立体几何图形绘制
- 格式:ppt
- 大小:1.52 MB
- 文档页数:36
如何画好立体图形对于初中的同学来说,虽然通过在小学里对立体图形的学习有了一定的空间想象力,但要准确的画出几何体的三视图,并不是件很容易的事情.为此,可采用如下方法:(一) 从正投影的角度想象几何体的三视图在学习的画立体图形的三视图,采取的实际上是常见的正投影的方法,即当光线与投影面垂直时的投影.人在阳光下产生影子,物体在光线的照射下也会产生投影,如图1,在自上而下垂直于平面的光线的照射下,线段AB 的位置不同可分别得到的投影为一点、和它等长的线段、比它小的线段.因此,当想象不出几何体的三视图时,可以想象在物体的后面有一个投影面,有一束光线以垂直于投影面的角度照射物体,在投影面上形成的影子即相应的视图.例如: 初学画三视图的同学,很容易把图2中的几何体的正视图画成图3的样子.但是,从投影的角度就很容易画成图4的样子.图345图 1图 2(二)用45º线的方法形成对应因为三视图中的正视图和俯视图都反映几何体的长,所以在画三视图时,正视图和俯视图在长上应保持一致,同理,正视图和左视图应在高上保持一致,左视图和俯视图应在宽上保持一致.在这几种保持一致的对应上,左视图和俯视图的一致比较难掌握,而画45º线的方法则可以使它们之间保持很好的一致.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”;3.在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;4.为表示出旋转几何体(圆柱、圆锥、球等)的对称轴,可在视图中加画点划线。
《几何画板》在数学教学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。
同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。
因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革──用计算机辅助教学,改善人们的认知环境──越来越受到重视。
如何画立体图形立体图形在我们生活中无处不在,我们要要发挥我们的创造力,可以让画板为我们表现出丰富多彩的立体几何图形的。
一、立体几何图形的制作在空间里我们常用到的几何体有长方体、正方体、棱锥、棱台、圆锥和圆台等。
下面以正三棱锥为例,详细介绍下立体几何图形的制作画法。
设计标准:(1)能够反映正三棱锥的的几何性质,(2)能让其旋转。
设计的核心:解决正三角形在底面上的旋转。
为了使图形的直观性更强,我让一个三角形顶点在同一个椭圆上旋转,这样可以更好的表现出空间图形的立体感。
主要步骤:(1)画出椭圆上旋转的三角形。
用圆工具画一圆并在圆上任取一点C ,测算角CAB 的度数。
。
用线段工具。
作两条线段DE 和FG 并测算其长度。
。
利用三个测量值,计算出的值,选择二测算值,并在图表菜单中选择绘出(x,y ).这时画板中出现点J 。
。
标识中心A ,让点C 分别旋转120度和240度得到C`和C``,并分别测算角C`AB 和角C``AB ,然后通过上述画点J 的方法得到K ,L 。
。
连接三个点便生成了一个在底面可以旋转的三角形。
定义点C 在圆A 上旋转的动画,随着点C 的运动,三角形JKL 也开始旋转。
(2)构造棱锥。
将点A 平移到竖直的上方若干单位得到点A`。
(也可以标识一个向量,让点A 按着标识的向量来平移,这样能达到控制棱锥的高度的目的)。
。
构造线段JA`、KA`,LA`得到三棱锥的侧棱。
AA`为三棱锥的高,在此基础上我们再画出三棱锥的有关要素,例如高及三个重要的直角三角形。
类似的,我们可以得到圆柱、圆锥、圆台等几何图形。
另外,我们可以发挥几何画板动画的功能让我们的几何图形旋转起来,旋转的好处有二,一是在旋转的过程中选取最佳的识图视角,从而提高学生的识图能力;二是可以看到平面图形旋转成旋转体的生成过程,加强知识发生的过程的教学,变“知识重现”为“意义建构”,以往这部分内容的教学是引导学生展开“想象”,但对那些想象能力相对薄弱的学生来说,其中的困难可想而知。
高一上学期立体几何知识点一、点、线(直线、射线、线段)、平面1平面的表示方法平行四边形(平面a平面ABCD,平面AC)或三角形二、立体图形的画法斜二测1、x不变、y一半、夹角45度2、斜二测和原图形的面积比为f42直观图2-1直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2斜二测法做空间几何体的直观图⑴在已知图形中取互相垂直的轴Ox、Oy,即取/xOy=90°;⑵画直观图时,把它画成对应的轴O‘x‘、O'y,取/x‘O‘y'=45°或135°,它们确定的平面表示水平平面;⑶在坐标系x‘o'y‘中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用2斜二测法作出的直观图的面积是原平面图形的—4看不到的线用虚线(或者不画)需要有立体感。
(想垂直就垂直,想在里就在里,想在外就在外。
)三、立体图形之间的关系。
1点和线的位置关系(点在线上,点在线外)2点和面的位置关系(点在面上,点在面外)3线和线的位置关系(平行、相交、异面)4线和面的位置关系(线在面上,线面平行,线面相交(线面垂直))5面和面的位置关系(平行、相交(重合))四、各种角的范围1、异面直线所成的角的取值范围是2、直线与平面所成的角的取值范围是3、斜线与平面所成的角的取值范围4、二面角的大小用它的平面角来度量;取值范围是五、射影定理㈠空间几何体的类型1多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
棱柱多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三六、角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF-A'B‘C‘D‘E'F‘或棱柱A’D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.斜棱柱直棱称正棱柱平行六面体七、直平行六面体1棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。
立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。
立体测绘(Stereometry)是处理不同形体的体积的测量问题。
如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。
立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。
各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。
学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。
立体几何在几何画板中绘制固定椭圆椭圆是数学中常见的一种图形,接下来我们看看如何在几何画板中绘制固定椭圆。
1.新建一个几何画板文件,选择“直线工具”,在绘图区域内画出线段AB,选择“构造”—“中点”命令,画出线段A B的中心C。
如下图所示。
依次选中点C、点A,选择“构造”—“以2.选择“箭头工具”,圆心和圆周上的点绘圆”命令,绘制出以点C为圆心经过点A的圆C。
如下图所示。
在圆周上绘制出点D。
选择“箭头工具”,3.选择“点工具”,绘制出线段AB 选中点D和线段AB,选择“构造”—“垂线”命令,的垂线,并使线段AB和AB垂线的交点为E。
如下图所示。
4.选中圆C和直线DE,选择“显示”—“隐藏路径对象”命令,隐藏圆C和直线DE。
5.选择“线段工具”,绘制处线段DE。
选择“构造”—“中点”命令,绘制出线段DE的中点F。
如下图所示。
依次选中点D、点F,选择“构造”—“轨6.选择“箭头工具”,迹”命令,绘制出椭圆。
如下图所示。
7.选中点D、点E、点F、线段DE,选择“显示”—“隐藏对象”命令,隐藏点D、点E、点F、线段DE。
如下图所示。
8.选择“文件”—“保存”命令即可。
几何画板中球体的绘制方法球体如何在几何画板中绘制呢?接下来我们就一同看一看几何画板中球体的绘制。
1.新建一个几何画板文件。
选择“线段工具”,绘制出线段AB的中点。
AB,选择“构造”—“中点”命令,绘制出线段2.选择箭头工具,选中点C、点A,选择“构造”—“以圆心和圆周上的点绘圆”命令,绘制出圆C。
如下图所示。
3.选中点C、线段AB,选择“构造”—“垂线”命令,绘制出线段AB的中垂线。
点击线段AB的中垂线与圆C的交点,作出交点D、交点E。
如下图所示。
4.选择线段AB,选择“构造”—“线段上的点”命令,绘制出线段AB上的点F。
如下图所示。
5.选中点D、点F、点E,然后选择“构造”—“过三点的弧”命令,绘制出弧DFE。
如下图所示。
6.选中点F、弧DFE,选择“构造”—“轨迹”命令即可。
如何在Word中画立体几何图形唐顺友出数学试卷时,看见某个立体几何题很好,但又不知道怎么把图弄在试卷上,有的老师用几何画板或用扫描仪把资料中的图形扫描,处理后再复制到Word中,这种做法存在画图效果不佳、效率低、图形修改时较麻烦等缺点。
而Word的画图工具,便能快速画出精致的立体几何图形,而且打印效果特别好,看后给人一种心情舒畅的感觉。
一、打开作图工具(视图→工具栏→绘图)具体操作:先必须把有关的图形工具请到工具栏上。
点击“视图→工具栏→绘图”,绘图工具栏便在界面下边显示出来。
二、设置作图工具1.去掉画布,目的是:避免每次画图时,都自动创建画布的麻烦事出现。
(工具→选项→常规→插入自选图形时自动创建画布):具体操作:在“工具→选项”这一菜单中,有个常规页,切换到这个页面后,在其中有个“插入自选图形时自动创建画布”选项,如果这个选项前面打“√”,则:单击之,取消这一选项,注:如果不设置也可以,每次画图时把画的图形拖出画布,然后把画布删除即可(选中画布,按回车键),要增加图形时选中已经画好的图形,再点击要增加的图形,也可以避免出现画布,操作相对来说要麻烦点。
2.设置间距,目的是:用鼠标移动图形时,较好地控制图形的大小以及搬动到预定地方。
(文件→页面设置→文档网格→绘图网格→会弹对话框→网格设置→水平间距”、“垂直间距”设置为0.01→确认→确认)具体操作:在“文件→页面设置”菜单中有个“文档网格”页面,切换到这个页面后,左下角有个“绘图网格”按钮,点击这个按钮时,会弹出一个设置对话框,在其中的“网格设置”的“水平间距”、“垂直间距”设置为0.01(取这一设置的最小值)。
如果不进行这个操作,移动图形时可能出现线条交接间隔过大,位置要向某个地方移动一点点,却不听使唤。
三、基本作图技巧1.画线段具体操作:点击左下方工具栏中的线条工具“”,在相应位置作图即可。
2.画虚线具体操作:先画线段,选中线段后,点击点击左下方工具栏中的虚线工具“”,选择需要的虚线类型单击即可。
立体几何中一些截面图的作法
严格的立体几何作截面类似于几何作图,一般是给定一个立体图形和三个定点, 用严格的几何方法作出截面多边形.
依据的原则很简单,掌握了就非常容易:
(1)两点确定一条直线.
(2)只有同一个平面的两条直线的才会相交,作出的交点才是实际的交点. (3)如果已知两个不重合平面有一个共公点,则该两个平面的交线必过此公共点.
最好的理解办法就是实例说明,下面给一个比较复杂的实例.
实例题:
如上图,已知长方体上三点P、Q、R分别位于长方体左侧面、后侧面和底面上, 要求作过平面PQR和该长方体的截面.
分析:由于P、Q、R分布在不同的面上,因此无法直接连接其中两点和棱线相交来作交点,
需要借助长方体上的角点来辅助作图.
由于左侧面和后侧面有一个公共角点A,因此可以先作面APQ生成的截面.
作法:
(1)连接AP和AQ分别和棱BC(延长线)、BD交于E、F.
(原理:同平面不平行的两条直线必有交点).
此时有:PQEF共面,EF在底面上.
(2)连接PQ和EF,二者相交于G,此时得到了PQ和底面的交点Q, 于是面PQR和面PGR是同一个面,而G、R都在底面上.
(3)连接GR和底面棱线相交于H、K,此时就已经确定了截面的两个关键交点.
截面变为PQHK,剩下的步骤就简单了.
(3)连接主HQ和AB交于L,得到第三个点.
连接LP,可得到第四个点M,连接HK得到第五个点N,
连接MN,得到第六个点S.
因此最终的截面多边形是:HLMSK.。