测量平差基础知识及矩阵基础知识
- 格式:ppt
- 大小:876.50 KB
- 文档页数:55
测量平差期末总结一、引言测量平差是地理信息系统(GIS)和工程测量领域非常重要的一部分,它涉及到对测量数据进行处理、分析和计算。
测量平差能够提高测量数据的准确性和精确度,使得测量结果更加可靠和可信。
本文将对测量平差的一些基本概念、方法和步骤进行总结和分析,以期加深对测量平差的理解和应用。
二、测量平差的基本概念1. 测量平差的定义测量平差是指通过一系列的数学模型和计算方法,对原始的测量数据进行处理和分析,以获取更加准确和精确的测量结果的过程。
测量平差的目的是消除测量误差,提高测量数据的可靠性和精度。
2. 测量平差的分类根据测量数据的性质和采集方式的不同,测量平差可以分为直接平差和间接平差。
直接平差是指对直接测量数据进行处理和分析,如经纬度测量、高程测量等;间接平差是指对间接测量数据进行处理和分析,如距离测量、角度测量等。
3. 测量平差的基本原理测量平差的基本原理是基于观测量的合理模型和模型的参数估计。
通过观测量的数学模型,利用最小二乘法或加权最小二乘法等方法,求解模型的未知参数,从而得到测量结果的最优估计。
三、测量平差的方法和步骤1. 校正平差校正平差是指对原始的测量数据进行检验和修正的过程。
校正平差的目的是通过剔除异常观测值和消除系统误差,得到更加准确和可靠的测量数据。
2. 数学模型的建立数学模型是测量平差的基础,它是通过观测量的几何关系和误差模型建立的。
数学模型可以根据测量任务的不同而定,常见的数学模型有三角形测量模型、高程测量模型等。
3. 参数估计参数估计是指根据观测量和数学模型,利用最小二乘法或其他的数学方法,求解模型的未知参数。
参数估计的目的是最小化观测量和模型的差异,得到最优估计。
4. 平差计算平差计算是指根据参数估计的结果,利用平差公式和计算方法,对测量数据进行处理和分析。
平差计算的目的是消除观测量和模型之间的差异,得到平差结果。
四、测量平差的应用1. 地理信息系统(GIS)测量平差在GIS中有广泛的应用。
测量平差的基础理论与实用运算技巧介绍引言:测量平差是测绘学中一项重要的技术,它通过一系列的测量观测与计算,使得测量结果更加准确和可靠。
本文将介绍测量平差的基础理论和实用运算技巧,帮助读者了解和掌握这一领域的知识。
一、测量平差的基础理论1.1 测量误差与精度测量平差的基础理论包括测量误差与精度。
测量误差是测量结果与真实值之间的差异,而精度则是描述测量结果的可靠程度。
了解并控制测量误差是进行测量平差的基础。
1.2 测量观测与定位测量观测是对待测对象进行测量的过程,它是测量平差的基础数据。
而定位则是将观测结果转化为坐标或位置信息的过程,常用的方法包括全站仪测量和GPS 定位等。
1.3 测量平差方法测量平差的方法有很多种,如最小二乘法、参数平差法等。
最小二乘法是一种常用的平差方法,它通过将观测误差最小化,来确定最优的平差结果。
二、实用运算技巧2.1 观测数据处理观测数据处理是进行测量平差的关键步骤,它包括读数转换、数据检查和数据平差等。
在进行数据处理时,需要注意数据的完整性和准确性。
2.2 参数平差法运算参数平差法是一种广泛应用的平差方法,它通过建立参数模型和观测方程,来求解未知量的值。
在进行参数平差法运算时,需要掌握矩阵运算和方程组求解的技巧。
2.3 网平差运算网平差是一种多个点同时进行平差的方法,它适用于有大量观测数据和未知量的情况。
在进行网平差运算时,需要注意观测数据的合理性和平差结果的可靠性。
三、实例分析本节将通过一个实例来展示测量平差的应用。
假设有一个工程项目,需要对地面标志点进行定位测量和平差。
首先进行全站仪观测,并记录观测数据。
然后,将观测数据进行处理和平差计算,得到标志点的实际位置坐标。
最后,根据平差结果进行误差分析和可靠性评估。
四、应用展望随着测绘技术的不断发展,测量平差在各个领域的应用越来越广泛。
未来,随着传感器和数据处理技术的进步,测量平差的精度和效率将进一步提高。
同时,测量平差也将深入到更多新兴领域,如智能交通和环境监测等。
第一章绪论第二、三章全书的基础知识第四章介绍测量平差理论第五、六、七、八章 4种平差方法第九章各种平差方法的总结第十章讨论点位精度第十一章统计假设检验的知识第十二章近代平差概论根据本科教学大纲的要求,重点讲解第二章~第八章以及第十章的内容。
二、如何学好测量平差1. 要有扎实的数学基础。
只有牢固地把握了高等数学,线性代数和概率与数理统计等课程的知识才能学好测量平差,因此课前要做到预习,对与以上三门课程有关内容进行温习,只有如此才能听懂这一节课。
2. 听课时弄清解决问题的思路,掌握公式推导的方法以及得到的结论,培养独立思考问题和解决问题的能力。
3. 课后及时复习并完成一定数量的习题(准备A、B两个练习本),从而巩固课堂所学的理论知识。
第一章绪论本章要紧说明观测误差的产生和分类,测量平差法研究的内容和本课程的任务。
第二章误差散布与精度指标全章共分5节,是本课程的重点内容之一。
重点:偶然误差的规律性,精度的含义以及衡量精度的指标。
难点:精度、准确度、精确度和不确定度等概念。
要求:弄懂精度等概念;深刻理解偶然误差的统计规律;牢固掌握衡量精度的几个指标。
第三章协方差传播律及权全章共分7节,是本课程的重点内容之一。
重点:协方差传播律,权与定权的常用方法,以及协因数传播律。
难点:权,权阵,协因数和协因数阵等重要概念的定义,定权的常用方法公式应用的条件,以及广义传播律(协方差传播律和协因数传播律)应用于观测值的非线性函数情况下的精度评定问题。
要求:通过本章的学习,弄清协因数阵,权阵中的对角元素与观测值的权之间的关系;能牢固地掌握广义传播律和定权的常用方法的全部公式,并能熟练地应用到测量实践中去,解决各类精度评定问题。
第四章平差数学模型与最小二乘原理全章共分5节。
重点:测量平差的基本概念,四种基本平差方法的数学模型和最小二乘原理。
难点:函数模型的线性化,随机模型。
要求:牢固掌握本章的重点内容;深刻理解最小二乘原理中“最小”的含义;关于较简单的平差问题,能熟练地写出其数学模型。
测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差技术入门指南一、引言测量平差技术是现代测量学中的一门重要技术,它通过利用数学模型和数据处理方法,对测量结果进行精确的分析和修正,以达到更为准确的测量成果。
本文将为初学者提供一份测量平差技术的入门指南,介绍测量平差的基本原理、方法和应用。
二、测量平差的基本原理1.1 精确性和可靠性测量平差的基本原理是通过对测量数据进行处理,从而提高测量结果的精确性和可靠性。
精确性是指测量结果与真实值之间的接近程度,而可靠性则是指测量结果的稳定性和可信度。
通过测量平差技术,我们可以减小测量误差、消除随机误差和系统误差,提高测量精度和可靠性。
1.2 测量数据的模型化测量平差技术的另一个重要原理是将测量数据进行模型化。
对于不同类型的测量数据,我们可以通过建立相应的数学模型来描述它们的特征和关系。
基于这些模型,我们可以使用统计方法对测量数据进行分析和处理。
三、测量平差的基本方法2.1 最小二乘法最小二乘法是测量平差中最常用的方法之一。
其基本思想是最小化残差平方和,即寻找使得测量数据与模型之间的残差最小的解。
通过最小二乘法,我们可以消除一部分误差,并提高测量结果的精确性。
2.2 条件方程法条件方程法是另一种常用的测量平差方法。
它通过建立由观测数据和未知参数构成的条件方程组,使用数值方法求解该方程组,获得未知参数的估计值。
条件方程法适用于各种类型的测量问题,具有较好的通用性。
四、测量平差的应用领域3.1 地形测量测量平差技术在地形测量中具有广泛的应用。
通过对地形测量数据进行处理,我们可以绘制出精确的地形图和等高线图,为地质勘探、土地规划和交通规划等工作提供准确的基础数据。
3.2 工程测量在工程测量中,测量平差技术被广泛应用于土建工程、水利工程和交通工程等领域。
通过对测量数据进行精确处理,我们可以制定合理的工程设计方案,提高工程质量和效率。
3.3 大地测量大地测量是测量平差技术的重要应用领域之一。
通过对大地测量数据进行平差处理,可以获得准确的大地坐标和大地线网的形状、尺度和形变等信息,为地球物理研究、地震监测和测绘工作提供重要支持。
测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。
人们把这一数据处理的整个过程叫测量平差。
测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。
2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。
①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D KDK D F D K D K D FD F D TX ZYTX YZT X ZTXY②多个观测值线性函数的协方差阵×n×n×t×n Tn XX t t ZZ KD K D =③非线性的协方差传播TXXZZ KKDD =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。
权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。
()n i iiP ,...,2,1220==σσi P 为观测值i L 的权,20σ是可以任意选定的比例常数。
②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。
确定一组权时,只能用同一个0σ,令0σσ=i,则得:iiP ===0220221σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。
凡是方差等于20σ的观测值,其权必等于1。
权为1的观测值,称为单位权观测值。
无论20σ取何值,权之间的比例关系不变。
③测量中常用的定权方法 ⅰ.水准测量的权NC P h =式中,N 为测站数。
SC P h =式中,S 为水准路线的长度。
ⅱ.距离量测的权ii S C P =式中,iS 为丈量距离。
ⅲ.等精度观测算术平均值的权CPiiN=式中,iN 为i 次时同精度观测值的平均值。
平差知识点总结一、平差的基本概念1.平差的定义平差是指利用数学方法对一组测量数据进行处理和分析,消除或减小测量误差,从而得到比较准确的测量结果的过程。
平差是保证测量精度的重要手段,它通过对测量数据的处理,能够提高测量结果的准确性和可靠性。
2.平差的分类根据不同的处理方法和目的,平差可以分为几何平差、最小二乘平差、参数平差、条件平差、闭合平差等多种类型。
其中,最小二乘平差是平差技术中应用最广泛的一种,它通过最小化残差的平方和来确定未知参数的估计值,是一种较为常用的平差方法。
3.平差的应用平差技术在工程测量、地形测绘、地质勘探、地球物理探测等领域都有着广泛的应用。
在实际测量中,由于测量仪器、环境等因素的影响,测量数据往往会存在一定的误差,平差技术可以通过对测量数据进行处理,消除或减小这些误差,从而得到准确的测量结果。
二、平差的基本原理和方法1.平差的基本原理平差的基本原理是利用数学方法对测量数据进行处理和分析,通过建立数学模型和求解未知参数的估计值,最终得到较为准确的测量结果。
平差的核心是通过最小化残差来确定未知参数的估计值,使得观测值和计算值之间的差异达到最小,从而提高测量结果的准确性。
2.平差的基本方法平差的基本方法包括观测数据的处理、数学模型的建立、参数的求解以及结果的检查和评定等几个步骤。
在实际平差中,需要根据具体的测量任务和条件选择合适的平差方法,对测量数据进行适当的处理和分析,最终得到满足精度要求的测量结果。
三、平差的要素和步骤1.平差的要素平差的要素包括观测数据、数学模型、未知参数、观测方程、法方程、权矩阵等几个方面。
其中,观测数据是进行平差的基础和原始资料,数学模型是求解未知参数的理论基础,未知参数是待求解的目标,观测方程和法方程是平差计算的基本方程,权矩阵则是对观测值的权重进行考虑和处理。
2.平差的步骤平差的一般步骤包括数据预处理、误差分析、参数估计、残差分析等几个方面。
在进行平差计算之前,首先需要对观测数据进行预处理,包括数据的加工、筛选、检查等工作;然后通过误差分析求解未知参数的初始值,并进行参数估计;最后进行残差分析,检查和评定结果的精度和可靠性。
矩阵基础知识贺国宏 编为了学好测绘工程专业的核心课程〈测量平差基础〉,必须掌握以下所述矩阵的基础知识,同时,学习这些知识,对于学习测绘工程的其它课程,以及以后的深造,都是重要的。
1、矩阵的秩定义:矩阵A 的最大线性无关的行(列)向量的个数r ,称为矩阵A 的行(列)秩。
由于矩阵的行秩等于列秩,故统称为矩阵的秩,记为R(A)。
对于矩阵的秩有性质:{})(),(m in )(B R A R AB R ≤(1)2、矩阵的迹定义:方阵A 的主对角元素之和称为该方阵的迹,记为∑==ni ii a A tr 1)((2)对于矩阵的迹有下面的性质:(1) tr (A T )=tr (A)(3) (2) tr (A+B)=tr (A)+tr (B) (4) (3) tr (kA)=k tr (A) (5) (4) tr (AB)=tr (BA)(6)3、矩阵的特征值和特征向量定义:对于n 阶方阵A ,若存在非零向量χ,使得x x λ=A(7)则称常数λ为矩阵A 的特征值(或特征根),而χ称为矩阵A 属于特征值λ的特征向量。
由此可得=-χ)(A E λ0(8)因此,该齐次线性方程有非零解的条件是0)(0111=++++=-=--a a a A E f n n n λλλλλΛ(9)称λE-A 为矩阵A 的特征矩阵,而f (λ)为矩阵A 的特征多项式。
显然,矩阵A 的特征根),,2,1(n i i Λ=λ为特征方程(9)的根。
应该指出,对于一般的实矩阵A ,特征根可能是复数,从而特征向量也是复数。
以后将会看到,对于实对称矩阵,其特征根和特征向量都是实的。
这一点是很重要的。
特征值和特征向量具有下列性质:(1) 设n λλλ,,,21Λ为n 阶方阵A 的n 个特征值,则:A K 的特征值为kn k k λλλ,,,21Λ A -1的特征值为11211,,,---n λλλΛ(2) tr (A)=n λλλ+++Λ21 =A n λλλΛ21⋅(3) 矩阵A 的属于不同特征值的特征向量是线性无关的。
1、测量学的研究内容:测定和测设。
2、测定:将地面上客观存在的物体通过测量的手段将其测成数据或图形。
3、测设:就是将测量的手段标定在地面上。
4、水准面:静止的水面。
5、大地水准面:水准面与静止的平均海水面相重合的闭合水准面。
6、铅垂线:重力方向线,是测量工作的基准线。
7、地球椭球面是测量工作的基准面。
8、地物:地面上人造或天然固定的物体:地貌:地面高低起伏形态。
9、测量上常用坐标系:天文、大地、高斯平面直角、独立平面直角。
10、绝对高程:地面点沿铅垂线到大地水准面的距离。
相对高程:某点到任意水准面的距离。
11、高差:地面上两点之间高程差。
12、半径为10km范围内面积为320km2之内可以用水平面代替水准面时距离产生的误差可忽略不计;测距范围的100km2时,用平面代替水准面时对角度的影响可忽略不计;在高程测量中即使很短的距离也不可忽略。
13、测量工作的原则:a由整体到局部、由控制到碎部;b步步检核。
14、测量的基本工作:测角、量边、测高程。
15、测绘的基本工作:确定地面点的基本位置。
16、施工测量包括:建筑物施工放样、建筑物变形监测、工程竣工测量。
17、高程测量:测量地面上各点高程的工作。
18、水准测量的实质:测量地面上两点之间的高差,是利用水准仪所提供的一条水平视线来实现的。
19、高差计算方法:高差法、仪高法。
20、水准仪按构造可分为:微倾式、自动安平、数字水准仪,及水准尺和尺垫。
21、DS3构造:望远镜、水准器,基座。
22、水准仪轴线之间的几何条件:a圆水准器轴平行于竖轴b十字丝横丝垂直于竖丝c水准管轴平行于视准轴。
23、尺垫的作用:减少水准尺下沉和标志转点。
24、水准尺的使用:粗平、瞄准、精平、读数。
24、水准点的分类:永久性和临时性。
25、测站的检核方法:双面尺法和双仪高法。
26、水准路线检核方法:闭合水准路线、附合水准路线、支水准路线、水准网。
27、误差:仪器误差,观测误差、外界条件的影响。
测量平差方法及误差分析技巧引言:测量平差在各个领域中都起到了至关重要的作用,无论是土地测量、工程测量还是地理测量都离不开精确的测量平差。
本文将介绍测量平差的基本原理、方法以及误差分析技巧,以帮助读者更好地理解和应用这些知识。
一、测量平差的基本原理1.1 测量平差的定义测量平差是指在测量中,通过对测量数据进行处理和分析,用数学方法将观测值修正为比较可靠的数值,并确定其精度和可靠度的过程。
1.2 测量平差的基本原理测量平差的基本原理是以观测数据为基础,通过适当的计算和修正方法,使测量结果达到满足一定精度要求的条件。
二、测量平差的方法2.1 误差的分类误差是指由于种种原因导致观测值与真值之间的差异。
根据产生误差的原因,可将误差分为系统误差和随机误差两类。
2.2 测量平差的方法2.2.1 最小二乘法最小二乘法是一种常用的测量平差方法,其基本原理是通过构建误差方程,使误差的平方和最小化,从而得到最优的修正数值。
2.2.2 加权最小二乘法加权最小二乘法是在最小二乘法的基础上,引入权重因子,对观测值进行加权处理,以更好地反映各个观测值的可靠性。
2.2.3 置信椭圆法置信椭圆法是一种通过误差椭圆的几何性质,结合观测弥散矩阵,进行测量平差的方法。
通过确定椭圆的长轴、短轴和倾斜角度,可对误差进行合理的修正和分析。
三、误差分析技巧3.1 误差的传递规律误差在测量过程中具有传递性,即观测结果的误差会随着计算过程的推进而逐渐增大。
因此,在进行误差分析时,需要考虑不同环节中误差的传递规律,以准确评估测量结果的可靠性。
3.2 概略误差与精确误差概略误差是指由于设备精度、人为操作等因素导致的测量误差,通过一些常见的公式和方法可以进行较为粗略的估计。
精确误差是在概略误差的基础上,通过更加精细的计算和分析得到的误差值,更贴近实际测量结果的误差。
3.3 误差理论和误差估计误差理论是关于误差发生的规律的理论体系,包括误差分类、误差分布等。