第13章 冰川的地质作用
- 格式:doc
- 大小:74.00 KB
- 文档页数:7
冰川的地质作用冰川的地质作用0000地学2010-10-08 18:49:21阅读1评论0 字号:大中小订阅冰川的地质作用冰川的地质作用及其证据第一节冰川的地质作用随着对地球的不断认识,人们就大地构造,曾提出过很多学说。
比较著名的有地槽-地台学说(J. D. Dana, 1873)、大陆漂移学说(Wegener, 1912; Wegener, 1915; Wegener, 1929; Wegener, 2001)、海底扩张学说(Hess, 1962; Dietz, 1961)和板块构造学说等(Morgan, 1968; Isachs et.al., 1968; Mckenzie, 1969)。
板块构造学说得到古地磁学、地震学和古生物学等众多科学依据和测量数据的支持,被称为20世纪地质学的伟大成就(傅容珊和黄建华,2001)。
板块构造学说对2亿年龄的海洋和大洋壳的地质问题,进行了很好的解释(Mckenzie, 1969; 傅容珊和黄建华,2001),但仍留下一些有待解决的问题(傅容珊和黄建华,2001; Stacey, 1992; 宋春青和张振春, 1996)。
为了解决大陆地质历史演化过程、地壳生长机制和板块运动驱动力等方面的问题,我们就现有地质学、古生物学、地球物理学、地球化学和古气候学等资料,对大地构造演化的地球动力学问题进行了研究。
1 地幔浮力面理论我们先来做一个木块浸水小实验。
将一些不同形状、大小及比重的木块,放入一盆水中(见图1)。
因为木块的比重比水小,木块将浮在水中。
根据阿基米德原理(浮力定理),由于水对浸入水中部分的木块产生的浮力与木块的重量相等,不管木块的体积大小(只要不大于盆的水体),不管木块的比重大小(只要小于水的比重),不管木块的形状,也不管木块位于盆中水的什么高度,只要没有外力作用,最后,木块都会因为浮力作用,而停留在水面上。
我们将这时的盆内水面,叫做“浮力面”(见图1,a, e)。
第十二章冰川的地质作用冰川是陆地上终年缓慢流动着的巨大冰体。
它广泛分布于高纬度地区和中、低纬度的高山(海拔5km以上)地区。
积雪层-压力-冰川冰-。
冰川冰在其自身的压力和重力作用下,沿斜坡或一定的谷道缓慢地流动,就形成了冰川。
现代冰川覆盖着陆地面积的10%,-南极洲大陆和北极附近的格陵兰几乎全部被冰川覆盖。
-位于加拿大不列颠哥伦比亚省海岸山脉南部的海尔特斯库克(Heiltskuk,也写作Ha-Iltzuk)冰原覆盖面积约为3600平方公里。
这张详尽的太空图片是由国际空间站宇航员拍摄的,显示了该冰原里的山脉上层多被冰雪覆盖,有两个主要的河谷冰川也从这里向外延伸。
河谷冰川由大块缓慢移动的冰块和冰川碎屑组成,冰川在向下移动的过程中形成了U字型宽谷。
纵使冰雪全部融化,冰川侵蚀而成的山谷也会长期存在。
事实上,科学家正是凭借此类山谷的地质特征,来发现曾经被冰川覆盖、如今冰川已经消失的地质区域。
图中显示的是Silverthrone冰川和Klinaklini冰川,在照片上部两座冰川汇合在一起。
海尔特斯库克冰原冰川前端像锯一样的突出部分就是南极洲埃里斯伯(Erebus)冰舌。
埃里斯伯冰舌长达7英里(11.2公里),高33英尺(10米)。
南极洲埃里斯伯冰川从埃里斯伯山上快速滑落进麦克默多湾(McMurdoSound)。
在夏季,麦克默多湾其余海冰融化,而冰舌却依然不化,漂浮在海面上,形成了这一奇特的景观。
这是根据美国宇航局Terra卫星的先进星载热辐射与反射辐射计ASTER所捕捉到的数据制作成的假色地貌图,是将不同波段的数据合成而来的。
南极洲埃里斯伯(Erebus)冰舌显示的是几个小冰川滑落进格陵兰岛西部一个非常干燥的山谷。
过去的冰川运动导致山石在山谷底部堆积,使得谷底冰川融化形成的湖泊呈现出绿松石颜色。
格陵兰岛本身也是过去冰川作用形成的,如今格陵兰岛上仍覆盖着厚厚的冰盖。
格陵兰岛的大陆冰川(或称冰盖)的面积达180万平方公里,其冰层平均厚度达到2300米,与南极大陆冰盖的平均厚度差不多。
冰川地质作用冰川:是大陆上在重力作用下运动的冰体,是巨大的固体水流。
冰川主要分布在极地和中、低纬度的高山区,覆盖陆地面积10%,占全球淡水的85%。
是由大气固体降水经多年积累而成冰川形成的条件:1. 有丰富的降雪,降雪量>消融量,年平均气温0℃以下;2. 有适合冰雪大量堆积的场所(积雪盆地)。
终年积雪区称为雪原,其下限称为雪线。
雪线附近,降雪量=年消融量Image from /wikipedia/commons/8/8a/2008-06-27_01DSC_7583.jpg冰川的形成积雪粒雪化成冰雪的晶/wikipedia/commons/c/c2/SnowflakesWilsonBentley.jpgA snowflake's shape depends on the temperature at which it forms. This type of snowflake, called a sectored plate, forms when the temperate dips below about 5 degrees Fahrenheit (-15 degrees Celsius).Dendrite snowflakes first occur when the temperature hovers between 30 degrees Fahrenheit (-1 degree Celsius) and 27 degrees Fahrenheit (-3 degrees Celsius).Snowflakes take on the shape of hollow columns and needles at about 23 degrees Fahrenheit (-5 degree Celsius).Scientists aren't sure why temperature affects crystal formation and leads to different shapes of snowflakes.Snowflake Crystal冰川的形成/wiki/Firn/dutchs/graphic0/geomorph/longsect.gif根据气候、地形条件和冰川的形态规模,可将冰川划分为:1. 大陆冰川分布在高纬度和极地地区的冰川,又称冰盾或冰盖。
冰川地质作用具有如下特征:
冰川的剥蚀作用和搬运作用强烈,塑造出许多特殊的地貌形态,如冰斗、鳍脊、角峰、U形谷、悬谷等冰蚀地形。
冰川地质作用通过刨蚀、搬运、沉积改造地表形态及物质组成,形成各种冰川地貌,如冰川槽谷、冰斗、冰碛丘陵等。
冰川在运动过程中通过刨蚀、搬运、沉积改造地表形态及物质组成的作用,形成了各种地貌形态,如冰斗、鳍脊与角峰、刃脊、悬谷等。
冰川地貌是鉴别冰川作用范围和性质的标志,对研究古地理和古气候环境的变迁有重大意义。
冰川是塑造地表形态的一种外力作用,在高山和高纬地区尤为显著。
冰川是塑造地表形态的一种外力作用,广泛分布于欧洲、北美洲和中国西部高原山地。
总之,冰川地质作用在地貌形成中起着重要的作用,形成了许多独特的地貌特征。
如需了解更多关于冰川地质作用的信息,建议查阅相关文献或咨询地质学家。
第十二章冰川的地质作用§1.概念一、冰川——陆地上终年缓慢移动的巨大冰体。
现代地表陆地面积约有1/10被冰川覆盖,主要分布在两极及中低纬的高山地区。
全球冰川若融化,可成为24000000km3的淡水,占全球总淡水资源的)85%,如注入海洋可使海面上升65米。
因此,研究现代冰川,利用冰雪融化可直接为人类提供水源,古冰川的研究则可子解古气候及古地理的变化情况。
二、冰川的形成积雪冰川冰冰川1.终年积雪区——年降雪量>年融化量的地区,地面雪终年不化,并逐年积累,形成终年积雪区。
主要分布在两极及中、低纬的高山地区,这里气温<0°C,大量的降雪则终年积雪,气温是随着高度增加而降低的,这里山坡上某个高度年降雪=年消融理,这个高度月雪线。
2.雪线——终年积雪区的下界。
终年积雪雪线影响雪线高度的因素(1)气温:成比,一般赤道两极高度降低。
非洲赤道附近雪线海拔5700——6000米北冰洋0米(2)降水量:雪线最高的地方不在赤道,而在纬度20°-25°地带。
(3)地形:陡-雪线高;缓—雪线低东南坡(阳面)高西北坡(阴面)低3、冰川冰的形成三、冰川的类型按冰川发生的形态规模及所处的地球条件分:1.大陆冰川(冰盖、冰盾——分布在两极)特点:1°面积大,可达几百万km2280万km2 最厚3200m2°冰层厚,中部上千米,中原四周薄,呈盾形。
南极125/cm2>3000m3°运动不受地形影响,由于压力使中心向四周缓慢运动。
2.山岳冰川——高山地区各咱形态的冰川。
特点:1°规模小2°冰层薄3°形成和运动主要受地形影响和限制。
冰斗冰川——积雪盆地象转椅,只有一个缺口,其余都是陡峭的后壁,后壁冰冻风化强烈。
壁崩塌,造成雪崩,冰斗扩大积雪增加,形成冰斗冰川。
山谷冰川——顺山谷流动的狭隘长冰体,是山岳冰川的主要形式。
冰川的地质作用范文冰川是指由积雪经长期压缩形成的冰体,在地球上广泛分布。
冰川的地质作用是指冰川与地壳相互作用的过程,包括冰川侵蚀和沉积作用。
冰川侵蚀是指冰川通过切割、磨蚀和破碎等方式改变和形成地表地貌的过程。
冰川的侵蚀作用主要有以下几个方面:1.切割作用:冰川通过流动和磨蚀的力量,可以切割出深而狭窄的河谷,形成U形谷。
冰川的流动和磨蚀作用也会形成山谷地貌中的露岩和冰斧。
2.磨蚀作用:冰川通过搬运大量的石块、砾石和砂粒,以及冰水的冲刷作用,会搬运和磨蚀路线两侧的山脉和地表地貌,形成孤峰、被磨尖的山峰和冰碛山。
3.挤压作用:冰川在流动过程中会对地表物质施加巨大的压力,使可压性的物质产生垂直和水平挤压。
这种挤压作用有助于形成地貌中的褶皱和断层。
冰川沉积作用是指冰川在冰川运动、融化和消退的过程中携带和堆积的砾石、泥沙和土壤等物质。
冰川的沉积作用主要有以下几个方面:1.糟粕作用:冰川将堆积的砾石和泥沙,以及形成的冰碛堆积物推到暴露的地表上,形成不规则形状的堆积体。
这种堆积物被称为糟粕。
2.冰碛作用:冰川的流动和融化会将携带的砾石和泥沙堆积在地表或附近,形成冰碛丘、冰碛矿床和冰碛平原。
3.冲刷作用:冰川流动和融化会形成冰水混合物,通过流水的冲刷作用将携带的砾石和泥沙沉积在冰川融化的前沿。
这种沉积物被称为冲积物,形成冲积扇和冲积平原等地貌。
冰川的沉积作用也对地表地貌和土地利用产生重要影响。
冰川所堆积形成的冲积平原是肥沃的农田,具有较好的灌溉条件;冰碛矿床则是重要的矿产资源,包括金、铀、煤炭等。
冲积平原和冲积扇也是人类聚居和农业发展的重要地区。
另外,冰川的活动还对全球气候变化和海平面上升产生影响。
冰川融化导致全球水圈的重分布,影响海水咸度和淡水资源的供给。
此外,冰川融化还会导致海平面上升,给沿海地区带来威胁。
综上所述,冰川的地质作用包括冰川侵蚀和沉积作用。
冰川的地质作用不仅改变地表地貌,还影响土地利用、资源开发和全球气候变化等方面,具有重要的科学研究和实际应用价值。
第十二章冰川及其地质作用陆地上的水体分为液体和固体,所有河流、湖泊及地下水的总量仅占陆地淡水总量15%,其余85%的水以固态的形式构成冰体。
大约十分之一的地球陆地表面被冰川覆盖。
这些陆地上的冰体,在由于地面坡度和冰体厚差异所产生的侧压力的作用下,能产生缓慢地运动。
陆地上终年缓慢流动着的冰体为冰川。
冰川:是在重力和压力的影响下由雪源地向外缓慢移动着的冰体。
第一节冰川的形成与运动一、冰川的形成1、雪线雪线(均衡线):是年降雪量等于年消融量的分界线。
冰雪积累区:雪线以上,年降雪量大于年消融量,常年积雪;冰雪消融区:雪线以下,年降雪量小于年消融量。
雪线高度在不同地区是不同的,它受到温度、降水量及地形的影响。
雪线高度的影响因素:1、气温与H成正比:赤道区H最大;2、降雪量与H成反比:H最大值的地带是南北纬200~300的干燥区;3、地形:陡坡H比缓坡H大,向阳坡H比背阳坡H大。
H:雪线高度2、冰川冰的形成在两极或低纬度的高山地区,降水主要以雪的形式降落,长年累月就聚集而形成终年积雪区的雪原。
刚降落的雪称新雪,其形状多为六角形,充满空气,密度非常小,新雪通过圆化后变成圆的、较致密的颗粒称粒雪。
粒雪在上层雪的重压下发生缓慢的沉降压实和重结晶作用,使其粒雪变成粒雪冰。
粒雪冰进一步受压,排出气泡,就变成浅蓝色的冰川冰。
冰川冰在上部冰雪压力和本身的重力作用下而运动(冰川)。
二、冰川的运动导致冰川运动的主要因素是冰川本身的重力和压力。
取决于冰床坡度的流动,称重力流,多见于山岳冰川;取决于冰面坡度的流动,称压力流,多见于大陆冰川。
冰川有两种运动方式:(1)基底滑动:冰川借助冰与床底岩石界面上融水的滑润和浮托作用,沿冰床向前滑动。
(2)塑性流动:由于冰川自身的压力而导致冰内晶粒发生蠕变,使冰晶向前错位,产生冰川的定向蠕动。
一般情况下,冰川的运动是这两种运动的代数和。
冰裂缝:由于冰川不同部位的运动速度不同,底部和两侧基岩因摩擦而运动慢;上部和中间运动快,这种差异将导致冰川表面产生冰裂缝。
冰川地质作用冰川活动对地表岩石和地形的破坏和建造作用的总称。
包括冰蚀作用、搬运作用和沉积作用。
冰川地质作用在极地、高纬度和高山寒冷地区占显著地位。
冰蚀作用冰川活动破坏组成冰床的岩石和地形的作用,又称刨蚀作用。
冰蚀包括掘蚀和磨蚀两种作用方式,而几乎没有溶蚀作用。
冰床附近的冰体因受挤压,融点降低融化成水,渗入下伏冰床的裂隙或孔隙中,水体因压力降低而冻结。
随冰体和融水的反复融化和冻结,它们的体积反复收缩和膨胀,致使组成冰床的基岩或土体发生崩解。
崩解的碎屑(包括原来的碎屑)又会被再冻结,并入冰川中,并随冰川迁移。
以后新鲜冰床继续重复遭受上述作用,不断加深拓宽,这种作用称为掘蚀。
发育于降水量充沛的海洋性气候下的温冰川(海洋性冰川)和发育于降水量小的大陆性气候下的冷冰川(大陆性冰川),掘蚀作用的强度有明显差异。
前者的温度以接近融点为特点,其底部融水充沛,掘蚀作用特别强烈;后者的温度以低于融点为特点,其底部融水贫乏,掘蚀作用极弱。
此外,冰川在运动途中,因自身产生的强大挤压力,所挟带的岩屑对冰床进行研磨,使基岩床面和岩屑都遭受磨损,这种作用称为磨蚀。
因温冰川的掘蚀作用比冷冰川强烈,其底部挟带的岩屑较多,此外,它可沿冰床滑动,所以温冰川的磨蚀作用比冷冰川强烈。
冰蚀作用可以塑造出一系列特殊地貌。
在山岳冰川地区最常见的冰蚀地貌有:横剖面呈U型的冰川谷,状如围椅的冰斗,金字塔形的角峰,山脊薄如刀刃的刃脊(图1冰蚀作用下形成的冰斗、刃脊、角峰和冰川谷),光滑平整并具有多组刻痕的冰溜面,以及状似伏于地面的羊背的羊背石等。
(见彩图冰川作用形成的角峰-珠穆朗玛峰、U形谷──新疆乌鲁木齐河上游U字形并列的冰川悬谷、冰蘑菇(西藏北部大陆性冰川表面消融区)、具有冰核的冻胀丘(青藏高原可可西里)、冰桥──冰川消融形态之一(西藏北部)、巨型羊背石,也称鲸鱼背(加拿大曼尼托巴省西北部弗林弗伦附近)、冰川漂砾(四川甘孜海子山))冰川搬运作用冰川在运动过程中把它携带的碎屑物转移到他处。
第十四章冰川的地质作用冰川是指发生在陆地上,由大气固态降水演变而成的,通常处于运动状态的天然冰体。
它随气候变化而变化,但不是在短期内形成或消亡。
雪线触及地面是发生冰川的必要条件。
因此,冰川是极地气候和高山冰雪气候的产物。
冰是水的一种形式。
从地球演化过程来看,冰是地球物质分异最后的产物。
作为最轻的矿物之一,密度只有0.917g/cm3,比水的密度小。
这一特点使它总是处在地球的表面,在水体中则总是浮在水面。
如果冰不具有这一物理性质,那么,在低温条件下水体将一冻到底,对水生生物造成严重灾难。
冰具有不稳定性,在目前地表温度状况下,自然界的冰很容易发生相变。
冰在地球上的分布非常广泛,上至8~17km高的大气对流层上部,下至1500m深的地壳中都可以发现它的踪迹。
广义冰川学把冰的分布范围称为冰圈。
冰川是冰圈的主体。
在冰川分布地区,冰川改变地表形态,形成独特的冰蚀地形,同时又把破坏下来的岩屑搬运至它处堆积。
所以,冰川是促使高纬地区和中、低纬地区地壳变化、发展的主要外动力。
由古代冰川地质作用形成的堆积物和地貌,是地质工作者研究的重要内容之一。
冰川是水圈的重要组成部分。
冰川的扩张与缩小,影响到海面的升降。
如果现代冰川全部融化,海面将因此上升50m;即使仅是南极冰川全部融化,也足以使世界海面升高20m。
显然,海陆分布、大气环流、世界气候以及生物分布都将随着海面的升降而变化。
可见,冰川对地壳的地质作用和地表自然地理的影响是非常深刻的。
第一节冰川的形成与类型一.冰川的形成1.雪线和雪原对流层气温随高度和纬度的增加而降低,到达一定高度的高山地区和一定纬度的高纬地区,气温经常在0℃以下,水份的降落和保存多处于固体状态。
降雪不能在一年之内全部融化或升华掉,便长年累月的积聚起来,形成终年积雪区,叫做雪原。
终年积雪区的下部界线称为雪线。
在雪线附近,年降雪量大约等于年消融量;雪线以上,降雪量大于消融量,形成冰雪的积聚。
雪线高度与气温、降雪量、地形等因素有关,所以各地雪线高度不同,总的规律是自赤道向两极迅速降低。
雪线高度在赤道非洲地区为5700~6000m,中纬度的阿尔卑斯山降低至2400~3200m,再到高纬度的挪威更降低至1540m,而到北冰洋,雪线已接近海面。
局部地区的雪线高度与降雪量和地形有关。
气候干燥使雪线位置升高。
20~30°地区的雪线普遍比赤道地区高。
地形影响当地太阳辐射强度和气候。
喜马拉雅山雪线南坡高度为4400~4600m,北坡为5800~5900m。
2.冰川冰成冰作用是指积雪转化为粒雪,再经过变质作用形成冰川冰的过程。
雪是一种晶体,而任何晶体都具有使其内部包含的自由能趋向最小,以保持晶体稳定的性质,这就是最小自由能原则。
晶体的自由能包括内应力和表面能两部分。
表面能的大小与晶体表面积成正比。
圆球体是表面积最大的几何形体之一。
在外界环境条件稳定时,雪晶力图向球形体转变。
这一过程称为自动圆化或粒雪化。
雪的圆化是通过固相的重结晶作用、气相的升华、凝华作用和液相的再冻结作用三种方式来实现的。
结果是消灭晶角、晶棱,填平凹处,增长平面,合并晶体,形态变圆,雪花变为雪粒。
粒雪化过程可以分为冷型和暖型两类。
前者没有融化和再冻结现象,过程缓慢,雪粒直径通常不超过1mm;暖型粒雪化过程进行得较快,雪粒直径比较大。
粒雪中含有贯通孔隙,当其进一步变化,全部孔隙被封闭后就变成冰川冰。
成冰作用也分冷型和暖型两类在冷型变质过程中,粒雪只能依靠其巨大厚度造成的压力加密而形成重结晶冰。
这种冰密度小,气泡多且气泡内的压力大。
冷型成冰过程历时长,在南极中央,成冰时间往往超过1000年,而成冰的深度至少需要200m。
暖型成冰作用有融水参与,并因融水数量不同而分别形成渗浸-重结晶冰、渗浸冰和渗浸-冻结冰。
在粒雪很薄而夏季气温较高时,粒雪可以完全融化,而后在冰川冷贮作用下,在冰川表面重新冻结成冰。
由上述可知,重结晶、渗浸和冻结成冰。
是成冰作用的三个基本类型;渗浸-重结晶及渗浸-冻结作用则是两个过渡类型。
上述各种冰是成冰作用初期的原生沉积变质冰,它们仅仅分布于冰川表层。
冰川冰的绝大部分是沉积变质冰在运动中经受压力形成的动力变质冰。
其中最常见的是冰川塑性流动状态下形成的此生重结晶冰。
动力变质冰具有一般变质岩的特点,如片理、褶皱和冰晶的定向排列等。
3.冰川冰川冰是浅蓝色、致密透明的冰层,比重0.9,在缓慢而又持久的压力下,具有可塑性。
只要冰川表明达到一定的坡度,冰川冰在上层压力和重力推动下,就从高处流向低处,从而形成冰川。
二.冰川的类型冰川个体规模相差很大,形态各具特征,生成时代前后不同,冰川性质和地质地貌作用等也都不一致。
因此,可根据不同标志划分冰川类型。
通常按照冰川形态,规模及所处地形把冰川分为山岳冰川、大陆冰川和山麓冰川。
1、山岳冰川主要分布于中、低纬地区、由于雪线较高,积累区不大,因而冰川形态受地形的严格限制。
特点:规模小;冰层薄;形成和运动主要受地形影响和限制。
山岳冰川按形态又可以分为:(1)悬冰川数量最多,依附在山坡上,面积通常小于1km2,对气候变化的反映十分灵敏。
(2)冰斗冰川发育在冰斗中的冰川,面积1~10km2。
都有一个陡峭的后壁,经常发生雪崩或冰崩。
谷地源头的冰斗规模一般比较大,周围还有第二级冰斗,为围谷冰川。
(3)山谷冰川在有利气候条件下,雪线下降,补给增加,冰斗冰川溢出冰斗进入山谷形成。
流到雪线以下山谷的冰流,叫做冰舌。
它和两侧谷坡的界线很分明。
2.大陆冰川又称冰盾或冰盖。
冰期(末次冰盛期)时大陆冰川占据广阔的面积,目前正处于末次冰期间冰期,海面处于缓慢上升阶段,因此仅发育于两极地区。
特点:面积大,可达几百万km2;冰层厚,中部上千米,中原四周薄,呈盾形;运动不受地形影响,由于压力使中心向四周缓慢运动。
3.山麓冰川山麓冰川:数条山谷冰川在山麓扩展汇合成为广阔的冰原,叫做山麓冰川。
它是山岳冰川向大陆冰川转化的中间环节。
4.其它分类还可以依据冰川的物理性质进行分类:(1)冰川的动力活动性积极冰川、消极冰川和死冰川;(2)冰川温度状况温冰川、冷冰川。
温冰川除表层在冬季可以暂时变冷外,整个冰川厚度大致接近于压力熔点,冰内包含液态水,而且融水可以在全厚度内出现。
融水湿润基床,增进冰川冰的滑动,相对冷冰川而言,运动速度更大,侵蚀力量更大。
第二节冰川的分布目前全球冰川面积约为1550×104km2,占陆地总面积的10%以上。
冰川总体积2400~2700×104km3。
如果这些冰全部融化,将使世界洋面上升66m。
其中以南极洲和格陵兰最为重要,南极洲冰川面积占85%,而且全球冰总体积约有91%在南极洲;格陵兰则占有全球冰川地区面积之12%,冰川体积则为总量8%。
第三节冰川的运动特点一.冰川为什么会流动一方面是由于冰川冰具有可塑性,冰晶在压力下可以改变空间位置,故有流动的可能性;二方面是冰川表面或冰床高度的不同,冰川冰在重力或压力驱使下自地面高处(或冰厚处)流向地面低处(或冰层薄处)。
山谷冰川受重力作用,从冰床高处流向冰床低处。
大陆冰川受压力作用,从冰层厚处(中心部分)流向冰层薄处(边缘部分)。
运动速度缓慢:通常肉眼难以观察冰川的运动,现冰川通过打桩来观察桩位的变化。
1959-1960 珠峰北坡V=M-129m/y南极的大陆冰川V=25M/y冰体从南极大陆的中部运移到海岸需10万年。
二.影响冰川运动的因素1.地面坡度坡度越大则移动越快。
2.冰川厚度与温度:冰层越厚则压力越大,动能越大,运动速度越快。
温度较高时则冰的活动力较强,移动较快。
3.地面的光滑度地表越光滑则冰川移动阻力越小,移动越快;若地表面粗糙不平,则阻力较大,则移动较慢。
4.融冰含量若温度升高,一部分的的冰融化成水,则融冰含量增加,流动性增加,冰川移动较快5.冰川携带岩石碎片的影响冰川所携带岩石碎片越多,则压力越大,动能越强,移动越快。
冰川移动的速度,在同一冰川内各部位有差奇异,而在冰川不同部位将产生不同形式的运动,冰川的运动由内部流动和底部滑动两部份组成。
在每一冰川的横切面,其表面速度为在中央大于两侧,是因为冰川两侧受到两侧岩壁的阻力;同样的表面冰移动也较其内部为快。
一般而言,中间流动的速度较两侧为快,顶部较底部为快。
冰川的运动主要是由两个部份组成,一部份的运动是冰川内部的运动,由下到上递增;另一部份的运动是冰川底部的滑动,称为“底滑”,是冰川底部因为融水的滑润而在底岩上的滑动。
在冰川的流动中,底滑的运动是大于冰川自己的内部运动的。
所以,冰川的运动主要是靠“底滑“。
冰川运动过程中的分带性:对每一冰川而言,均有一堆积带和消融带,由雪线分隔,在雪线上冰积和冰融作用相等。
如果冰川的增补量和耗损量恰能平衡,则冰川就停留不再前进;如果增补量超过耗损量,则冰川向前移进;但如果耗损量超过增补量,则冰川向后退却。
冰川除了前后可以分为两带(即堆积带和消融带)之外,冰川还可分为上下两部份,上面部份较脆称为破裂带;下面部份承受上面的重量和压力,呈现如可塑体般慢慢滑动称为流动带。
另外,冰川的流动由于速度的变化而造成伸张流和压缩流在冰川谷的坡度变缓的段落,冰层挤而加厚,形成压缩流;相反的,冰层发生拉长,形成伸张流。
由于冰川下部的流体各处快慢不同,上层坚脆的冰体强度很低,加上山谷两侧谷壁的摩擦力和冰川底下山谷地面的高低起伏地形,所以冰川表面发生许多冰隙。
冰隙是冰川中最明显、最丰富的构造,是上层坚脆冰体的脆裂当在下面的冰持续流动下作用所造成的巨大裂缝。
冰隙是张力的裂隙是由于冰川的不同运动所产生的。
冰川在不同的位置运动会产生不同的冰隙,一般来说冰隙主要包括有:1.横向冰隙当冰川运动时,冰川底部岩石高低不平,使冰川流动的速度不一,当冰川加速时形成的伸张流会产生横向冰隙,横向冰隙与冰川流动的方向垂直。
2.边缘冰隙冰川运动时,沿着山谷壁拉拖所产生的。
3.纵向冰隙当冰川开始向外扩展,形成在冰川末端的冰隙,纵向冰隙与冰川流动的方向平行。
4.放射状冰隙是产生在冰川的最外围,当冰川发展成圆形突出的部份所形成的。
由于冰川是固体流,在表面产生的冰裂隙,气温暖时,具冰裂隙的冰体发生差异融化,裂隙处融化快,形成冰塔、冰牙、冰蘑等奇特现象,随气温进一步转暖则消失。
冰川流动的控制因素有冰层的厚度、温度、坡度的特性,河谷的形状和冰川中所夹带的岩块和岩屑的多寡等。
如果冰川底部和谷壁之间有一层融冰造成的水膜,对冰川的流动可以有很大的帮助。
不论冰川的流动受何种因素影响,冰川始终向前流动。
三.冰川动力的性质与大小冰川是一种固体流,它的动力性质完全是机械的。
若与河流相比,如果它们质量相同,因其流速缓慢,冰川的动力就小得多。
但冰川厚度大于河流水深几倍甚至几十倍,所以冰川同样拥有巨大的动能。