高斯牛顿法ppt
- 格式:pptx
- 大小:1.84 MB
- 文档页数:12
python高斯-牛顿迭代法高斯-牛顿迭代法(Gauss-Newton method)是一种用于非线性优化问题的迭代算法。
它基于线性最小二乘法,用于求解非线性函数的最优解。
在本文中,我们将详细介绍高斯-牛顿迭代法的原理和实现,以及一些常见的应用。
1.高斯-牛顿迭代法原理高斯-牛顿迭代法的目标是找到一个最优的参数向量x,使得一个非线性函数集合F(x)的残差平方和最小化。
其中,残差r(x)定义为测量值与模型值之间的差异,即r(x) = y - f(x),其中y是测量值,f(x)是模型值函数。
残差平方和定义为S(x) = sum(r(x)^2),即所有残差的平方和。
为了找到最优的参数向量x,高斯-牛顿迭代法采用以下步骤进行迭代:1.初始化参数向量x的值。
2.计算残差r(x)和残差雅可比矩阵J(x)。
3.求解线性最小二乘问题J(x)^T J(x) dx = -J(x)^T r(x),其中dx是参数的增量。
4.更新参数向量x = x + dx。
5.重复步骤2-4,直到满足停止条件(如参数更新小于某个阈值)。
2.高斯-牛顿迭代法的实现高斯-牛顿迭代法的实现需要计算残差和雅可比矩阵,通过求解线性最小二乘问题来更新参数向量。
以下是一个简单的实现示例:```pythonimport numpy as npdef gauss_newton(x0, y, f, f_prime, max_iterations=100,tol=1e-6):x = x0for i in range(max_iterations):r = y - f(x)J = f_prime(x)dx = np.linalg.lstsq(J, -r, rcond=None)[0]x = x + dxif np.linalg.norm(dx) < tol:breakreturn x```在上述代码中,x0是参数向量的初始值,y是测量值,f是模型值函数,f_prime是模型值函数的导数。
阻尼高斯牛顿法阻尼高斯牛顿法,是一种用于非线性最小二乘问题的数值优化方法。
这种方法在科学、工程、经济等领域都有着广泛的应用。
首先,我们需要了解什么是最小二乘问题。
在数学中,最小二乘问题是指寻找一个函数,使得这个函数的拟合值与实际值之间的平均平方误差最小。
这个问题可以表达为一个数学公式:minimize || f(x) – y ||^2其中,f(x)是我们拟合函数,y是实际值的向量。
通过求解这个问题,可以得到最适合实际值的拟合函数。
一般来说,最小二乘问题可以通过牛顿法来解决。
牛顿法本质上是一种迭代方法,每次迭代时,我们都会用当前点的局部二次近似来更新下一个点,直到达到一个有限的精度为止。
但是,如果我们使用一般的牛顿法来解决非线性最小二乘问题,它可能会收敛得很慢,或者会陷入局部最小值。
为了解决这个问题,我们可以使用阻尼牛顿法。
阻尼牛顿法的基本思想是,在每个迭代步骤中,我们会采用正则化策略来使函数具有更好的全局收敛性。
这种策略由一个参数λ控制,当λ趋近于0时,阻尼牛顿法就变成了一般的牛顿法。
λ的值通常是在每个迭代步骤中动态调整的,以确保算法能够快速收敛。
阻尼牛顿法的另一个问题是,它可能会遇到不可接受的步长。
这意味着,在某些情况下,我们可能需要采取更加保守的步骤,以避免算法出现失败。
为了解决这个问题,阻尼牛顿法引入了一个衰减因子α,它可以使步长逐渐减小,直到我们找到一个可接受的步长或者算法停止。
在阻尼牛顿法中,我们还需要对函数的梯度进行计算。
这个计算通常使用数值方法来完成,但如果函数具有解析式,我们也可以通过解析式来计算。
综上所述,阻尼牛顿法是一种用于解决非线性最小二乘问题的有效数值优化方法。
它独特的正则化策略和衰减因子,在解决最小二乘问题时,能够收敛得更快且更加可靠。
牛顿法、拟牛顿法、高斯-牛顿法、共轭梯度
法推导总结
一、牛顿法
牛顿法是一种求解非线性方程的迭代方法。
牛顿法的基本思想是:在当前点附近,用一次泰勒展开式近似原函数,然后求解近似函数的极值点。
牛顿法每次迭代所需要的计算量较大,但其收敛速度较快。
二、拟牛顿法
拟牛顿法是一种求解无约束极值问题的优化算法。
拟牛顿法是将牛顿法中Hessian矩阵用近似Hessian矩阵Bk表示的算法。
拟牛顿法的计算量比牛顿法小,但是收敛速度较牛顿法慢。
三、高斯-牛顿法
高斯-牛顿法是求解非线性最小二乘问题的一种迭代算法。
该算法假设误差服从高斯分布,利用牛顿法求解目标函数的局部极小值,以最小化残差平方和。
高斯-牛顿法在处理非线性最小二乘问题时具有很好的收敛性。
四、共轭梯度法
共轭梯度法是解决对称正定线性方程组的迭代算法。
该算法通过对一个对称正定矩阵进行迭代求解,寻找线性方程组的解。
共轭梯度法的优点是可以使用较少的内存和计算量实现高效的求解。
以上算法都是数值优化中比较常用的算法,它们各自具有不同的优缺点,可根据实际问题的特点来选择合适的算法。
© 陈强,2015年,《计量经济学及Stata应用》,高等教育出版社。
第11章二值选择模型11.1 二值选择模型如果被解释变量y离散,称为“离散选择模型”(discrete choice model)或“定性反应模型”(qualitative response model)。
最常见的离散选择模型是二值选择行为(binary choices)。
比如:考研或不考研;就业或待业;买房或不买房;买保险或不买保险;贷款申请被批准或拒绝;出国或不出国;回国或不回12国;战争或和平;生或死。
假设个体只有两种选择,比如1y =(考研)或0y =(不考研)。
最简单的建模方法为“线性概率模型”(Linear Probability Model ,LPM):1122(1,,)i i i K iK i i i y x x x i n βββεε'=+=+= +++x β (11.1)其中,解释变量12()i i i iK x x x '≡ x ,而参数12()K βββ'≡ β。
LPM 的优点是,计算方便,容易得到边际效应(即回归系数)。
3LPM 的缺点是,虽然y 的取值非0即1,但根据线性概率模型所作的预测值却可能出现ˆ1y>或ˆ0y <的不现实情形。
图11.1 线性概率模型4为使y 的预测值介于[0,1]之间,在给定x 的情况下,考虑y 的两点分布概率:P(1|)(,)P(0|)1(,)y F y F ==⎧⎨==-⎩x x x x ββ (11.2)函数(,)F x β称为“连接函数”(link function) ,因为它将x 与y 连接起来。
y 的取值要么为0,要么为1,故y 肯定服从两点分布。
连接函数的选择具有一定灵活性。
通过选择合适的连接函数(,)F x β(比如,某随机变量的累积分布函数),可保证ˆ01y≤≤,并将ˆy 理解为“1y =”发生的概率,因为5E(|)1P(1|)0P(0|)P(1|)y y y y =⋅=+⋅===x x x x (11.3)如果(,)F x β为标准正态的累积分布函数,则P(1|)(,)()()y F t dt φ'-∞'===Φ≡⎰x x x x βββ (11.4)()φ⋅与()Φ⋅分别为标准正态的密度与累积分布函数;此模型称为“Probit ”。
高斯牛顿法和拟牛顿法
高斯牛顿法和拟牛顿法都是求解非线性最小二乘问题的优化算法。
其中,高斯牛顿法是一种迭代方法,每次迭代需要求解一个线性方程组,因此适用于问题中Hessian矩阵条件数较小的情况。
而拟牛顿法则是一种基于梯度的迭代方法,通过构造一个Hessian矩阵的逆矩阵来逼近真实的Hessian矩阵,因此适用于Hessian矩阵条件数较大的情况。
拟牛顿法有多种实现方式,其中BFGS算法是其中一种比较常用的方法,它通过每次迭代的梯度信息来更新逆Hessian矩阵的估计值。
在实际应用中,需要根据具体问题的特点选择合适的优化算法。
- 1 -。
opencv 高斯牛顿法【实用版】目录1.OpenCV 简介2.高斯牛顿法原理3.OpenCV 中的高斯牛顿法应用4.高斯牛顿法的优缺点5.总结正文1.OpenCV 简介OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它包含了大量的图像处理和计算机视觉方面的算法。
OpenCV 的目的是为人工智能、机器视觉、图像处理等领域的研究人员和开发者提供一个通用且高效的平台。
它支持多种编程语言,如 C++、Python 等,使得开发者可以方便地在不同的操作系统上进行开发和测试。
2.高斯牛顿法原理高斯牛顿法(Gauss-Newton method)是一种用于求解非线性最小二乘问题的优化算法。
它的基本思想是通过对数据点进行加权最小二乘拟合,以求得参数的最优值。
在图像处理领域,高斯牛顿法常用于求解图像的参数,例如相机的内部参数和外部参数等。
3.OpenCV 中的高斯牛顿法应用在 OpenCV 库中,高斯牛顿法被广泛应用于以下领域:(1)相机标定:相机标定是计算机视觉领域的一个重要环节,其目的是通过拍摄包含已知几何形状的场景,求解相机的内部参数(如焦距、光心坐标等)和外部参数(如旋转和平移矩阵)。
OpenCV 提供了一系列的函数来实现相机标定,其中就包括了使用高斯牛顿法的函数。
(2)图像拟合:在图像处理中,常常需要对图像进行参数化的拟合,以求得图像中的关键点或者纹理等信息。
OpenCV 中提供了基于高斯牛顿法的图像拟合函数,可以对图像中的特征点进行精确的拟合。
(3)优化问题求解:OpenCV 中还提供了一些基于高斯牛顿法的优化问题求解函数,如求解线性或非线性最小二乘问题等。
4.高斯牛顿法的优缺点高斯牛顿法具有以下优缺点:(1)优点:高斯牛顿法是一种迭代法,其迭代公式具有较好的数值稳定性,可以快速地收敛到最小二乘解。
同时,高斯牛顿法具有一定的鲁棒性,对于存在噪声的数据点也能获得较好的拟合效果。