∵D,F,K是AB,DC,AD边的中点
C
∴EK∥BD, EK=½BD FK∥AC, FK=½AC
∴∠1=∠3 ,∠2=∠4
∵AC=BD ∴EK=FK
∴∠3=∠4 ∴∠1=∠2 ∴OG=OH
10
例4:如图,在梯形ABCD中,AD∥BC,对角线AC与BD垂直相交 于点O,MN是梯形ABCD的中位线,∠1=30°.
8
例3:如图,D,E,F,分别是△ABC各边的中点,AH是△ABC的高,四边 形DHEF是等腰梯形吗?
D B
∟
A HE
证明: ∵D,F是△ABC两边的中点
∴DF是△ABC的中位线
F
∴DF∥BC,即DF∥HE
∵DH、EF 不平行
∴四边形DHEF是梯形 C ∵ AH是△ABC的高,D是AB的中点
∴DH=½AB ( ? )
连接E与DC边中点F
A
D
EF=½.(AD+BC)(梯形中位线)
E·
F
EF=½.DC(直角三角形斜边中线等
于斜边一半)
B
C
12
作业:
1. 梯形的中位线是16cm,它被一条对角线分成两部分差是4, 求梯形的两底。
2. 梯形上底长10,中位线长12,求下底及梯形被中位线分成的 两部分的面积比。
3. 等腰梯形两底差为4,中位线长为6,腰长为4,求等腰梯形的 面积
长和各角的度数。
A
D
解:(1)∵EF是梯形的中位线
∴EM=½AD;MF=½BC ( ?
即:AD=2EM; BC=2MF ∵EM=4,FM=10 ∴AD=8; BC=20 ∵AB=DC;AB=12 ∴周长=8+20+12+12=52