x2+m=0有实数根的条件是( D )A.m>0 B.m≥0C.m<0 D.m≤03.方程5y2-3=y2+3的实数根的个数是( C )A.0个B.1个C.2个D.3个4.若4x2-8=0成立,则x的值是.5.解下列方程:(1)3x2=27;解:x1=3,x2=-3(2)2x2+4=12;解:x1=2,x2=-2(3)5x2+8=3.解:没有实数根知识点2:形如(mx+n)2=p(p≥0)的解法6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( D )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-47.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( D )A.k<1 B.k<-1C.k≥1 D.k>18.一元二次方程(x-3)2=8的解为__x=3±22___.9.解下列方程:(1)(x-3)2-9=0;解:x1=6,x2=0(2)2(x-2)2-6=0;解:x1=2+3,x2=2- 3(3)x2-2x+1=2.解:x1=1+2,x2=1- 210.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=__1___.11.若x2-4x+2的值为0,则x=__2___.12.由x2=y2得x=±y,利用它解方程(3x-4)2=(4x-3)2,其根为__x=±1___.13.在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的根为__x1=3,x2=-7___.14.下列方程中,不能用直接开平方法求解的是( C )A.x2-3=0 B.(x-1)2-4=0C.x2+2x=0 D.(x-1)2=(2x+1)215.(2014·枣庄)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( A ) A.x1小于-1,x2大于3B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于316.若(x2+y2-3)2=16,则x2+y2的值为( A )A.7 B.7或-1C.-1 D.1917.解下列方程:(1)3(2x+1)2-27=0;解:x1=1,x2=-2(2)(x-2)(x+2)=10;解:x1=23,x2=-2 3(3)x2-4x+4=(3-2x)2;解:x1=1,x2=53(4)4(2x-1)2=9(2x+1)2.解:x1=-52,x2=-11018.若2(x2+3)的值与3(1-x2)的值互为相反数,求x+3x2的值.解:由题意得2(x2+3)+3(1-x2)=0,∴x=±3.当x=3时,x+3x2=23;当x=-3时,x+3x2=019.如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意有ab-4x2=4x2,将a=6,b=4代入,得x2=3,解得x1=3,x2=-3(舍去),即正方形的边长为 3第2课时配方法1.通过配成__完全平方形式___来解一元二次方程的方法叫做配方法.2.配方法的一般步骤:(1)化二次项系数为1,并将含有未知数的项放在方程的左边,常数项放在方程的右边;(2)配方:方程两边同时加上__一次项系数的一半的平方___,使左边配成一个完全平方式,写成__(mx +n)2=p___的形式;(3)若p__≥___0,则可直接开平方求出方程的解;若p__<___0,则方程无解.知识点1:配方1.下列二次三项式是完全平方式的是( B )A.x2-8x-16 B.x2+8x+16C.x2-4x-16 D.x2+4x+162.若x2-6x+m2是一个完全平方式,则m的值是( C )A.3 B.-3C.±3 D.以上都不对3.用适当的数填空:x2-4x+__4___=(x-__2___)2;m2__±3___m+94=(m__±32___)2.知识点2:用配方法解x2+px+q=0型的方程4.用配方法解一元二次方程x2-4x=5时,此方程可变形为( D ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=95.下列配方有错误的是( D )A.x2-2x-3=0化为(x-1)2=4B.x2+6x+8=0化为(x+3)2=1C.x2-4x-1=0化为(x-2)2=5D.x2-2x-124=0化为(x-1)2=1246.(2014·宁夏)一元二次方程x2-2x-1=0的解是( C )A.x1=x2=1B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2D.x1=-1+2,x2=-1- 27.解下列方程:(1)x2-4x+2=0;解:x1=2+2,x2=2- 2(2)x2+6x-5=0.解:x1=-3+14,x2=-3-14知识点3:用配方法解ax2+bx+c=0(a≠0)型的方程8.解方程3x2-9x+1=0,两边都除以3得__x2-3x+13=0___,配方后得__(x-32)2=2312___.9.方程3x2-4x-2=0配方后正确的是( D ) A.(3x-2)2=6 B.3(x-2)2=7C.3(x-6)2=7 D.3(x-23)2=10310.解下列方程:(1)3x2-5x=-2;解:x1=23,x2=1(2)2x2+3x=-1.解:x1=-1,x2=-1211.对于任意实数x ,多项式x 2-4x +5的值一定是( B )A .非负数B .正数C .负数D .无法确定12.方程3x 2+2x =6,左边配方得到的方程是( B )A .(x +26)2=-3718B .(x +26)2=3718C .(x +26)2=3518D .(x +26)2=611813.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p)2=5B .(x -p)2=9C .(x -p +2)2=9D .(x -p +2)2=514.已知三角形一边长为12,另两边长是方程x 2-18x +65=0的两个实数根,那么其另两边长分别为__5和13___,这个三角形的面积为__30___.15.当x =__2___时,式子200-(x -2)2有最大值,最大值为__200___;当y =__-1___时,式子y 2+2y +5有最__小___值为__4___.16.用配方法解方程: (1)23x 2=2-13x ;解:x1=32,x2=-2(2)3y2+1=23y.解:y1=y2=3 317.把方程x2-3x+p=0配方得到(x+m)2=12,求常数m与p的值.解:m=-32,p=7418.试证明关于x的方程(a2-8a+20)x2+2ax+1=0,无论a为何值,该方程都是一元二次方程.解:∵a2-8a+20=(a-4)2+4≠0,∴无论a取何值,该方程都是一元二次方程19.选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:x2-4x+2=(x-2)2+(22-4)x,或x2-4x+2=(x+2)2-(4+22)x;③选取一次项和常数项配方:x2-4x+2=(2x-2)2-x2.根据上述材料,解决下列问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.解:(1)x2-8x+4=x2-8x+16-16+4=(x-4)2-12;x2-8x+4=(x-2)2+4x-8x=(x-2)2-4x(2)x2+y2+xy-3y+3=0,(x2+xy+14y2)+(34y2-3y+3)=0,(x+12y)2+34(y-2)2=0,又∵(x+12y)2≥0,34(y-2)2≥0,∴x+12y=0,y-2=0,∴x=-1,y=2,则x y=(-1)2=1 先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
21.2.1 配方法 同步练习一、选择题1.用配方法解一元二次方程x 2−6x −10=0时,下列变形正确的为( ) A .x +3)2=1B .?x −3)2=1C .?x +3)2=19D .?x −3)2=192、用配方法解方程x 2x+1=0正确的解法是( ) A 、(x )2=,x=± B 、(x )2=,原方程无解C 、(x)2=,x 1=,x 2D 、(x )2=1,x 1=,x 2=3.将一元二次方程2850x x --=化成()2x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,69C .4,21D .8-,114.给出一种运算:对于函数n y x =,规定1n y nx -'=.例如:若函数4y x =,则有34y x '=.已知函数3y x =,则方程12y '=的解是( )A .14x =,24x =-B .12x =,22x =-C .120x x ==D .1x =2x =-5.把方程x 2﹣6x+3=0化成(x ﹣m )2=n 的形式,则m 、n 的值是( ) A .3,12B .﹣3,12C .3,6D .﹣3,66.若关于x 的一元二次方程(x ﹣2)2=m 有实数解,则m 的取值范围是( ) A .m ≤0 B .m >0C .m ≥0D .无法确定7.在解方程2x 2+4x +1=0时,对方程进行配方,图1是小思做的,图2是小博做的,对于两人的做法,说法正确的是( )2313891331389235923235313A .两人都正确B .小思正确,小博不正确C .小思不正确,小博正确D .两人都不正确8.已知关于x 的多项式−x 2+mx +6的最大值为7,则m 的值可能是( ) A .2B .4C .3D .59.用配方法解下列方程时,配方错误的是( ) A .2890x x ++=化为2(4)25x +=B .2420x x --=化为2(26)x -=C .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ D .22990x x +-=化为2(1)100x +=10.下列用配方法解方程21202x x --=的四个步骤中,出现错误的是 ( )()2222120242151512x x x x x x x x --=−−→-=−−→-+=−−→-=−−→=①②③④ A .① B .② C .③ D .④二、填空题1.用配方法解方程x 2−2x −5=0时,将方程化为(x −m)2=n 的形式,则m = ,n = .2.一元二次方程x 2−8x +a =0,配方后为(x −4)2=1,则a = .3.用配方法解方程 2x 2−x =4 ,配方后方程可化为 (x −14)2= . 4.方程12x 2−8=0的解是 .7.方程(x+1)2=9的根是 .8.已知等腰三角形的面积S 与底边x 有如下关系:S =﹣5x 2+10x+14,将这个解析式配方,得S=_______________,则x =______时,S 有最大值,最大值是 ____________. 三、解答题1.解方程(x+3)(x ﹣1)=12(用配方法).2.若a 为方程2(16x -=的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.3.用配方法解一元二次方程:2x 2+3x +1=0.小明同学的解题过程如下:小明的解题过程是否正确?若正确,请回答“对”;若错误,请写出你的解题过程.4.如图,在边长为a的正方形纸片的四个角都剪去一个长为m,宽为n的矩形.(1)用含a,m,n的式子表示纸片剩余部分的面积;(2)当m=3,n=5,且剩余部分的面积等于229时,求正方形的边长a的值.5.我们知道a2≥0,所以代数式a2的最小值为0,可以用公式a2±2ab+b2= (a±b)2来求一些多项式的最小值.例如:求x2+6x+1的最小值问题解:∵x2+6x+1=x2+6x+9−9+1=(x+3)2−8∵(x+3)2≥0,∴(x+3)2−8≥−8,∴x2+6x+1的最小值为8.【类比应用】请应用上述思想方法,解决下列问题:(1)类比:x2+4x+6的最小值为_______.(2)探究:代数式−x2+2x有最______(填“大”或“小”)值为______.(3)拓展:如图,长方形花圃一面靠墙(墙足够长)另外三面所围成的棚栏的总长是20米,设垂直墙面的棚栏围x米,则当x为多长时花圃面积最大,最大面积是多少?。
21.2.1配方法测试时间:15分钟一、选择题1.一元二次方程(x-2019)2+2018=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根2.方程2(x-3)2=8的根是()A.x1=2,x2=-2B.x1=5,x2=1C.x1=-5,x2=-1D.x1=-5,x2=13.(2018辽宁大连沙河口期末)用配方法解方程x2-x-1=0时,应将其变形为()A.-=B.=C.-=0D.-=4.一元二次方程x2-px+1=0配方后为(x-q)2=15,那么一元二次方程x2-px-1=0配方后为()A.(x-4)2=17B.(x+4)2=15C.(x+4)2=17D.(x-4)2=17或(x+4)2=17二、填空题5.小明设计了一个如图所示的实数运算程序,若输出的数为5,则输入的数x为.输入x x2-1输出6.已知方程x2+4x+n=0配方后为(x+m)2=3,则(n-m)2019=.三、解答题7.解方程:(1)(2x-3)2=25;(2)x2-4x-3=0.(配方法)8.用配方法解下列方程:(1)x2+12x-15=0;(2)3x2-5x=2;(3)x2-x-4=0.21.2.1配方法一、选择题1.答案D由原方程得(x-2019)2=-2018.∵(x-2019)2≥0,-2018<0,∴该方程无解.故选D.2.答案B由原方程,得(x-3)2=4,则x-3=±2,解得x1=5,x2=1.故选B.3.答案D∵x2-x-1=0,∴x2-x=1,∴x2-x+=1+,∴-=.4.答案D∵方程x2-px+1=0配方后为(x-q)2=15,即x2-2qx+q2-15=0,∴-p=-2q,q2-15=1,解得q=4,p=8或q=-4,p=-8.当p=8时,方程为x2-8x-1=0,配方为(x-4)2=17;当p=-8时,方程为x2+8x-1=0,配方为(x+4)2=17.故选D.二、填空题5.答案±解析根据题意知x2-1=5,∴x2=5+1,∴x2=6,x=±,则输入的数x为±.6.答案-1解析由(x+m)2=3,得x2+2mx+m2-3=0,∴2m=4,m2-3=n,∴m=2,n=1,∴(n-m)2019=-1.三、解答题7.解析(1)2x-3=±5,x1=4,x2=-1.(2)x2-4x=3,x2-4x+4=7,(x-2)2=7,x-2=±,∴x1=2+,x2=2-.8.解析(1)移项,得x2+12x=15,配方,得x2+12x+62=15+62,即(x+6)2=51,∴x+6=±,解得x1=-6+,x2=-6-.(2)系数化为1,得x2-x=,配方,得x2-x+-=+-,即-=,∴x-=±,解得x1=2,x2=-.(3)移项,得x2-x=4,系数化为1,得x2-4x=16,配方,得x2-4x+(-2)2=16+(-2)2,即(x-2)2=20,∴x-2=±2,解得x1=2+2,x2=2-2.。
《2121用配方法解一元二次方程》•选择题1用配方法解方程 2 x-6x - 7=0, 下列配方正确的是().A.(x - 3) 2=16B.(x+3) 2=16C. ( x - 3) 2=7D.(x-3) 2=22用配方法解方程 2 x-4x - 3=0, 下列配方结果正确的是().A.(x - 4) 2=19B.(x+4) 2=19C. ( x+2) 2=7D.(x-2) 2=73. 把方程x2- 8x+3=0化成(x+m)2=n的形式,则m n的值是()A. 4,13B.- 4,19C.- 4,13D. 4,194. 用配方法解方程x2+x=2,应把方程的两边同时()A.加一B .力口 C .减一D .减4 2 4 25. 已知a2- 2a+仁0,则a2010等于()A. 1B. - 1C. -D.- _6. —元二次方程2x2+3x+仁0用配方法解方程,配方结果是()A._計「B.:一三」D.7. 将方程3x2+6x -仁0配方,变形正确的是()A. (3x+1)2-仁0B. (3x+1)2- 2=0C. 3 (x+1)2- 4=0D. 3 (x+1)2-仁0 &已知方程x2- 6x+q=0可以配方成(x - p)2=7的形式,那么x2- 6x+q=2可以配方成下列的()2 2 2 2A. (x - p)=5B. (x - p)=9C. (x - p+2)=9D. (x - p+2)=5二.填空题29. 一元二次方程x2- 2x+1=0的根为________10 .用配方法解方程x2- 4x -仁0配方后得到方程 _______ .11 .将方程x2- 4x - 1=0化为(x - nr)2=n的形式,其中m n是常数,则m+n= _________ .12 .如果一个三角形的三边均满足方程x2- 10x+25=0,则此三角形的面积是_________ .13 .已知点(5 - k2, 2k+3)在第四象限内,且在其角平分线上,则k= ______ .14. _______________________________________ 方程(x - 1)( x-3) =1的两个根是.15. 当x= _____ 时,代数式____ 的值是0.16. ________________________________ 方程4x2- 4x+ 仁0 的解x1=x2= .17. 解方程:9x2- 6x+1=0,解:9x2- 6x+1=0,所以(3x - 1) 2=0,即3x - 1=0,解得X1=X2= ____ .18. 用配方法解一元二次方程_____________________2X2+3X+仁0,变形为(x+h) 2=k,贝U h= , k= ___________________________________三.解答题19. 用配方法解方程(1)x2- 6x - 15=0(2)3x2- 2x - 6=0(3)x2=3 - 2x(4)( X+3)( x - 1) =12.20. 证明:不论x为何实数,多项式2x4- 4x2- 1的值总大于x4- 2x2- 3的。
九年级上册第二十一章?配方法解一元二次方程?同步练习题一、选择题〔每题只有一个正确答案〕1.用配方法解方程x2−4x−2=0变形后为()A.(x−2)2=6B.(x−4)2=6C.(x−2)2=2D.(x+2)2=62.将方程x2+8x+9=0左边变成完全平方式后,方程是〔〕A.(x+4)2=7B.(x+4)2=25C.(x+4)2=−9D.(x+4)2=−7 3.假设方程x2﹣8x+m=0可以通过配方写成〔x﹣n﹣2=6的形式,那么x2+8x+m=5可以配成〔〕A.﹣x﹣n+5﹣2=1B.﹣x+n﹣2=1C.﹣x﹣n+5﹣2=11D.﹣x+n﹣2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.假如一元二次方程x2-ax+6=0经配方后,得〔x+3﹣2=3,那么a的值为〔〕A.3 B.-3 C.6 D.-6二、填空题6.方程x2﹣2x﹣2﹣0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.〔1〕x2+6x+9=(x+____)2,〔2〕x2-_______+p24=(x−p2)2.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;假设多项式x2-ax+2a-3是一个完全平方式,那么a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:x2−2x=4﹣12.用配方法解方程:2x2−3x+1=0﹣13.用配方法说明:不管x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.关于x的一元二次方程kx2+2x﹣1=0有实数根,第 1 页〔1〕求k的取值范围;〔2〕当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为1,再进展配方.现请你先阅读如下方程〔1〕的解答过程,并按照此方法解方程〔2〕.方程〔1〕2x2−2√2x−3=0.解:2x2−2√2x−3=0,(√2x)2−2√2x+1=3+1,(√2x−1)2=4,√2x−1=±2,x1=−√22,x2=3√22.方程〔2〕3x2−2√6x=2.参考答案1.A【解析】【分析】在此题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得〔x-2〕2=6.应选:A【点睛】配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】﹣x2+8x+9=0﹣﹣x2+8x=−9﹣﹣x2+8x+16=−9+16﹣﹣(x+4)2=7.应选A.【点睛】配方法的一般步骤:〔1〕将常数项移到等号右边;〔2〕将二次项系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.3.D【解析】分析:方程x2﹣8x+m=0可以配方成〔x﹣n〕2=6的形式,把x2﹣8x+m=0配方即可第 1 页得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴〔x﹣4〕2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴〔x+4〕2=11,即〔x+n〕2=11.应选D.点睛:考察理解一元二次方程﹣配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0﹣﹣x-5﹣2=0﹣x1=x2=5﹣所以他们两人的说法都是错误的,应选D.【点睛】此题考察了配方法解一元二次方程,纯熟掌握配方法的一般步骤是解题的关键.配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1﹣﹣3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把〔x+3〕2=3按完全平方式展开,比照即可知a的值.【详解】根据题意,〔x+3〕2=3可变为:x2+6x+6=0,和一元二次方程x2-ax+6=0比拟知a=-6.应选:D【点睛】此题考核知识点:此题考察了配方法解一元二次方程,是根底题.6.x1﹣1﹣√3﹣x2﹣1﹣√3【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,〔x-1〕2=3,两边直接开平方得:x-1=±√3,那么x1=√3+1,x2=-√3+1.故答案为:x1=1+√3,x2=1-√3.点睛: 此题主要考察了配方法解一元二次方程,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考察了配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第 3 页8.3 px【解析】【详解】根据完全平方公式得,x 2+6x +9=(x +3)2﹣x 2-px +p 24=(x −p 2)2. 故答案为3﹣px .9.3(x −13)2=103﹣2或6.【解析】【分析】首先把一元二次方程3x 2-2x -3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x 2-2x -3=0化成,括号里面配方得,,即; ∵多项式x 2-ax+2a -3是一个完全平方式,,∴解得a=2或6.故答案为﹣(1). 3(x −13)2=103﹣ (2). 2或6.【点睛】此题考察了配方法解一元二次方程,解题的关键是纯熟掌握用配方法解一元二次方程的步骤.10. 94, 32 【解析】分析:根据配方法可以解答此题.详解:∵x 2﹣3x +94=〔x ﹣32〕2, 故答案为:94,32.点睛:此题考察了配方法的应用,解题的关键是纯熟掌握配方法.11.x 1=1+√5,x 2=1−√5.【解析】【分析】第 5 页两边都加1,运用配方法解方程.【详解】解:x 2−2x +1=5,(x −1)2=5,x −1=±√5,所以x 1=1+√5,x 2=1−√5.【点睛】此题考核知识点:解一元二次方程. 解题关键点:掌握配方法.12.x 1=12,x 2=1.【解析】【分析】利用配方法得到〔x ﹣34〕2=116,然后利用直接开平方法解方程即可.【详解】x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, 〔x ﹣34〕2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点睛】此题考察理解一元二次方程﹣配方法:将一元二次方程配成〔x +m 〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比拟代数式2x 2+5x-1的值总与代数式x 2+7x-4的大小,即2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2;当x=1时,两代数式的差最小为2.【详解】解:2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2,∵〔x-1〕2≥0,∴〔x-1〕2+2>0,即2x 2+5x-1-〔x 2+7x-4〕>0,∴不管x 取任何值,代数式2x 2+5y-1的值总比代数式x 2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】此题考核知识点:配方.解题关键点:用求差法和配方法比拟代数式的大小.14.〔1〕k ≥﹣1且k ≠0;〔2〕x 1=√3−12,x 2=−√3−12. 【解析】试题分析:﹣1〕当k =0时,是一元一次方程,有解;当k ≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式﹣≥0,求出k 的取值范围;﹣2〕当k =2时,把k 值代入方程,用配方法解方程即可.解:〔1〕∵一元二次方程kx 2+2x ﹣1=0有实数根,∴22+4k ≥0,k ≠0,解得,k ≥﹣1且k ≠0;〔2〕当k=2时,原方程变形为2x 2+2x ﹣1=0,2〔x 2+x 〕=1,2〔x 2+x +〕=1+,2〔x +〕2=,〔x +〕2=x +=±, x 1=,x 2=. 15.x 1=√6+2√33 ,x 1=√6−2√33. 【解析】【分析】参照范例的步骤和方法进展分析解答即可.【详解】原方程可化为:(√3x)2−2×√3×√2x +(√2)2=2+(√2)2,﹣ (√3x −√2)2=4,∴ √3x−√2=±2,∴x1=√6+2√33,x2=√6−2√33.【点睛】读懂范例中的解题方法和步骤是解答此题的关键.第 7 页。
《用配方法解一元二次方程》
一.选择题
1.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()
A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=2
2.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()
A.(x﹣4)2=19 B.(x+4)2=19 C.(x+2)2=7 D.(x﹣2)2=7
3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()
A.4,13 B.﹣4,19 C.﹣4,13 D.4,19
4.用配方法解方程x2+x=2,应把方程的两边同时()
A.加 B.加 C.减 D.减
5.已知a2﹣2a+1=0,则a2010等于()
A.1 B.﹣1 C.D.﹣
6.一元二次方程2x2+3x+1=0用配方法解方程,配方结果是()
A.B.C.D.
7.将方程3x2+6x﹣1=0配方,变形正确的是()
A.(3x+1)2﹣1=0 B.(3x+1)2﹣2=0 C.3(x+1)2﹣4=0 D.3(x+1)2﹣1=0
8.已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5 B.(x﹣p)2=9 C.(x﹣p+2)2=9 D.(x﹣p+2)2=5
二.填空题
9.一元二次方程x2﹣2x+1=0的根为______.
10.用配方法解方程x2﹣4x﹣1=0配方后得到方程______.
11.将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=______.
12.如果一个三角形的三边均满足方程x2﹣10x+25=0,则此三角形的面积是______.
13.已知点(5﹣k2,2k+3)在第四象限内,且在其角平分线上,则k=______.
14.方程(x﹣1)(x﹣3)=1的两个根是______.
15.当x=______时,代数式的值是0.
16.方程4x 2﹣4x+1=0的解x 1=x 2=______.
17.解方程:9x 2﹣6x+1=0,
解:9x 2﹣6x+1=0,
所以(3x ﹣1)2=0,
即3x ﹣1=0,
解得x 1=x 2=______.
18.用配方法解一元二次方程2x 2+3x+1=0,变形为(x+h )2=k ,则h=______,k=______.
三.解答题
19.用配方法解方程
(1)x 2﹣6x ﹣15=0 (2)3x 2﹣2x ﹣6=0
(3)x 2=3﹣2x (4)(x+3)(x ﹣1)=12.
20.证明:不论x 为何实数,多项式2x 4﹣4x 2﹣1的值总大于x 4﹣2x 2﹣3的值.
21.分别按照下列条件,求x 的值:分式
的值为零.。