第二章 生物信息学数据库资源
- 格式:ppt
- 大小:4.37 MB
- 文档页数:104
生物信息学实验教学中的网络资源及其利用生物信息学是一门交叉学科,将计算机科学、生物学和统计学等知识应用于生物学研究中。
在生物信息学实验教学中,网络资源是非常重要的学习工具。
本文将介绍几种常见的生物信息学网络资源及其在实验教学中的利用。
1. 生物信息学数据库生物信息学数据库是生物学和计算机科学相结合的产物,存储了大量的生物学数据和相关信息。
常见的生物信息学数据库包括GenBank、UniProt、Ensembl等。
这些数据库涵盖了基因序列、蛋白质序列、基因组数据等多种类型的数据,可以帮助学生了解和分析生物学数据。
在实验教学中,可以引导学生使用这些数据库查找相关的生物学信息,比如搜索特定基因的序列、查询蛋白质的功能等。
2. 生物信息学工具生物信息学工具是用于分析和处理生物学数据的软件和算法。
学生可以通过网络资源获得免费的生物信息学工具,并在实验中应用这些工具进行数据分析。
常见的生物信息学工具包括BLAST、ClustalW、FASTA等。
这些工具可以帮助学生进行序列比对、同源性分析、蛋白质结构预测等任务,培养学生的数据处理和分析能力。
3. 在线教学平台在线教学平台是指通过网络提供教学内容和资源的平台。
在生物信息学实验教学中,可以利用在线教学平台发布实验指导书、实验数据和实验报告等教学资源。
学生可以通过在线教学平台获取实验资料、提交实验结果,并与教师和同学进行交流和讨论。
教师可以通过在线教学平台进行作业和考试,提供实时的反馈和评价。
4. 生物信息学论坛和社区生物信息学论坛和社区是生物信息学学术交流和合作的平台。
学生可以参与生物信息学论坛和社区的讨论,与其他研究者分享自己的研究成果和经验。
通过与专业人士的互动,学生可以深入了解生物信息学研究的最新进展和发展趋势,拓宽自己的视野和思路。
生物信息学论坛和社区也可以为学生提供求职和合作的机会,促进学生的职业发展。
网络资源在生物信息学实验教学中具有重要的作用。
通过利用生物信息学数据库、工具、在线教学平台和论坛社区等网络资源,可以帮助学生快速获取生物学数据和研究资料,提高数据处理和分析能力,培养科研思维和合作能力。
生物信息学中的数据库资源及其应用摘要:伴随着生物信息学的发展,生物信息数据库日趋完善。
现对生物信息学、数据库的建设及其应用情况进行了综述,并展望生物信息学的发展前景。
关键词:生物信息学;数据库的建设及其应用生物信息学(Bioinformatics)是80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科,最初常被称为基因组信息学。
广义地说,生物信息学是一门采用计算机技术和信息论方法对蛋白质及其核酸序列等多种生物信息采集、加工、储存、传递、检索、分析和解读的科学,是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学等学科相互渗透而形成的交叉学科。
美国人类基因组计划中[1],对基因组信息学有这样的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。
这一定义包含着两方面的内容,一方面是发展有效的信息分析工具,构建适合于基因组研究的数据库,用于搜集,管理,使用人类基因组和模式生物基因组的巨量信息。
另一方面是配合实验研究,确定约30亿个碱基对的人类基因组完整核苷酸顺序,找出全部约10万个人类基因在染色体上的位置以及包括基因在内的各种DNA片段的功能,也就是“读懂”人类基因组[2]。
正如基因组信息学的定义所确定的,它的研究内容主要包含两个部分,一是基因组相关数据的收集与管理,另一个是基因组数据内涵的分析与解释,也就是遗传密码的破译。
生物信息学自产生以来大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段。
前基因组时代的标志性工作包括生物数据库的建立、检索工具的开发以及DNA和蛋白质序列分析等;基因组时代的标志性工作包括基因识别与发现、网络数据库系统的建立和交互界面工具的开发等;后基因组时代的标志则是大规模基因组分析、蛋白质组分析以及各种数据的比较与整合。
三个阶段虽无明显的界限,却真实地反映了整个研究重心的转移变化历程[3]。
1 生物信息学数据库简介近年来随着大量生物学实验数据的积累,众多的生物学数据库也相继出现,它们各自按照一定的标准收集和处理生物学实验数据,并提供相关的数据查询、处理等服务。
2 序列数据资源 (1)2.1 分子生物学数据库 (1)2.2 序列数据存放格式 (5)2.3 核酸序列数据库 (9)2.3.1 GenBank数据库 (10)2.3.2 RefSeq数据库 (16)2.3.4 EPD数据库 (17)2.4 蛋白质序列数据库 (19)2.4.1 UniProt简介 (19)2.4.2 UniProtKB数据库 (19)2.5 基因组数据资源 (24)2.5.1 基础知识 (24)2.5.2 不同物种的基因组数据库 (27)2.5.3 人类基因组数据库 (32)2.6 数据的检索与获取 (46)2.6.1 检索工具 (47)2.6.2 获取序列数据的例子 (50)参考书目 (54)2 序列数据资源随着测序技术的不断发展,公共数据库中积累了大量的核苷酸和蛋白质序列数据。
熟悉并了解这些数据将有助于更好地开展生物信息学相关的研究与应用。
本章介绍了几个常用的核苷酸和蛋白质序列数据库,以及从这些数据库中获取需要的信息的方法。
2.1 分子生物学数据库目前已有数以千计的分子生物学数据库(Molecular biology database)。
它们具有如下特点。
(1)数据库数量众多国际著名杂志《核酸研究》(Nucleic Acids Research,NAR)每年都会出版一期生物信息数据库专刊,用于发表新增的分子生物学数据库的文章外,还会发表一篇称为“分子生物学数据库集合”(The Molecular Biology Database Collection)的文章,介绍目前国际上得到公认的各类分子生物学数据库的统计信息。
从1999到2008年,NAR 报道的数据库数量的增长情况如图2.1所示。
截至2009年,其报道的国际共享数据库资源已达到1170个。
(2)数据库种类繁杂目前的分子生物学数据内容非常丰富,研究人员可以针对不同的目的和需求来收集和整理相关的数据,例如,存储大量核酸和蛋白质序列数据的数据库、提供人类基因组和其他基因组注释的数据库、蛋白质家族数据库、特定物种的基因组数据库、存储和人类疾病相关基因突变的序列信息的数据库、基因表达谱数据库、存储转运RNA 分子的数据库、存储基因调控区域的数据库,以及结构数据库等等。
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。